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Abstract

Buffer gas cooling is applied to load magnetic traps with atoms having a 1 µB

magnetic dipole moment. Large numbers, up to 4 × 1013, of lithium, copper, and silver,

are trapped with lifetimes as long as 200 s. For lithium, the buffer gas can be removed

from the trap, leaving a background gas density of ∼ 1011 cm−3. Further improvements

are suggested that could be used to reduce this number far enough to achieve thermal

isolation of the trapped atoms. The collisional properties of copper and silver with helium-

3 are studied. An anomalous temperature dependence for the relaxation cross-section is

discovered in the silver–helium-3 system. This is compared to a theoretical prediction

based on the canonical spin-rotation interaction. The measurement and theory disagree,

suggesting that the relaxation is due to a typically neglected mechanism.
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Chapter 1

Introduction

The first magnetic trapping of neutral atoms occurred nearly 23 years ago [4–6]. Since

then, the trapping of neutral atoms has allowed for a revolution in atomic physics, making

possible the observation of novel states of matter, including quantum degeneracy [7–10]

and superfluidity [11] of dilute atomic and molecular [12, 13] gases, and the realization of

quantum gas insulators [14, 15]. Ultracold samples of trapped atoms could allow for more

precise measurements [5], leading, for example, to better optical clocks [16]. Trapped atoms

can also show very strong interactions with light, resulting in very large refractive group

indices [17] and the ability to store quantum information [18, 19].

Despite the incredible number of advances bestowed by the advent of atom trap-

ping, only a small subset of magnetic species has thus far been trapped. Because magnetic

traps are shallow, with the deepest trap depths only a few K [20], a significant degree

of cooling must be performed to load magnetic traps. Cooling these species in a trap-

pable internal state, while maintaining their dilute gas phase, poses a serious experimental

challenge. With some notable exceptions [9, 21, 22], trapping experiments have used laser

cooling [23–25] of thermal beams. In order to be successful, laser cooling requires a “closed”

1



2 Chapter 1: Introduction

cooling cycle: After absorbing a photon from the cooling laser, the atom must decay to its

original trapped state. If the atom can decay to some other state after absorbing the cooling

photon, an additional laser must be added to “repump” the atom back into the trapping

state. For simple atoms (notably the alkali metals) these concerns are minimal. For atoms

with more complex atomic structure, or for molecules, with their rotational and vibrational

manifolds, the technical challenges associated with these extra states multiply [26]. In ad-

dition, because high laser powers are required for the cooling and repump beams, laser

cooling is generally limited to species with strong cooling transitions at visible wavelengths.

Finally, because atoms typically begin as thermal beams, the technique is most successful

with species with significant vapor pressures at temperatures between 0 ◦C and a few hun-

dred ◦C. Laser cooling, therefore, has been restricted to atoms, and to a few specialized

groups of atoms at that. The alkali atoms have been most extensively studied, and have

been laser cooled and trapped in their ground state. The alkali earths and the noble gases

are also amenable to laser cooling; however, they experience no magnetic interaction in

their ground state, and can therefore only be trapped in metastable excited states. With

specialized effort, laser cooling has also been used to cool and trap neutral chromium, silver,

erbium, and ytterbium (in magneto-optical traps).

While a large and important body of work can and has been pursued with laser

cooling, there is a natural desire to pursue alternate cooling strategies for the loading of

magnetic traps. Such pursuits seek both to extend the class of species that can be trapped,

and to increase the density of atoms or molecules in the trapped clouds. This thesis is con-

cerned with buffer gas cooling [21, 27], one of these alternate strategies. Buffer gas cooling

has been successful at adding to the list of species trapped in magnetic traps: To date,

buffer gas loading of magnetic traps has been demonstrated for 17 atoms and 4 molecules1

1Including three atoms studied in this thesis work. Note that multiple isotopes have been trapped for
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[1, 28–35]. Despite its success, buffer gas cooling, as a method for loading magnetic traps,

has generally been restricted to species with strong magnetic field interactions. The work

in this thesis seeks to extend buffer gas cooling, as a technique for loading magnetic traps

for further evaporative cooling [36], to atoms and molecules with the weakest magnetic field

interactions — the 1 µB species.

1.1 1 µB species

The potential energy of interaction of a magnetic atom or molecule with a magnetic

field ~B is

U = ~µ· ~B, (1.1)

where ~µ is the magnetic dipole moment of the atom or molecule. The strength of ~µ is

quoted in terms of the dipole moment of hydrogen, µB = qe~
2mec . Here we are concerned with

atoms and molecules whose dipole moment is the same as that of hydrogen — these are the

most weakly magnetic species that can be trapped in magnetic traps.

These “1 µB” atoms and molecules form an important class of species. They

include all atoms having a single valence s electron. These atoms undergo inelastic collisions

only very rarely. Since inelastic collisions generally cause atom loss from magnetic traps, this

means that these atoms are well suited to magnetic trapping. In particular, the efficiency

of evaporative cooling depends on the ratio of the rate of elastic atom-atom collisions to the

rate of inelastic atom-atom collisions. If evaporative cooling is to be successful at reducing

the temperature of trapped atoms into the nano- or micro-Kelvin regime, this ratio must be

very high, on the order of 104 or larger. While we would expect atoms with two valence s

electrons to also have high elastic-inelastic collision ratios, they have no magnetic interaction

many of the atoms and at least one of the molecules (NH).
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in their ground state. The double s valence atoms are therefore typically trapped in a spin-

triplet 2 µB metastable excited state.

1.1.1 Hydrogen and its isotopes

Hydrogen (H) is a 1 µB atom worth special mention. It is not amenable to laser

cooling because its primary transition is deep in the UV: 122 nm [37]. Because it is such a

simple atom, it is an important theoretical test ground. By making precise measurements

of the narrow line 1s → 2s transitions, QED can be tested to high orders [38].

H has previously been cooled and magnetically trapped using a specialized method

[39]. In this method, H is cooled to 120 mK by collisions with a 4He film. Because of the

unique collisional properties of H with this film, the H does not stick to the film surface —

instead the H cools while remaining in its gas phase. This cooling mechanism is, however,

only successful with H. The cold film method has been used to load magnetic traps with

H as a starting point for evaporative cooling. Because the H-H elastic collision rate is very

weak, this evaporative cooling is inefficient. In Chapt. 3, I will discuss how buffer gas

cooling can be used to increase the efficiency of H evaporative cooling, by co-trapping an

alkali gas for use as a sympathetic cooler.

This unique film cooling method is moreover restricted to the protium isotope

(1H) of hydrogen [40]. The ability to trap the hydrogen isotopes deuterium (D) and tritium

(T) would open the way to even more experiments. By trapping 1H and D simultane-

ously, a precise measurement of the hydrogen isotope shift could be taken. This leads to a

measurement of nuclear structure: The proton and neutron charge radii, and the deuteron

structure radius [41]. Trapping of tritium would allow for a more sensitive measurement

of the electron antineutrino rest mass by measure of the endpoint energy of the tritium

β-decay spectrum [42].
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1.1.2 Noble metals

Like the alkalis, the noble metals copper (Cu), silver (Ag), and gold (Au), are

single s valence atoms. These atoms are differentiated by possessing an underlying filled d

shell. This filled d shell gives rise to narrow two-photon transitions between the ground S

configuration and an excited metastable D configuration (in which one d electron is excited

to the s shell). These narrow lines have been proposed as optical frequency standards [43].

In addition, as gold is one of the heaviest atoms, it is an ideal test ground for relativistic

atomic theories [44].

Unlike the alkalis, however, the primary transitions are UV, not visible. Because

obtaining high laser powers in the UV is difficult, laser cooling of the noble metals faces

serious experimental challenges [45]; whereas for buffer gas cooling the large energy spacing

between ground and excited states is useful, as it suppresses inelastic losses dependent on

S-P mixing.

1.1.3 2Σ molecules

To obtain trapped molecules using laser cooling requires that atoms first be cooled

and trapped. While trapped, these atoms are then bound into molecules via a Feshbach

resonance [46] or laser-induced photoassociation [47]. After creation, these molecules lie in

a highly excited vibrational state, requiring complex optical manipulation to yield trapped

ground state molecules. Furthermore, molecules created by this method are restricted to

dimers of those species amenable to laser cooling and trapping, i.e., the alkalis.

An alternate approach to trapping molecules is to first produce ground state mole-

cules and then cool them2 — the approach taken by buffer gas cooling.

2At the 300 K to 1000 K temperatures at which these molecules are produced, they will have a significant
distribution over rotational states. In buffer gas cooling, the rotational degree of freedom is collisionally
cooled to the buffer gas temperature.
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2Σ molecules are 1 µB molecules, and include the alkaline earth monohydrides and

monohalides. They are a molecular analogue to the 2S single s electron atoms. In their

ground state they are predicted to suffer inelastic collisions only rarely [48, §2.3], making

them good candidates for evaporative cooling.

1.2 Magnetic trapping

In order to trap atoms or molecules using their magnetic dipole interaction (1.1),

we must create a region in (free) space where the interaction energy has a minimum. For

species whose dipole moment is aligned with the magnetic field (low-field seekers), this

corresponds to creating a region whose magnetic field norm has a minimum. The converse

case, when the dipole moment is counteraligned to the magnetic field (high-field seekers),

would require a local maximum in the magnetic field. Since a magnetic field maximum can

not be created in a source-free region [5], only low-field seekers can be trapped using solely

magnetic fields.3

The simplest geometry for producing such a magnetic trap is the magnetic quadru-

pole trap. It is generated using an anti-Helmholtz magnet, consisting of two coils, with the

currents in the coils running in opposite directions. Such a magnet, and the field it gener-

ates, are shown in Fig. 1.1. The magnetic field strength at a point close to the trap center,

with z chosen to be the axis of cylindrical symmetry, is

B(r, z) =
∂B

∂r

√
r2 + 4z2, (1.2)

where ∂B
∂r is a constant depending on the coil currents and geometry. The equipotential

surfaces of the magnetic field interaction are ellipsoidal shells.

3By using magnetic fields together with a light field, the high-field seeking states can be trapped.
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Figure 1.1: A quadrupole trap. (a) shows the anti-Helmholtz coil configuration used, with
the circles and crosses indicating the direction of field flow. (b) shows the magnetic field
in the x-z plane near the center of the trap. (c) shows the equipotential contours of the
magnetic dipole interaction in the x-z plane, near the center of the trap.

Species will remain in this trap as long as their total energy is less than the

magnetic field interaction strength at the closest physical surface. This energy is called the

“trap depth”, Utrap. If the average kinetic energy of the trapped gas is large compared

to Utrap, the species will collide with this physical surface and stick, and thereby be lost

from the trap. If the average kinetic energy is small, only those particles at the tail of the

Boltzmann distribution will have enough energy to leave the trap, and the great majority

of the atoms will remain trapped. It is useful to define a ratio of these two energies:

η ≡ Utrap

kBT
. (1.3)

Then the condition for trapping becomes:

η À 1. (1.4)

In Chapt. 2, the η dependence of species’ lifetime within the trap will be derived. In general,

(1.4) sets a requirement on the cooling method used to load a magnetic trap: the cooling

method must cool the species to a temperature well below the trap depth.
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1.3 Buffer gas cooling

Whereas laser cooling removes thermal energy from the species by coupling their

thermal motion to a low-entropy photon reservoir (the laser), buffer gas cooling operates by

coupling them to a low-entropy reservoir of atoms — the buffer gas. In buffer gas cooling

this coupling is accomplished by allowing the species to collide elastically with the buffer

gas [49]. Each collision, on average4, removes an energy

dE = (Ea −Eb)
2 M m

(M + m)2
(1.5)

from the atom or molecule, where Ea and Eb are the species and buffer gas kinetic energies,

respectively, and M and m are the species and buffer gas masses, respectively. The species

is therefore cooled exponentially to the buffer gas temperature. The species temperature

comes to within 100 mK of the buffer gas temperature after 30 to 300 collisions, depending

on the species and buffer gas masses. Typically the same volume is used to cool the atoms

and trap the atoms. Therefore, once the atoms reach the buffer gas temperature they are

trapped.

This minimum number of collisions sets a requirement on the density of buffer gas

within the cooling volume. The species must cool before it can reach a wall of the cooling

volume (where it sticks); therefore the mean free path for elastic collisions must be 30 to

300 times smaller than the size of the cooling volume [50]. For typical cell sizes on the order

of 10 cm and elastic collision cross-sections [51] of 3×10−15 cm2, this sets a minimum buffer

gas density of 1× 1015 to 1× 1016 cm−3.

Any buffer gas will have a maximum density at any given temperature. The vapor

density – temperature curve for some low-temperature gases is shown in Fig. 1.2. To achieve

a given density in the cooling volume, the temperature must be raised to a minimum value

4The average is over incoming and outgoing collision angles.
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Figure 1.2: Vapor densities of various cryogenic gases [52–54]. The shaded region indicates
typical densities used in buffer gas experiments. The H2 curve is approximate. The dashed
portion of the Ne curve is an extrapolation.

— the temperature at which the buffer gas vapor density equals the desired buffer gas

density. We use 3He buffer gas to obtain the smallest possible buffer gas temperature,

between 200 mK and 300 mK.

In order to cool the species below the buffer gas temperature, we must break the

thermal coupling between the species and the buffer gas. Once this is done, evaporative

cooling [36] can be attempted, to further cool the species. To break this thermal coupling,

we must either “turn off” the elastic collision cross-section, perhaps by manipulating electric

and magnetic fields, or we must remove the buffer gas from the trapping volume. Only the

latter of these options has been shown to be feasible. This “thermal isolation” of the species

from the buffer gas is discussed in depth in §2.3.
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1.3.1 Additional advantages of buffer gas cooling

So far we have discussed buffer gas cooling in the context of opening new species

to magnetic trapping. There are, however, additional motivations for pursuing buffer gas

cooling as a method of trapping 1 µB species.

Because a large amount of buffer gas, ∼ 1019 atoms, is typically used in a buffer

gas cooling experiment, a correspondingly large species numbers, up to 1014 [55], can be

cooled by the buffer gas. Because buffer gas cooling loads species in the few hundred

milliKelvin temperature range, the technique is well-suited to studies of cold collisions.

Whereas collisional behavior is simple in the classical and ultracold temperature limits, the

behavior of collisions and chemical reactions in the cold (100 mK to few K) regime can be

very rich, and can lead to new theoretical understanding of atomic and molecular collisions

[28, 56].

1.3.2 Buffer gas cooling of 1 µB species

Because the minimum temperature achieved by buffer gas cooling is around 250

mK, a very strong magnetic interaction is required for buffer gas cooling. This is much easier

to achieve for strongly magnetic atoms. Prior to this thesis two 1 µB species, CaH and Na,

had been successfully trapped using buffer gas cooling [29, 57, 58]. However, removal of the

buffer gas could not be achieved.

In this thesis, I show how 1 µB species can be trapped for up to 10 s in the presence

of the buffer gas. By minimizing the atom temperature and carefully controlling the buffer

gas removal process, the majority of the buffer gas can be removed, leading to observed

lifetimes as long as 200 s. In order to achieve true thermal isolation of the trapped species,

a remnant quantity of buffer gas must still be removed; suggestions are given for how this

may be achieved in a 1 µB buffer gas trapping experiment.
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In Chapt. 2, a theoretical background for 1 µB trapping in buffer gas loaded traps

is given. This includes a description of the lifetime of trapped species as a function of trap

parameters, including temperature, trap depth, and density of buffer gas. Also included is

a discussion of buffer gas removal and thermal isolation.

In Chapt. 3, I discuss buffer gas loading experiments performed with lithium (Li),

in which we demonstrated trapping of large samples of Li (up to 1013 atoms) at lifetimes

up to 200 s after buffer gas removal. Thermal isolation could not be demonstrated.

In Chapt. 4, I discuss experiments performed with the noble metals copper (Cu),

silver (Ag), and gold (Au). We were able to trap Cu and Ag with lifetimes up to 8 s. Because

of the large amount of heat introduced to the system by our noble metal production method,

we were not able to remove the buffer gas. Possible improvements to the experimental

apparatus are suggested which may allow for future buffer gas removal in a trapped noble

metal experiment. We also studied the collisional properties of Cu and Ag with the 3He

buffer gas, discovering an anomalous thermal dependence of the Ag-3He inelastic relaxation

rate.

Finally, in Chapt. 5, I discuss future directions for experiments, including improve-

ments that may allow for evaporative cooling to degeneracy or for precision metrology.



Chapter 2

Trapped atom loss and thermal

isolation

An understanding of the loss rates of species from magnetic traps is crucial to any trapping

experiment. In order for an experiment to succeed, these loss rates must be reduced such

that the species remain trapped for the duration of the experiment. Moreover, loss rates are

one of the best probes available for measuring physical interactions in the cold and ultracold

regimes. To both glean physical information from loss rates and to design experiments such

that atoms are trapped for long times, we should understand how various loss processes

depend on species density, temperature, and internal states, as well as how they depend on

environmental variables such as fields or background gas density and temperature.

Because 1 µB atoms are so weakly trapped, loss rates for these atoms can be very

high. If we are to obtain a dense sample of thermally isolated 1 µB atoms, we must carefully

manage the experimental parameters to minimize atom loss during our experiments.

I will enumerate some of the various loss processes that can occur in buffer gas

loaded traps, identify the regimes in which they dominate, and examine their dependence

12
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on experimental parameters. I will then discuss how these loss processes affect loading and

thermal isolation of 1 µB species in buffer gas cooling experiments. I will use the phrase

“trapped atom” here to describe the trapped species of interest, even though the loss rates

listed here will also occur with trapped molecules. However, trapped molecules may display

additional loss processes beyond those occurring in atoms.

2.1 General loss behavior

Loss processes may be categorized based on the number p of trapped atoms in-

volved in one loss event. If loss is caused by trapped atoms colliding with untrapped bodies

(photons, background gas, walls, etc.), p = 1. If loss is caused by atom-atom collisions

p = 2, and so forth to higher orders. Each loss process may be described by a local rate

equation:

dn(~r)
dt

= −Gp(~r) np(~r). (2.1)

Here n(~r) is the local atom density at spatial coordinate ~r. Gp is a generalized rate coefficient

that describes the frequency of loss for a given np. If a set of loss processes are independent,

the total local loss can be found by summing the rate equations for each process.1

For p = 1, we call the loss “1-body” and use Γ to denote G1. When p = 2, we

call the loss “2-body” and use g in place of G2. Without significant evaporative cooling,

trap densities in buffer gas cooling experiments will generally be low enough that we may

neglect higher order loss processes [59].

To find the dependence of the trapped population versus time, we use (2.1) to

obtain an equation for the total atom number:

dN

dt

∣∣∣∣
p

= −
∫

Gp(~r) np(~r)d3~r. (2.2)

1Notably, diffusive trap loss is not independent of background-driven atom evaporation.
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If the loss rate coefficients Gp do not depend on ~r, and also do not depend on time2, we

can solve this equation generally for any loss order.

To solve (2.2) in general, we must know the ~r-dependence of the atom density n.

If the atoms remain in thermal equilibrium under the presence of the loss process — that

is, atom-atom or atom-background collisions occur more frequently than the atom loss rate,

for all ~r — then n(~r) is described by the Maxwell-Boltzmann distribution function:

n(~r, t) = n(~0, t) e−U(~r)/kBT , (2.3)

U(~r) = ~µ(B, J,mJ)· ~B(~r). (2.4)

Here ~B(~r) is the local magnetic field and ~µ(B, J,mJ) is the atom magnetic dipole moment.

In general ~µ is a function of the local magnetic field strength B and the internal state of

the atom |J mJ〉. For most atoms ~µ is a linear function of magnetic field and the projection

quantum number mJ . This is true for all but the lightest atoms,3 as long as the magnetic

field is strong enough such that the Zeeman effect dominates over the hyperfine interaction.

In this case we have

~µ(B, J,mJ)· ~B(~r) = µB(~r) = gJ mJ µB B(~r), (2.5)

where gJ is the Landé g-factor [25, p. 42] and µB is the Bohr magneton. B(~r) is the local

magnetic field strength.

2.1.1 Trap depth

It is convenient to introduce the concept of trap depth. This can be done for any

given trapping field, and for any given surface at which trapped atoms are lost from the

2We require specifically that the relative time variation of Gp be much slower than the slowest instanta-
neous relative time variation of N in the time range of interest.

3For atoms with atomic number lower than 4 or so, the ~L· ~S interaction modifies the magnetic interaction
at realistic laboratory fields. For these atoms mJ is not a good quantum number at low field. See App. A.1.
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trap. Usually this surface will be the closest cell wall to the trap center. Let ~R be the point

on this loss surface at which U(~r) is minimized. Then the trap depth Utrap ≡ U(~R).

We will also find it useful to define a dimensionless parameter η:

η ≡ Utrap

kBT
, (2.6)

where T is the temperature of the atom cloud.

2.1.2 Atom distributions and effective volumes

We have shown, assuming the trapped atoms remain in thermal equilibrium and

the Zeeman interaction is linear in magnetic field, that the atoms obey the Maxwell-

Boltzmann distribution function:

n(~r, t) = n0(t)e−µB(~r)/kBT . (2.7)

Depending on the magnetic trap and the form of the loss surface, this distribution will

have a different dependence on ~r. Distributions for some traps and loss surfaces frequently

encountered in buffer gas trapping are tabulated in Table 2.1.

In order to calculate N(t) from (2.2), we need to integrate powers of n over all ~r.

We define a quantity Vp, which is a function depending on the trap, loss surface, and trap

depth. It is called the (p-body) effective volume.

∫
np(~r) d3~r ≡ np

0 Vp(~R, η). (2.8)

Vp for various traps and loss surfaces, in the limit of large η, are tabulated along with the

atom distributions in Table 2.1.

The 1-body effective volume can be used to relate the total atom number N to

the peak density n0:

N = n0V1(~R, η). (2.9)



16 Chapter 2: Trapped atom loss and thermal isolation

Atom distributions and effective volumes

Trap Loss surface n(~r)/n0 Vp

Spherical
harmonic

Spherical
shell

e−η r2/R2

√
π3

p3η3
R3

Spherical
quadrupole

Spherical
shell

e−η r/R 8πR3

p3η3

Ellipsoidal
quadrupole

Cylindrical
radius

e−η
√

r2+4z2/R 4πR3

p3η3

Ellipsoidal
quadrupole

1 axial
surface

e−η
√

r2/4+z2/L 32πL3

p3η3

Table 2.1: n(~r) is the atomic distribution function. Vp is the effective volume for a p-order
loss process. Large η is assumed in all expressions for Vp. Note that η as used here is defined
using the minimum trap depth at the loss surface. R is the cell radius and L is the distance
from the trap center to the closest axial surface.

Armed with the atomic distribution function and effective volume, we can now

solve the loss equation (2.2) for N(t) for all loss orders, when Gp is independent of ~r and t.

The result is:

N(t) = N0e
−Γt p = 1 (2.10)

= N0
1

n0(0) g t/8 + 1
p = 2, quadrupole trap (2.11)

=
1

p−1

√
(p− 1) Vp

V p
1

Gp t + N1−p
0

p > 1, general (2.12)

Here N0 is the total number of trapped atoms at time 0.

These functions may be fit to an observed N(t) profile to extract Gp. If the loss

order p is unknown, χ2 values for the various fits may be compared to determine p. For

signal-to-noise ratios in a typical experiment, an order of magnitude of loss must be observed



Chapter 2: Trapped atom loss and thermal isolation 17

to differentiate between p = 1 and p = 2.

2.2 Common loss processes

Most of the loss processes frequently encountered in buffer gas cooling and trapping

have been thoroughly investigated in previous buffer gas trapping theses. Table 2.2 provides

a list of these loss processes, along with references to more in-depth discussions of each

process.

1-body losses due to background gas collisions are dominant when anything larger

than trace amounts of background gas are present in the trap. In buffer gas cooling

experiments, the buffer gas functions as a loss-inducing background gas once the buffer

gas cooling is completed. As such, background gas processes deserve special attention

here. As background gas density changes, various mechanisms will limit the trapped atom

lifetime. We can characterize the domain of background gas density in which a loss process

is dominant by the mean free path for atom-background gas collisions:

λ =
1

nbσ̄E
. (2.13)

Here nb is the density of the background gas and σ̄E is the thermally averaged cross-section

for elastic collisions.

At low background gas densities, when λ is larger than the dimension of the cell

Rcell, elastic collisions with background gas atoms can promote trapped atoms to energetic

orbits that leave the cell. In this thesis I call this process “background gas evaporation”.

If the background gas thermal energy is lower than the trap depth, most background gas

collisions will not cause loss. Only rarely will collisions promote an atom to an orbit with

energy greater than the trap depth. This differs from the situation in room temperature

trapping experiments, where virtually every collision with a background gas atom causes
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Table 2.2: Common trapped atom loss processes. The regime listed is where each process is typically
dominant. This list is not exhaustive.

Symbols:
λb: mean free path for elastic background collisions

Rcell: the cell radius
η: ratio of trap depth to trapped atom thermal energy
κ: ratio of trap depth to background gas thermal energy

nb: density of background gas
σ̄Xx: thermally averaged cross-section, where X is E (elastic), D (transport), or

R (mJ relaxation); x is a (trapped atom-trapped molecule) or b (trapped
atom-background gas)

v̄x: average collision velocity, v̄a is atom-atom, v̄b is atom-background gas
fx: distribution-averaged fraction of (100% efficient) collisions that cause

evaporation, where x is a (atom-atom collisions) or b (atom-background
gas collisions)

gD: a geometrical factor (2.29)
cD(η): trap enhancement of diffusion lifetime = exp(0.31η + 0.018η2) for ellip-

soidal traps in cylindrical cells
εab: efficiency of energy transfer in atom-background gas collisions
γb: ratio of elastic to inelastic background collision cross-sections
m: atom mass
µ: trapped atom magnetic dipole moment

R0: minimum atom-atom collision radius
†: this work
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1-body loss processes

Process Loss coefficient Γ Regime Ref.

Background
evaporation

≈ 2nb εab σ̄Eb v̄b fb(κ) Rcell/λb < 1 †

Valley of death from simulations 1 < Rcell/λb < 10 †, [58]

Drift-diffusion
gD v̄b

nb σ̄D
cD(η) Rcell/λb & 100 †, [57]

Zeeman
relaxation

nb σ̄Rb v̄b λb < 1√
γb gD cD

†, [60]

Majorana ∼ ~
M

η2

R2
cell

µ

∆µ
large η, small M [57, p. 167]

2-body loss processes

Process Loss coefficient g Regime Ref.

Evaporation σ̄Ea v̄a fa(η) low η [61, ch. 5],[62]

Dipolar
relaxation

∼ µ2
0 µ4

16π2~2v̄aR2
0

large µ [63, in cgs]

Table 2.2 (continued)
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trap loss. Because this loss rate is directly proportional to the rate of atom-background

gas collisions, the background gas evaporation rate increases linearly with the density of

background gas nb.

When λ becomes comparable to Rcell, the atoms promoted to untrapped energies

by these rare atom-background gas collisions are likely to experience additional elastic

collisions before they can travel to the trap edge. If λ is very small (λ < Rcell/100) atoms

must diffuse through the background gas before escaping from the trap. In this regime, the

loss rate decreases linearly with nb. This process is called “drift-diffusion” here, after the

equation that describes the process.

For λ between these two extremes, the loss rate has a maximum. Conversely, the

lifetime of trapped atoms has a minimum in λ. This regime is called the “valley of death”,

named for the rapid loss of atoms in this background gas regime.4

At very high background gas densities (very small λ), inelastic collisions between

the atoms and the background gas can cause trap loss. Because atoms are trapped in

metastable low-field seeking states, background gas collisions that reorient the ~B-projection

of the atom’s ~J vector will cause transitions to untrapped high-field seeking states (or

to less-trapped low-field seeking states). This loss process is therefore termed “Zeeman

relaxation”. The nb at which this loss process becomes dominant depends on the ratio γR

of the elastic cross-section to the mJ -changing inelastic cross-section. Zeeman relaxation

will dominate at lower nb when γR is small. γR can be very large for atoms with S electronic

configurations, with γR > 106. For most non-S-state atoms, γR will be quite small, even

approaching unity. However, some classes of non S-state atoms have large γR, most notably

the rare earth atoms, with γR > 3×104. This is due to shielding of the non S valence shells

by outlying closed shells having no net angular momentum [64]. The Zeeman relaxation

4Any resemblance between this loss process and the topography of the Crimea is purely accidental.
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loss rate increases linearly with nb.

2.2.1 Background evaporation

Any atoms in trap orbits that cross the cell’s loss surfaces are lost from the trap.

If we begin at t = 0 with a cloud in thermal equilibrium, atoms will start in a Maxwell-

Boltzmann distribution. However, the Maxwell-Boltzmann distribution contains orbits that

cross the cell’s loss surfaces. Within roughly an orbital period torbit, atoms in these orbits

will be lost from the trap. After these atoms are removed, the remaining atom cloud will

no longer reside in a Maxwell-Boltzmann distribution. Because each lost atom removes an

energy & (η + 3/2) kB T from the atom cloud, the average energy of the atom cloud after

these atoms are lost will be lower than the average energy of the original distribution.5

If the atomic orbits are ergotic,6 then all orbits with total energy greater than Utrap

will be lost from the trap. We can then write an expression for this new out-of-equilibrium

distribution. We do this by requiring, at every position ~r, that the potential energy plus

the kinetic energy is less than Utrap. The resulting distribution is

n(~r) = n0 e−U(~r)/kBT

∫ η kBT−U(~r)
0

√
K e−K/kB T dK

∫ η kBT−U(~0)
0

√
K e−K/kB T dK

. (2.14)

Here K is the kinetic energy of the orbit at location ~r. This distribution is compared to the

Maxwell-Boltzmann distribution in Fig. 2.1, for η = 3, at z = 0.

If the atoms do not experience any collisions (with themselves, background gas,

photons, etc.), the atoms will remain in this out-of-equilibrium distribution indefinitely. If

the atoms do experience collisions, these collisions will return the atom distribution to a

Maxwell-Boltzmann distribution. The average energy of this new distribution will depend

5This assumes that η is larger than the average potential energy in the trap. For a quadrupole trap,
〈U〉 = 3 kBT .

6Monte-Carlo simulations show that, in general, atomic orbits achieve almost 0 kinetic energy once per
revolution, at a location near the largest radial extent of the orbit.
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Figure 2.1: The Maxwell-Boltzmann distribution (solid line) and out-of-equilibrium post-
evaporation distribution (dashed line), for atoms at η = 3. The plot is for atoms in an
ellipsoidal quadrupole trap at z = 0.
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on the atoms’ collisional partner. If the collisions are elastic atom-atom collisions, this new

average energy will be the average energy of the out-of-equilibrium distribution. This new

energy will be lower than the energy of the original Maxwell-Boltzmann distribution. The

resulting energy loss is the basis of evaporative cooling.

However, if the thermalizing elastic collisions are with some environmental reser-

voir, such as background gas, the new average energy will be the temperature of the reser-

voir. Within this new reservoir-temperature Maxwell-Boltzmann distribution, we will again

lose any atoms in orbits that cross the cell’s loss surfaces. We shall use fb(η) to represent

the fraction of atoms in the Maxwell-Boltzmann distribution in the loss surface-crossing

orbits.

Imagine we watch one atom as it undergoes many collisions with the background

gas. After some time tf it will undergo a background gas collision that will cause it to enter

an untrapped orbit. After an additional time to, on the order of the orbital period, it will

cross the loss surface and disappear from the trap. At background gas densities such that

λ > Rcell, we have tf À to, and we can ignore the additional orbit time t0.

In her thesis, Kim [49, Chapt. 3] demonstrated that atoms are thermalized to the

temperature of the buffer gas Tb at a rate

Γtherm = nb σ̄E v̄µ ε(M,m). (2.15)

Here nb is the density of background gas, σ̄E is the elastic collision cross-section, v̄µ is

the average relative atom-background gas velocity, and ε describes the efficiency of energy

transfer between atoms of mass M and background gas of mass m:

ε(M,m) =
2M m

(M + m)2
. (2.16)

After a time on the order τtherm = 1/Γtherm, a trapped atom will be randomly distributed

in a Maxwell Boltzmann distribution with temperature Tb. At this time, there is a fb(κ)
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chance that the atom will be in an untrapped orbit; where κ is the ratio of trap depth to

background gas temperature Tb. Note that unless an additional cooling or heating process

operates on the atoms, this thermalization process will force η = κ.

We can calculate the rate of evaporative atom loss by taking the product of the

thermalization rate Γtherm with the chance for thermalized atoms to be lost fb(κ). Combin-

ing these expressions, we find an expression for the loss rate due to background evaporation:

Γbg evap =
1
tf

(2.17)

≈ Γtherm fb(κ) (2.18)

≈ nb σE v̄µ ε(M,m) fb(κ). (2.19)

In order to fully describe the background loss, we must calculate fb(κ). This is done by

assuming that all atoms with total energy greater than Utrap are lost from the trap. We

then integrate over the trap distribution, calculating the fraction of atoms, at point ~r and in

the background gas kinetic energy distribution, that have total energy greater than Utrap.

In the cylindrical case, with an ellipsoidal quadrupole field and assuming large κ, fb is:

fb(κ) =

∫∞
0

∫∞
0 re−κ

√
r2+4z2 ∫∞

κ(1−√r2+4z2)

√
Kbe

−KbdKb dr dz
∫∞
0

∫∞
0 re−κ

√
r2+4z2

∫∞
0

√
Kbe−KbdKb dr dz

, (2.20)

where r and z are normalized to R, and Kb is the background gas kinetic energy normalized

to the background gas temperature. This integral can be performed numerically; the result

fits (to within 14% for κ > 3) to

fb(κ) =
(

1
2

κ3/2 +
1
4

κ5/2

)
e−κ. (2.21)

We can use Monte Carlo simulations of atoms trapped at low background gas

density to verify the analytic results of this section. The Monte Carlo simulation used
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Figure 2.2: The upper plot shows background evaporation lifetimes vs. κ. The results
are for a cylindrical trapping volume with an ellipsoidal quadrupole field. The analytic
expression overestimates the lifetime by a factor of 2. The lower plot shows the dependence
of background evaporation lifetime vs. the ratio of atom mass to background gas mass.
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was almost identical7 in operation to the algorithm developed by Michniak in his thesis

[58]. Briefly, this algorithm works as follows: A number of atoms are chosen from the

Maxwell-Boltzmann trap distribution. Each atom is evolved under the equation of motion

for a trapped dipole using an adaptive Runge-Kutta routine. Each atom is collided with

background gas atoms, pulled from a Maxwell-Boltzmann velocity distribution. Times

between collisions are taken from an exponential distribution; this distribution has a mean

collision time equal to the mean atom-background gas collision time tcol = 1/nbσE v̄µ. These

collisions are repeated for each atom until the atom exits the trap. After performing this

simulation, we create a histogram of the number of Monte Carlo atoms in the trap vs. time,

and then fit for the lifetime of the simulated atoms. For a detailed description of the Monte

Carlo simulation algorithm, see [58]. A comparison of Monte Carlo simulations of atom

lifetime in the large λ regime to the background gas prediction is given in Fig. 2.2. We find

that the analytic prediction derived here agrees to within a factor of 2 of the Monte-Carlo

result, for the mass and κ ranges shown. The discrepancy might be dealt with by integrating

the atom loss after every background gas collision, instead of every 1/ε collisions; however,

doing so would hide the analytic mass dependence of the evaporation rate.

2.2.2 Drift-diffusion

In the short mean free path regime, when λ < Rcell/100, atoms must diffuse

through the background gas to reach the cell wall. The magnetic field causes a drift velocity

returning atoms to the center of the trap. The equation governing this behavior is the drift-

diffusion equation [65]. With n(~r, t) representing the (non-equilibrium) atom distribution

7The algorithm used here differs in three ways from that described in [58]. Firstly, atom initial positions
are taken from a trap Maxwell-Boltzmann distribution instead of a uniform distribution. This minimizes the
portion of the atom histogram at early times that is not useful for calculating long-time behavior. Secondly,
the Runge-Kutta minimum step size is adjusted to give accurate results at low background gas densities.
Finally, the transformation to the center of mass frame for elastic collisions is handled in one step instead
of the two-step transformation used in [58].
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at time t, the equation is:

∂n

∂t
= D∇2n− ~∇· (n~vdrift). (2.22)

The constant D is called the diffusion constant; it is the average square displacement of a

freely diffusing particle per time. It has been calculated [66] to be

D =
3π

32
v̄µ

nbσ̄D
. (2.23)

for particles undergoing ballistic hard-sphere elastic collisions, where σ̄D is the thermally

averaged transport cross-section. The drift velocity ~vdrift can be related to the poten-

tial U experienced by the diffusing particles using the particle mobility and the Einstein-

Smoluchowski relation [65]:

~vdrift = − D

kBT
~∇U(~r). (2.24)

The diffusion equation is a separable parabolic-elliptic partial differential equation.

As such, the solution can be expanded in a set of eigenmodes. For each eigenmode, each

side of equation (2.22) is equal to a constant κi, where i indexes the eigenmode. If we

separate variables, we can easily solve for the time dependence of n(~r, t). We find

n(~r, t) =
∑

i

ni(~r) e−t/τi . (2.25)

Each ni(~r) is an eigenfunction of the spatial equation, with eigenvalue κi = 1/Dτi. The

eigenfunctions are determined by setting ni(~r) = 0 at the surfaces of the trapping cell.

In general there will be a minimum κi = κ0, associated with the eigenfunction

with the weakest spatial variation. If we observe the atom cloud for long enough, the

only remaining eigenmode will be this lowest order eigenmode, decaying with a lifetime

τ0 = 1/κ0D.
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Free diffusion

When the trapping field is off, the drift term in the diffusion equation is zero, and

the particles within the cell diffuse according to the free diffusion equation

1
D

∂n

∂t
= ∇2n. (2.26)

This equation is easily solved for cells with simple geometric shapes. For a cylindrical cell

of radius R and top-to-bottom length L, we find

n0(~r) = n0(0) J0

(
j01 r

R

)
cos

(πz

L

)
, (2.27)

τ0 =
nb σ̄D

gcyl v̄µ
, (2.28)

gcyl =
3π

32

(
j2
01

R2
+

π2

L2

)
. (2.29)

J0(r) is the zeroth-order Bessel function of the first kind [67], and j01 = 2.40483 . . . is the

first zero of this function.

Trap diffusion

When the trapping field is on, the eigenfunction equation can become quite com-

plex. Weinstein solved the drift-diffusion equation in his thesis for the special case of atoms

in a spherical quadrupole trap within a spherical cell [57, p. 24]. The lowest order solution

is a rather opaque special function. This special function solution can be evaluated numer-

ically. When this is done, we find that the exact solution is remarkably close to the the

free-diffusion solution nfree multiplied by the Maxwell-Boltzmann trap distribution:

n0(~r) ≈ nfree(~r) e−U(~r)/kBT . (2.30)
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When η is greater than 4 or so, this reduces purely to the Maxwell-Boltzmann trap distrib-

ution, as nfree is constant near ~r = 0. This means that the simple Maxwell-Boltzmann trap

distribution may be used to model trapped atoms even when a large amount of background

gas is present. This is important when we seek to investigate the atoms spectroscopically: In

order to understand the absorption spectrum of the trapped atoms and use the spectrum to

extract physical parameters, we must have a good model of the trapped atom distribution.

We can also ask how the spherical eigenvalues depend on the strength of the

trapping field. As η is increased, we find that the κi become exponentially smaller. If we

solve for the eigenvalues using numerical methods8 we find that for η < 16, the diffusion

lifetime is

τsph(η) =
32
3π3

R2 nb σ̄D

v̄µ
e0.228η+0.017η2

. (2.31)

Of course, we never have a spherical cell with a spherical quadrupole trap. Unfor-

tunately, solving the drift-diffusion equation in the cylindrical case becomes quite difficult.

The trap potential energy, for an ellipsoidal quadrupole trap in cylindrical coordinates, is

Uellip. =
η kBT

R

√
r2 + 4z2. (2.32)

This form inextricably couples the r and z dimensions of the equation, meaning that the

spatial equation can not be separated into a pair of one-dimensional equations. The resulting

unseparable elliptical equation resists treatment by the lion’s share of numerical methods.

Two approaches were used to attack the problem here. First, the equation was

solved by making a rather crude approximation to U . Under this approximation, we let

Uellip. ∼ Ubiconic =
η kBT

R
(r + 2|z|). (2.33)

8MATLAB’s 1-d boundary value ODE solver was used here.
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Instead of ellipsoidal equipotentials, this potential has biconic equipotentials (two conic

surfaces placed base-to-base at z = 0). Nevertheless, the local magnetic field norm of this

approximate potential agrees with that of the ellipsoidal potential over all space to within a

factor of
√

2. Using this approximate potential, we can separate the problem into the r and

z dimensions. When we solve these equations, we again find remarkable agreement of the

lowest-order eigenfunction to the Maxwell-Boltzmann distribution. The diffusion lifetime

given by this approximation is

τcyl(η) =
nb σ̄D

gcyl v̄µ
e0.31η+0.018η2

. (2.34)

This lifetime is greater than the lifetime from the spherical result, for cells with the same

radii. The lifetime is π2/j2
01 = 1.7 times greater at η = 0, growing to about 7 times greater

at η = 16. We have assumed that L is large enough compared to R that we can ignore

diffusion to the cell axial ends.

The other approach was to use the Monte-Carlo simulation previously described

to calculate the lifetime and final distribution of the diffusing atom cloud, beginning from

the trap Maxwell-Boltzmann distribution. As is shown in Fig. 2.3, the Monte-Carlo lifetime

agrees quite well with the lifetime calculated from the biconic approximate potential.

2.2.3 The valley of death

In the valley of death, atoms experience a maximum in their background gas-driven

loss rate. The loss behavior in this region defies analytic prediction: the assumptions of

background gas evaporation are violated when atoms in untrapped orbits suffer collisions

before they can exit the trap. At the same time, diffusion is not a valid description of

transport behavior until λ becomes smaller than approximately 1/100th of the cell size.

One approach to calculating the valley of death loss rate, which is not too unrea-

sonable, is to simply take the reciprocal sum of the limiting loss rates on either side of the
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Figure 2.3: Drift-diffusion lifetimes vs. η. The Monte-Carlo diffusion cross-section is taken
to be σD = 0.8× σE , to give agreement to the cylindrical solution at η = 0. L was taken
to be ∞ for these calculations.
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valley of death. This is rather coarse however. Because the atom loss has a maximum here,

an experiment can succeed or fail based on how long background gas is allowed to remain

at valley of death densities with respect to the atom loss rate. Factor of unity errors result

in exponential changes in the number of atoms.

Our best tool for calculating valley of death loss rates is the Monte Carlo simulation

described above. An example of this simulation applied to a few different atomic masses

and values of η is shown in Fig. 2.4.

2.2.4 Zeeman relaxation

The previous three loss processes discussed up to here have all been mediated by

elastic collisions between trapped atoms and the background gas. However, trap loss can

also be caused by inelastic atom-background gas collisions that change the internal state of

the trapped atom. We are of course interested in collisions that result in decay from the

most low-field seeking mJ state. If we let σ̄R;m′
J

represent the thermally averaged cross-

section for collisions causing relaxation from the most low-field seeking state to some other

Zeeman state m′
J , then the rate for collisions from the most low-field seeking state mLFS to

state m′
J will be [68]

ΓmLFS→m′
J

= nb σR;m′
J

v̄µ. (2.35)

If λ is large compared to the cell size, the relaxed atom will be ejected from the trap without

suffering additional collisions (or evaporate relatively quickly, if it is relaxed into a more

weakly low-field seeking state). If λ is small, the relaxed atom will diffuse to the cell wall,

experiencing either a weak inward drift velocity (for less low-field seeking atoms) or an

outward drift velocity (for high-field seeking atoms). As long as the time taken by the atom

to diffuse from the cell is shorter than the time it would take for an additional collision

to return the atom to the LFS state, the atom will be lost from the trap. If this is the
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Figure 2.4: Monte-Carlo calculations of the valley of death loss behavior, for low mass and
high mass limits. The simulations use σE = 10−14 cm2. The limiting low and high buffer
gas density behaviors vs. η and M are described in (eqn:bgEvap) and (2.34), respectively.
The dependence of lifetime on η and M at a specific nb within the valley of death can be
calculated using the Monte-Carlo code described in §2.2.1
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case, then the rate of trapped atom loss ΓR due to these inelastic collisions will just be
∑

m′
J

ΓmLFS→m′
J
.

In general this condition — short diffusion time compared to reverse relaxation

time — will be satisfied. On the one hand, the diffusion time for relaxed atoms will be

exponentially faster than for the most low-field seeking atoms. On the other hand, the

reverse relaxation rate is exponentially slower than ΓmLFS→m′
J
. This can be seen from a

detailed balance argument. Consider only two Zeeman states, with populations nLFS and

nHFS, and with an energy splitting ∆E. When the states are in thermal equilibrium, the

Maxwell-Boltzamnn distribution gives

nLFS

nHFS
= e−∆E/kBT . (2.36)

In thermal equilibrium, the change in each population must be 0. Setting the rate equation

for each state equal to 0 gives

dnLFS

dt
= 0 = −nLFS ΓLFS→HFS + nHFS ΓHFS→LFS. (2.37)

And therefore

ΓHFS→LFS = e−∆E/kBT ΓLFS→HFS. (2.38)

This argument is performed for arbitrary numbers of states in Cort Johnson’s thesis [60].

Because the rate of reverse relaxation is slow compared to the relaxed atom loss

rate, the trap loss rate due to Zeeman relaxation is given just by the Zeeman state-change

rate, and we have

ΓR = nb σ̄R v̄µ, (2.39)

where σ̄R =
∑

m′
J

σ̄R;m′
J
. It is useful to cast this rate in terms of the elastic mean free path

λ. Then

ΓR =
v̄µ

λ γR
. (2.40)

where γR = σ̄E/σ̄R is the ratio of elastic to relaxation thermally averaged cross-sections.
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2.3 Thermal isolation

Before buffer gas cooling, a dilute gas of the species to be trapped is prepared, with

common preparation methods including laser ablation and gas discharge. This dilute gas

enters the buffer gas cell at approximately 1000 K, and requires about 100 collisions with

the buffer gas to cool to near the buffer gas temperature [49]. This sets a requirement on the

initial size of the elastic mean free path λ, viz. λ(t = 0) . Rcell/100. After buffer gas cooling

is accomplished, the buffer gas acts as a background gas, causing loss via the previously

discussed processes. The large number of collisions at the small mean free path used for

buffer gas loading pins the atom temperature to the background gas temperature, which

is in turn pinned to the cell wall temperature. If we desire to lower the atom temperature

below the ∼ 200 mK cell temperature, we must find a way to raise λ such that the heating

rate from background gas collisions is negligible with respect to whatever cooling rate we

can apply to the trapped atom cloud. Barring the unlikely ability to tune σE to 0 (by

tuning temperature and laboratory fields, say), this many-orders-of-magnitude increase in

λ can only be accomplished by removing the background gas.

2.3.1 Background gas heating rate and thermal isolation density

We must first find out to what density the buffer gas must be reduced to achieve

thermal isolation. To do this we calculate the heating rate from background gas collisions.

We will then balance this heating rate against the atomic cooling rate.

After averaging over collision angles, we find that each background-atom collision

adds an energy [49]

dE = (Kb −Ka) ε(m,M) (2.41)

to the atom’s total energy Ea, where Kb is the energy of the background gas atom and Ka
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is the atoms’ kinetic energy. This atom must stay in the trap long enough to collide with

another trapped atom, if this energy is to be added to the trapped atom temperature. The

probability for this atom to leave the trap is equal to

ploss = f (Ea + dE) , (2.42)

where f(E) is the fraction of orbits with total energy E that cross the cell’s loss surfaces.

If we average over all collisions, we find a per atom heating rate

dqb

dt
= nbσ̄bE v̄µ 〈dE (1− f(Ea + dE))〉. (2.43)

To lowest order, we can separate the the two terms in the average in (2.43). If we do this,

then, to a crude approximation, the heating rate is

dqb

dt
≈ nbσ̄bE v̄µ

3
2

kB (Tb − Ta) ε(m,M)
[
1− fb

(
Utrap

(Tb − Ta)ε(m,M) + Ta

)]
, (2.44)

where fb is the 1-body evaporation fraction calculated in §2.2.1. In the limit of small

κ ≡ Utrap/kBTb, the evaporation fraction fb is near unity. In the limit of large κ, fb is zero.

In these two limits, then, the heating rate is

dqb

dt
≈ 0 kBTb À Utrap > kBTa (2.45)

dqb

dt
≈ 3

2
nb σ̄bE v̄µ kB (Tb − Ta) ε(m,M) kBTb ¿ Utrap (2.46)

Meanwhile, the evaporative cooling rate due to atom-atom collisions (in a spherical quadru-

pole trap) is [61]:

dqa

dt
≈ −4

√
2n0 σ̄aE v̄a kBTa(η − 3) η e−η (2.47)

with peak atom density n0, atom-atom elastic cross-section σ̄aE , mean atom speed v̄a, and

atom temperature Ta. If we require that the background heating rate be less than the
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atom-atom cooling rate even when Utrap > kBTb > kBTa, then the maximum allowable

background density for thermal isolation is

nisolation ≈ 8
√

2
3

n0
σ̄aE

σ̄bE

√
m

M + m

κ3/2

η3/2
(η − 3)ηe−η. (2.48)

Atoms are typically evaporated at η = 5. The above condition must be satisfied until

κ ≈ 1, when the small κ behavior from background gas heating takes over. Substituting

these requirements into the above equation we have

nisolation ≈ 0.002n0
σ̄aE

σ̄bE

√
m

M + m
. (2.49)

For trapped lithium, σ̄a is 1.3× 10−13 cm2 [69] in the s-wave limit, and σ̄b is ≈ 10−14 cm2

[70]. Assuming we have a peak Li density of 1012 cc−1, this gives a required density for

thermal isolation of trapped lithium of

nLi-He isolation ≈ 1.4× 1010 cc−1. (2.50)

For a more in-depth and exact discussion that considers all the heating and cooling rates

experienced by the atoms, see Newman’s thesis [71].

2.3.2 Buffer gas removal

At the initial loading time, the buffer gas density is quite large, in the diffusive

loss regime. We must then remove the buffer gas, leaving a background density of only 1010

cc−1 (see previous section). At some time during the removal of the buffer gas, the atoms

loss rate will be in the valley of death. In order to have any significant number of atoms

remaining after buffer gas removal, we must therefore remove the buffer gas with a time

constant faster than the valley of death loss rate. There are three methods we may use to

remove the buffer gas: First, a “freeze-out”, accomplished by lowering the cell temperature

until the vapor density of the buffer gas is less than the desired final background gas density.
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Figure 2.5: Vapor density curves of 3He and 4He, taken from [48].

Second, we can use a valve to open the cell to a pumping chamber. Third, we can keep the

cell temperature very low initially, and attempt to thermalize the hot atoms with a dynamic

“puff” of buffer gas. This last method is known as “cold loading”.

Freeze-out

Fig. 2.5 shows the vapor density of 3He and 4He. These are the only two buffer

gases that have significant vapor pressures at achievable trapping temperatures. We can

make fits to these curves to obtain the vapor density of buffer gas at a given cell temperature

[58, 61]:

nvapor = a

(
T

K

)c

e−b/T (2.51)

with

Gas a (cc−1) b (K) c

3He 7.7× 1020 2.41 3/2
4He 1.3× 1022 9.83 0
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If we let the time constant for cooling the cell be τtherm, then we find that the instantaneous

time constant for removing buffer gas is

τpump(t) = τtherm
1

b + c Tcell(t)
T 2

cell(t)
(Tcell(t)− Tbase)

, (2.52)

where Tcell is the cell temperature at time t and Tbase is the final temperature achieved by

the cell. Because the time constant for cooling the cell is typically quite long, around 6 s

[57], and because achievable values of Tbase are near 150 mK, we expect this method will

only work for large µ atoms, where 4He can be used for the buffer gas and where the valley

of death lifetime is long.

Fast valve pump-out

We can remove the buffer gas much more quickly if we pump through a fast-

actuating valve. A chamber is attached to the cell that contains a large surface area of

activated charcoal sorb [52]. At cryogenic temperatures, this charcoal sorb acts as a pump

for helium, until the charcoal is saturated with helium. Since the charcoal can absorb ≈ 1

gm of He for every gm of charcoal [52], the experiment can be run indefinitely without

saturating the charcoal sorb.

These two chambers are connected with a valve, operating at the temperature of

the cell. If A is the area of the valve aperture between the cell and pumping chamber, then

the time constant for buffer gas removal when the valve is open will be [72]

τpump =
4Vcell

v̄bA
, (2.53)

where Vcell is the cell volume and v̄b is the thermal buffer gas speed. For information

regarding our cryogenic valve design, see App. B.
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Cold loading

In cold loading, the cell is held at a low temperature where the buffer gas has

negligible vapor density. In experiments in which the hot atoms are introduced by laser

ablation, a puff of buffer gas is liberated along with the hot atoms. The buffer gas remains

in its vapor phase long enough to thermalize the ablated atoms. Because only a minimal

amount of heat is deposited in the cell, the buffer gas can rapidly freeze onto the cell walls,

leaving behind the trapped atoms.

2.3.3 Wind

When buffer gas is removed from the cell, the gas has a net velocity away from the

center of the trap. Trapped atoms therefore feel a cumulative force due to collisions with the

buffer gas atoms being removed. If this force is so large as to overcome the trapping force

from the magnetic field, the atoms will be lost from the trap. In his thesis, Weinstein showed

that the pumpout time constant τpump must not be faster than a critical time constant

τ ′wind =
nb σ̄E mv̄µR L

Utrap
. (2.54)

≈ 8nb σ̄E R L

π η v̄µ
(2.55)

One should note that this critical constant is known only to a factor of unity [57]. An

example of τ ′wind is shown in Fig. 2.6, for 350 mK lithium in a 2.7 K deep trap, for R = 3.7

cm and L = 10 cm.

2.3.4 Remnant background gas

After the buffer gas removal, it is possible that some buffer gas remains in the gas

state, at a density higher than the target isolation density. This remaining buffer gas is
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caused by gas desorbing from liquid films. If the buffer gas was removed by cell cooling,

these films can emanate from “hot spots” within the cell that remain hot. If a pump-out

was used, the cell may be hotter, and the desorbing film can emanate from the entire cell

surface. We can also have a remnant background gas density if the pumping chamber cannot

pump below a given density.

A very nice treatment of these desorbing films is contained in Michniak’s thesis

[58]. We find, that for a given starting thickness of film on the cell walls, a pumping

constant τpump, and cell wall temperature Twall, the pump-out stalls at a buffer gas density

determined by the thickness of the He film.

To deal with this He film, one must pump on the cell while the cell is at a high

temperature. This temperature should be the highest temperature achievable without losing

too many atoms due to background gas-driven loss. After pumping for a few seconds, the

temperature of the cell walls must be reduced. In order to achieve thermal isolation, a 200

mK temperature drop is typically necessary.

2.3.5 Thermal isolation of 1 µB species

In order to have a dense sample of atoms in thermal isolation, we must remove

the buffer gas faster than total atom loss time. At the same time, the gas must be removed

slowly enough that the pump-out does not remove buffer gas too quickly that wind becomes

an issue.

At any time t during the pumpout, there will be an instantaneous background gas

density nb(t). At this instantaneous background gas density, the pumpout time constant is

τpump(nb). We can make a parametric plot of this pumpout time constant versus background

gas density. In order to be successful, the parametric trajectory traced on this plot must

not spend significant time in “forbidden zones”: An “atom loss zone” where τpump is longer
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Figure 2.6: Forbidden pumping regions in nb-τpump space and example pumping trajectories.
The data points are Monte-Carlo simulations of atom lifetimes at 250 mK (diamonds), 350
mK (squares), and 500 mK (circles). The atom mass is 7 amu and the trap depth is 2.7 K;
the elastic cross-section used is 1014 cm2. The upper shaded area is the forbidden atom loss
region for 350 mK atoms. Note that we can have τpump-nb combinations in this upper region
without significant atom loss, as long as the pump trajectory does not spend more than
an atom lifetime in this forbidden region. The lower shaded area is the approximate wind
loss forbidden region. Also shown are two pumping trajectories, using a 1.4 in diameter
valve, opened linearly in 80 ms (dotted line) and 300 ms (solid line, arrows show direction
of increasing time and annotations show times corresponding to the trajectory location).
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than the atom lifetime at nb, and a “wind loss zone” where τpump is shorter than the critical

wind time constant at nb. Such a plot, for 7 amu, 1 µB atoms in a 4 T trap (the current

state-of-the-art in magnetic traps [20]), is depicted in Fig. 2.6. We find that the atom loss

and wind loss forbidden zones meet for atom temperatures larger than 500 mK or so. At

very cold atom temperatures, less than 250 mK, we can remove the background gas by

opening a pumping aperture with a pumping time constant of 200-300 ms. At intermediate

atom temperatures, the pumping trajectory must navigate a narrow path of allowed τpump

and nb. This can be achieved by adjusting τpump during the pump-out. A couple of pumping

trajectories, achieved by adjusting the amount of time over which a 1.4 in diameter valve is

opened, are also shown in Fig. 2.6. In practice, the appropriate pumping trajectory can be

found by progressively decreasing the valve opening time just until atoms do not experience

wind loss. If the atom temperature is low enough, the atoms will not experience significant

static background-driven loss, and a significant density of atoms will remain after pumpout.

However, due to buffer gas films some remnant background gas density will remain

in the cell. This remnant density will prevent thermal isolation. We would like to use the

“cryo-bakeout” method of Michniak. In order to obtain the requisite temperature change,

the base temperature of our experiment must be very cold. This is because the trapped 1

µB atoms can not tolerate a very high temperature during the bakeout. If the buffer gas

is pumped at 350 mK, we must have a 150 mK cell base temperature to achieve a 200 mK

temperature swing.
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Lithium experiments

Our experiments with lithium (Li) were motivated by two desires. First, we wished to

demonstrate that buffer gas cooling could be used to generate large samples of cold trapped

1 µB gases. Previous experience with sodium (Na) indicated that large numbers (on the

order of 1013 atoms) of the alkali atoms could be produced using laser ablation [55]. Because

of its simple atomic structure, spectroscopy of Li was expected to be straightforward, with

high signal-to-noise. Li does not suffer large Li-Li spin relaxation in the ultracold limit [73].

This suggests that Li is highly isotropic in its collisions, and that Li will not spin relax in

Li-He collisions.

Second, we wished to use lithium as a model species for the trapping of hydrogen.

Li is the most closely related atom to hydrogen (H), in that it is the next most massive

atom with just one s valence electron. Additionally, the efficiency ε of energy transfer in

He-Li collisions is similar to the efficiency in He-H collisions, with

ε(3He, 7Li) = 0.410,

ε(3He, 1H) = 0.375.

If we can trap and cool Li using buffer gas techniques, this suggests we could also trap and

45
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cool H as well as its heretofore untrappable isotopes deuterium and tritium. If we manage

to trap Li simultaneously with H, we can use Li to sympathetically cool the trapped H,

producing denser samples of ultracold H than available previously [1, 74]. This would lead

to denser H BECs, as well as precision measurements with strong signals.

Our experimental efforts with Li occurred in three major stages. First, we con-

ducted a test experiment to merely load Li into a buffer gas trap. In this experiment we

calibrated our spectroscopy and made thermal measurements on our apparatus. In the

second stage we added a valve for buffer gas-removal and tuned our loading and pump-out

processes to obtain large densities of Li after buffer gas removal. In the third experiment,

we added the ability to change the trap depth in the experiment, to attempt evaporative

cooling of the trapped Li.

3.1 Spectroscopic methods

In order to measure physical properties of the Li that we cooled and trapped,

we used laser absorption spectroscopy [75, Chapt. 6]. For general details on how laser

absorption spectroscopy is performed on our trapped atoms, see Appendix A.

3.1.1 Spectroscopic apparatus

A schematic of the optical setup is shown in Fig. 3.1. Single wavelength light is

produced by a New Focus Velocity Laser operating at 670 nm [76]. The beam is passed

through an optical diode [77]. A small fraction of the beam is picked off and monitored

with a wavemeter [78]. Using the wavemeter, we adjust the center frequency of the laser to

∼670.970 nm (vac. λ), between the D1 and D2 transitions of lithium, at 670.976 nm and

670.961 nm[37], respectively.
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The laser beam is then coupled into a single-mode fiber. This fiber transports

the laser light from the floating optics table on which the laser head rests to an optics

breadboard bolted to the underside of our cryogenic apparatus. After exiting from the

fiber, the beam passes through an iris, which is used to adjust the beam diameter. For

most of the work, this iris was left fully open. After passing through the iris, approximately

10% of the beam is split off and sent into a reference photodetector. The remaining light

is sent into the cell to interrogate the atom cloud. The beam is retroreflected in the cell,

passing through the atom cloud a second time. After exiting the cell, the returning beam

is deflected by a beam splitter into the signal photodetector. In order to get the best

signal-to-noise possible, we wish to capture as much of the light that interrogates the atoms

as possible. Therefore, we use a 90% reflecting beam splitter to deflect the retroreflecting

beam to the signal photodetector. Each photodetector was covered with a 10 nm wide

interference bandpass filter, to reduce background and noise from ambient light sources.

The laser is attenuated prior to entering the cell using a neutral density filter (and

again by passing through our 90% reflecting beamsplitter), until optical pumping by the

probe beam does not cause significant loss of trapped atoms. In order to obtain an optical

pumping lifetime of 10 s, this requires a laser power at the atom cloud of

Plaser ≤ 300 nW, for τoptical pumping ≥ 10 s. (3.1)

Using laser powers at the atom cloud less than 300 nW causes significant shot noise on the

signal, with a noise ratio of approximately 5 × 10−3 at 300 nW. To observe the atoms for

longer than 10 s, a TTL operated shutter is placed in the beam path (S1 on the schematic).

Atomic spectra are taken at some small duty cycle, for 1/2 to 1 s every 10 to 30 s, and the

shutter is opened only when these spectra are taken. This allows us to observe the atom

cloud for up to 300 s without significant loss from optical pumping.
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For some experiments we would like to use optical pumping to remove the trapped

atom cloud, to obtain baseline measurements. To do this we split off a portion (∼ 70%) of

the probe beam before the neutral density filter. This portion is sent through a normally

closed shutter (S2), and recombined with the portion that passed through the neutral density

filter. In order to optically pump the atoms, we merely open this shutter for a brief (∼2

s) period of time while scanning over the ∆m = 0,−1 atomic transitions. To protect the

photodetector from this much greater light power, we add a normally open shutter (S3) just

before the photodetector. This shutter is operated on the same TTL signal as S2, so that

the photodetector is blocked whenever the optical pumping light illuminates the atoms.

Depending on the experiment in question, we used photodiodes (New Focus 2001,

[76]) or photomultiplier tubes (Hamamatsu R2557, [79]) as our photodetectors. Photodiodes

were used when we had high light powers on the photodetectors. This was the case in our

first Li experiment, where we did not worry about optical pumping. In the second and third

experiments we used PMTs, although a photodiode was used for the reference detector for

a portion of the second experiment. This was changed to a PMT later, to match the noise

response of the reference detector with that of the signal detector.

3.1.2 Spectroscopic method

To calculate physical parameters such as atom number, temperature, and state dis-

tribution, we compare the power of the probe beam after passing through the atom cloud

(“signal”) to the power of the probe beam before passing through the atom cloud (“refer-

ence”). The comparison is made by dividing the powers measured on the corresponding

signal and reference photodetectors. By doing this we eliminate common mode noise from

amplitude fluctuations in the laser. The absorption A of the probe beam by the atom cloud,
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at laser frequency ν, is proportional to this division, with

A(ν) = 1− 1
B(ν)

Psignal(ν)
Preference(ν)

. (3.2)

Here B(ν), called the “baseline”, represents the laser attenuation by all optics between the

reference pick off and the photodetectors. Its value is such that A = 0 when no atoms are

present in the trap. It is easily measured by simply taking measurements of the signal and

reference detectors in the absence of trapped atoms. Due to etaloning within the optics, the

baseline will in general be slightly dependent on frequency (in practice the baseline varies

by about 10% over the frequency range of interest).

We then calculate the “optical density” as a function of laser frequency, where the

optical density is

OD(ν) = − log (1−A) . (3.3)

The optical density is proportional to the number of atoms in the probe beam that absorb

a photon of frequency ν. We scan the frequency of the laser rapidly (between 50 Hz and

200 Hz), taking an optical density spectrum with each scan period. The laser is scanned

by sending an oscillating voltage to the scan control input of the laser controller. Fig. 3.2

shows an example laser scan. The upper plot shows the scan function sent to the laser

controller. The lower plot shows the raw division of the signal photodetector signal over

the reference photodetector signal. Note that the laser frequency lags the scan voltage.

This can be seen by observing when the turning point in absorption occurs, vs. the turning

point in scan voltage. To determine the dependence of laser frequency on control voltage,

we measure a known atomic spectrum (zero field Li, in this case), then use the published

atomic structure [37] to determine the laser frequency as a function of voltage.

The measured optical density spectra are compared to spectra simulated from the

Li atomic structure, parameters of the probe beam, and the number, temperature, and
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Figure 3.2: The upper plot shows the scan voltage sent to the laser controller. The lower
plot shows the observed Li spectrum (this particular spectrum was taken with Li atoms in
a 3.6 T trap). Hot atoms are injected into the experiment at t = 0. The frequency of the
laser lags the scan voltage. Spectrum fits are performed using the data from each scan after
the frequency turning point.
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Figure 3.3: Li laser voltage to frequency conversion, for 6 V peak-to-peak scan amplitudes,
vs. scan frequency.

state distribution of the atomic cloud. By performing a χ2 fit of the simulated spectra

to the observed spectra, we can extract the parameters of the trapped atoms, along with

confidence intervals for these parameters. This process is described in detail in Appendix

A. To deal with the frequency delay of our laser, we simply exclude an initial portion of

each spectrum, corresponding to this delay, from each fit.

3.1.3 Li atomic structure

In order to simulate the optical Li spectrum, we must know the energy dependence

of the ground and excited energy levels of Li, as well as the transition rates between these

levels. This structure was calculated according to the prescription in App. A, using atomic

structure coefficients taken from the literature. Center-of-gravity energies, Landé g-factors,

and fine structure coefficients of the 1s22s and 1s22p levels of 7Li were taken from [37]. The

Einstein A coefficient [25] for the transition was also taken from [37]. Hyperfine coefficients
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Figure 3.4: Energy levels of ground state 1s22s Li.
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were taken from [80]. The calculated Zeeman energies of the ground and excited state

manifolds are shown in Figs. 3.4 and 3.5. The Zeeman energy of excited state Li is rather

unique, because the strength of the Zeeman interaction can overcome the fine structure ~L· ~S

interaction at fields that exist within our magnetic trap.

We typically ignore contributions to the atomic spectrum due to 6Li, as the natural

abundance of this isotope is only 5%. However, we did calculate the Zeeman energies and

transition probabilities between ground and excited state 6Li. The results are similar to

those for 7Li, with the major change being the hyperfine degeneracy, as 6Li has I = 1

compared to I = 3/2 for 7Li.

3.2 Shared apparatus

Each of our lithium experiments shared the same general cryogenic apparatus,

with the different abilities of each experiment implemented by modifying the cell and valve

apparatuses. A schematic of the general cryogenic apparatus, minus the cell and valve

components, is depicted in Fig. 3.6. The experiments are housed within a triple wall

cryostat. Within this cryostat we have inserted an Oxford Instruments Kelvinox 400 [81]

dilution refrigerator [52]. The refrigerator has a measured cooling power of 31 mW/K2,

and a base temperature of 16 mK1 when disconnected from any heat loads. Hanging from

the lower third of the fridge is a vacuum can, called the “inner vacuum chamber”, or IVC.

Our cell and valve apparatuses were contained within this IVC. The IVC is extended by

a brass tube. This tube fits inside the bore of the magnet and extends the IVC vacuum

within the trapping region, where the experimental cells are located. The bottom of this

extension is mated to the bottom of the cryostat bath using an edge-welded bellows, making

1As measured via nuclear orientation thermometry.
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Figure 3.6: General cryogenic apparatus schematic. Items marked with Rx only appeared
in run: R1) test run, R2) valve run, R3) evaporative cooling run. The cell, much of the
valve actuation, bus bars, magnet supports, and transfer plumbing are not shown.
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Figure 3.7: Schematic of the superconducting magnet. Field contours are every 0.5 T, with
a current of 100 A in each magnet coil. The dashed rectangle is the inner dimension of the
cell walls.

up for misalignment of the bath and the fridge. A set of borosilicate glass windows allows

optical access from the bottom of the cryostat into the cell. The window closest to the cell

makes a seal between the IVC and the cryostat guard vacuum. This is done to prevent

stray helium gas that may enter the guard vacuum from creating a superfluid film on the

dilution refrigerator.
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Trapping magnet

The superconducting magnet is similar to the “Mark V” magnet described in

[20]. Current is delivered to the magnet via a set of vapor cooled leads [82] and composite

copper/superconductor bus bars. The magnet was designed to be run with up to 96 A in

each coil with the coil currents running in opposite directions (i.e., the magnet is run as an

anti-Helmholtz magnet). The magnet can in practice be run at currents up to 101 A in each

coil without causing the coils to go normal.2 For safety we consider the maximum current

of our magnet to be 100 A in each coil. Because the in-coil fields add when the magnet is

run in a Helmholtz configuration, the current limit is only 80 A when the coil currents run

in the same direction.

A minimum amount of distance is needed between the inner diameter of the magnet

and the inner wall of the trapping cell. This distance includes the thickness of the IVC

extension, a 1.5 mm vacuum clearance between the IVC extension inner diameter and the

outside of the cell, and the thickness of the cell wall itself. For our thinnest cells (0.080 in

wall thickness), 100 A in each magnet coil corresponds to a minimum trapping field at the

cell wall of 4.0 T. This is equivalent to a trap depth of Utrap/kB = 2.7 K, for 1µB species.

For the evaporative cooling experiment, we bolt a home-wound bucking coil to the

top of the magnet. This coil is run in series with the top magnet coil, but wired such that

the current direction is opposite that of the top magnet coil. The geometry of this coil was

chosen to eliminate fields near the copper and brass parts of our evaporative cooling cell

and the refrigerator mixing chamber. A complete description of the bucking coil is given in

Newman’s thesis [71].

2It is possible the real current limit is higher. The magnet quenched once when operating at 101 A, but
we believe this was due to a problem with our Lakeshore Supply which has since been fixed.
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Ablation laser

For each of our experiments, a gas of Li was produced via laser ablation of either

Li metal or LiH salt. To install the Li metal samples in our cells, we performed the final

assembly of the cells in a glove box containing an argon environment. Light for laser ablation

is produced from a Continuum Minilite II 532 nm Nd:YAG laser [83], with pulse energies

up to 25 mJ and pulse widths of 5 ns.3

For the first two experiments, the ablation laser was focused on the Li targets by

inserting a lens in the ablation beam. For the thermal isolation experiment, we first used

a telescope to broaden the YAG beam to a ∼ 0.8 in waist, then focused the beam. This

increases the numerical aperture of the focusing lens, allowing for a tighter focus on the

face of the Li sample.

3.3 Test experiment

For our test experiment we used a simple copper cell, shown in Fig. 3.8. The cell

is suspended from the refrigerator mixing chamber by a copper heat link. A standoff ring

[57, Chap. 5] prevents the sub-Kelvin cell from contacting the 4 K IVC extension. The heat

link is a 0.53 in diameter, 10 in long OFE copper rod. Our mixing chamber in this setup

had a base temperature of ∼ 130 mK. In steady state, the cell resided at a temperature 30

mK warmer than the mixing chamber. To heat the cell to the 300 to 400 mK required to

obtain a significant 3He vapor density, we applied a 1 s long 2 to 3 V heater pulse. The cell

3In order to synchronize our data collection with the ablation, we fired the YAG via a remote trigger,
generated by our data acquisition routine. Despite being supposedly designed for remote triggering, the
Minilite will episodically go into a mode in which it is unable to accept further triggering without manual
intervention. We therefore recommend against using the Continuum Minilite for laser ablation in buffer
gas cooling experiments. If the Minilite is used, this problem can be alleviated by sending a “maintenance
pulse”. To perform a maintenance pulse, the flashlamp trigger signal is delivered to the YAG; after a long
delay (>400 µs, such that no excited Nd ions remain) the q-switch is triggered. This pulse should be sent
to the YAG every 30 s or so.
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Figure 3.8: Lithium test cell. The inset shows how the standoff ring is attached to the cell
with kevlar yarn, with the yarn wound clockwise, attached to the standoff ring in the order
indicated by the numbers in the figure.
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was run in this mode of operation, until bad vacuum in the IVC caused the mixing chamber

temperature to rise drastically. After this point the mixing chamber base temperature was

440 mK, and we ran without a heater pulse.

Buffer gas was delivered to the cell by a capillary fill line. To set the density of

buffer gas in the cell, we would meter a fixed amount of room temperature He, then allow

this helium to expand into the cold cell. Because the cell is 1000 times colder than room

temperature, almost all this buffer gas ends up in the cell.

Fig. 3.9 shows the Li spectrum we measured in our test cell at zero field. This

was taken after the magnet had been ramped to full field a couple times; therefore, trapped

currents could cause broadening of the zero field lines. We use this scan to calibrate the

laser’s voltage to frequency conversion. This conversion is shown in Fig. 3.3. Our fit to

this scan gives 2× 1011 atoms in the cell, thermalized to the buffer gas. However, we took

other scans (at higher buffer gas densities) displaying up to 1013 atoms.4

We then raised the trapping field. A sample spectrum of Li in our trap, taken

directly after ablation is shown in Fig. 3.10. Initially, the atoms do not lie in a true Maxwell-

Boltzmann distribution. Good fits to a model that presupposes a Maxwell-Boltazmann

distribution are therefore difficult to obtain at short times after ablation. After a trap

lifetime these fits become much more accurate.

To determine the lifetimes of atoms in our trap, we could fit the optical density

spectra, taken each laser scan period, for atom number. Such a sequence of spectral fits is

shown in Fig. 3.11. We would then fit the atom number vs. time to determine the atom

lifetime. However, this method is prohibitively time consuming to execute on many abla-

tions. If our laser did not drift between ablations, we could average the spectra over many

4The plotted scan is chosen because it is the only scan taken in the test run that shows all the peaks in
the transition.
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Figure 3.11: Successive fits to Li spectra in our test experiment for an example ablation.
Times are time after ablation. Each spectrum is an average of 25 ms of data (3 scans). The
quoted temperature is taken from the spectral fits.

identical ablations, and fit each averaged spectrum. However, the laser center frequency

drifts, on the order of 200 MHz/min. In addition, other experimental parameters such as

cell temperature drift with time.

To easily fit lifetimes we instead make fits to the decay of the spectra optical

density. This is validated by the following argument: If we assume that the atoms are in a

Maxwell-Boltzamnn distribution, and additionally that the Zeeman interaction is close to

linear, then from (A.24) and (2.9), we find that the total atom number is proportional to

the integrated optical density of the spectrum:

N(t) ∝ T 2

∫
dν OD(ν, t). (3.4)

If the temperature of the atoms does not change during the time we wish to measure
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the atom lifetime, we can then calculate the atom lifetime by fitting an exponential to
∫

dν OD(ν, t). We find in general that these two approaches yield similar results, as is

shown in Fig. 3.12.

Despite the hot temperatures we ran with in this experiment, we were able to

observe Li lifetimes up to 350 ms at 3He buffer gas densities between 3 × 1015 and 1016

cc−1. Lifetimes were limited by drift-diffusion (see §2.2.2). These numbers are in rough

agreement with our M = 7 amu Monte-Carlo predictions at 500 mK, assuming an elastic

Li-3He cross-section of 10−14 cm2 (see §2.3.5). This gave us faith that if we could design

our next experiment such that the Li could be loaded at 350 mK, and we could tune the

pump-out trajectory of our cryogenic valve, we would be able to reduce the background

gas density below the valley of death, while keeping a significant fraction of our trapped Li

sample.
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3.4 Buffer gas pump-out experiment

In our second experiment, we wished to demonstrate that we could successfully

remove buffer gas from the cell, to the point that the lifetime of trapped Li was not limited

by elastic collisions with the background gas.

3.4.1 Apparatus

Because obtaining a low cell temperature was crucial for this experiment, we chose

to use a copper cell. Having this copper cell would give good thermal conductivity down

the length of the cell; however, due to eddy current heating, having a copper cell would

prevent us from changing the depth of the trap while Li remained in the trap. A drawing

of the apparatus is shown in Fig. 3.13.

The cell is composed of two chambers: a lower trapping chamber and an upper

pumping chamber. These two chambers are attached by an indium seal. The vacuum spaces

of these two chambers are separated by a high conductance cryogenic valve.

The lower trapping chamber has a volume of 300 cc. At the bottom of this chamber

is a BK7 window, located at the lower saddle point of the magnetic field. At the top of

the chamber is our copper sample holder, located about 1 cm above the upper saddle point

of the magnetic field. Our retroreflecting mirror is clamped to the middle of this sample

holder. Our samples are glued to the bottom of our sample holder using Stycast 2850 epoxy.

The pumping chamber contains 15.3 gm of activated coconut charcoal. Coconut

is chosen for its small pore size, yielding enhanced pumping of helium vs. other charcoals

[84]. This charcoal is thermally anchored to the cell wall. The active area of the charcoal

is 200 cm2, giving a pumping speed for 350 mK 3He of 80 L/s.5

5This assumes that the He has a 30% chance of sticking to the charcoal surface.
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Figure 3.13: Apparatus used for the buffer gas pump-out experiment. Note that the pulley
box is attached only to the pump chamber top, and contacts neither the mixing chamber
nor the heat link. The fill line is not shown.
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Cryogenic valve

In order to ensure that we remove buffer gas with a τpump much faster than the

valley of death lifetime for 350 mK Li, we chose a valve diameter of 3.6 cm. This gives a

valve open conductance of 12 L/s for 350 mK 3He. Because the valve open conductance is

significantly less than the charcoal pumping speed, the valve limits the speed at which we

remove buffer gas. For the 360 cc trapping chamber we used, our 12 L/s valve conductance

translates to a τpump of 30 ms. This is more than twice as fast as the 80 ms valley of death

lifetime for 350 mK Li (see Fig. 2.6).

To both load buffer gas in the trapping chamber and to keep the buffer gas during

Li loading, the valve must seal reasonably well. Because the valve is opened on a ∼ 300 ms

time scale, we require at a bare minimum that the valve retain the buffer gas for at least

a few seconds. The actual measured loss time for 3He from the cell with our valve is 24

minutes, limited not by the impedance of the closed valve, but by the buffer gas loading

impedance (described in the next section). Our valve has a measured 4 K conductance of

3× 10−5 L/s, corresponding to a buffer gas decay time of 5 hrs. Our long hold time allows

us to perform many diagnostic experiments without worrying about non constant buffer gas

densities.

Because dilution refrigerators are notoriously fragile, we wished to minimize the

amount of force we applied to the cell in order to seal the valve. In addition, our cryostat

design restricted us to locating our cell directly beneath the dilution refrigerator. These

two constraints prevented us from using the direct valve actuation method (i.e., pushing the

valve closed with a rigid rod, from room temperature) used in previous valved buffer gas

experiments [58]. The process to design a cryogenic valve that would meet all the criteria

listed here was rather involved; it is described in full in App. B. The end result is shown

in Figs. 3.13 and B.2.
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The valve we designed is actuated using a stainless steel wire pull rope. Pulling

on this rope opens the valve; upon releasing the rope the valve is closed by a spring located

within the pump chamber. The rope is contained within a 0.25 in diameter, 0.035 in

wall stainless steel tube. The rope pulls against this tube: because the length of the tube is

fixed, the opening and closing forces are contained within the cell, tube, and wire rope. This

results in a minimum transmission of force to the IVC and hence the dilution refrigerator

(measured to be a few ozs., but still enough to cause a slight torque on the cell). We

use a pneumatic actuator to pull the rope. This pneumatic actuator consists of a piston;

compressed gas is put on each side of the piston. We keep a static 80 psi on the bottom

of the piston. To close the valve, we put 100 psi above the piston. This volume “above

the piston” is attached to a high-conductance solenoid valve. When this solenoid valve is

activated, the 100 psi gas is discharged, and the valve opens. With these gas pressures, our

valve opens in 34 ms. By placing a constriction past the solenoid valve, we can slow the

discharge of the above-the-piston gas, reducing the valve opening time.

Waiting room and loading impedance

Because we would need to rapidly replace buffer gas in the cell after every valve

opening, we added a “waiting room” to store buffer gas in a charcoal sorb between buffer

gas loadings (similar to the waiting room described in [58, pp. 121-5]). This waiting room

(shown in Fig. 3.6) was suspended from the top of the IVC via a brass heat link. This heat

link was designed such that the temperature of the waiting room could be increased to up

to 20 K using one to two Volts applied to a resistive 15 Ω heater, but still be cooled to the

4 K temperature of the IVC within a few seconds when no heat was applied. Inside the

waiting room we put 1.34 gm of the same coconut charcoal used in the pumping chamber.

This amount of charcoal can hold ≈ 0.1 gm of He gas [52], or enough gas for 7000 loadings
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of the cell at nb = 1016 cc−1.

The waiting room is connected to the cell trapping chamber by a high gas conduc-

tance 3/8 in diameter thin-walled stainless steel tube. This tube is heat sunk to the dilution

refrigerator 1 K pot and still, at points between the waiting room and the cell; this results

in a negligible heat load on the cell by the waiting room. Between the end of this tube and

the trapping chamber of the cell we insert a tuned impedance. The value of the impedance

is chosen to give a long lifetime of buffer gas within the cell while allowing loading of the

cell on reasonable time scales. We chose an impedance of 4×10−4 L/s, obtained by sending

the gas through a 20 mil diameter, 0.25 in long tube. This gave us a buffer gas hold time

in the cell of 24 min. Note that the impedance must have a larger conductance than the

closed valve, if we are to successfully load buffer gas into the cell.

To load buffer gas into the cell, we first opened a metered amount of room tem-

perature gas to the waiting room volume. We would typically load 10 STP mL of 3He into

the waiting room. This gas would be pumped by the cold charcoal within the waiting room,

and most would end up absorbed into the charcoal. Some would make it into the cell; this

would be removed by opening the valve and heating the cell to 400 mK. Buffer gas could

then be loaded into the cell from the waiting room by heating the waiting room for some

amount of time. The exact parameters depend on the amount of 3He absorbed into the

charcoal, but a typical buffer gas load would involve raising the waiting room sorb to 10 K

for 90 s. The desorbed gas leaks through the loading impedance for the time the waiting

room remains hot. We then wait for the waiting room to cool to near 4 K; this pumps the

desorbed gas from the fill line, ensuring that we have no gas leaks into the cell during the

experiment. To measure the amount of loaded buffer gas, we measure the lifetime of atoms

diffusing in 0 field. This lifetime, when combined with the cell temperature as measured

by our cell thermometer, is input into the zero-field diffusion lifetime equation (2.29) to
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determine the diffusive mean free path. For all our buffer gas measurements, we assume a

Li-3He diffusion cross-section of 3 × 10−15 cm2. This is based on a calculation performed

by Dalgarno [70].

Flexible heat link

We also payed special attention to the thermal statics and dynamics of the ap-

paratus. Because we wished to mechanically divorce the cell from the dilution refrigerator

insert, we constructed a flexible heat link to thermally connect the cell to the mixing cham-

ber. One can imagine two different methods for constructing a flexible heat link. In the

first method, the heat link would be constructed of narrow metallic wires or foils. The

flexibility is provided by introducing some amount of slack in the wires or foils. In the

second method, the heat link is provided by superfluid 4He. The link is made flexible by

containing the liquid 4He in a flexible tube. Superfluid He heat links have been successfully

used in buffer gas trapping experiments before [57]. Because the thermal conductivities [52]

of superfluid He and of copper have different power law dependences on temperature, the

best heat link method to use will depend on the operating temperature of the experiment.

The conductivity of superfluid 4He is ∼ T 3, while the conductivities of most metals go as T .

For 101 OFE copper, with a typical residual resistivity ratio (RRR, the ratio of electrical

conductivity at 4 K vs. 300 K) of 150, the conductivity is greater than the conductivity of

superfluid 4He for temperatures less than ≈ 200 mK [52]. Because we wished to maintain

high thermal conductivity at temperatures as low as 100 mK, we chose to make a flexible

heat link from copper.

The first iteration of this heat link is depicted in Fig. 3.14. The heat link was

composed of 500 0.5 mil thick × 1 in wide OFE Cu foils. These foils were stacked one on

top of another; this stack was then bolted to a clamp on either end; the lower clamp was
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Figure 3.14: Our first, failed, flexible heat link design. The entire heat link as assembled
is shown on the left. The right shows how the copper foils were stacked and compressed
together.
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bolted to the cell while the upper clamp was bolted to the mixing chamber. The stacks

were bolted to the clamps using 4 8-32 brass screws for each clamp. This allowed us to

apply 400 lb. of compressing force to each end of the foil stack [85]. We expected the

net thermal conductance of this heat link to be 80× (T/K) mW/K.6 We assembled the

cell with this heat link, and cooled the experiment. By applying heat to the cell, we were

able to measure the actual thermal conductivity of the heat link. But instead of the large

thermal conductance we expected, we measured the thermal conductance of the heat link

to be 0.73× (T/K)2 mW/K. This large discrepancy is due to the addition of the many

small boundary resistances between each foil. The T 2 dependence of the measured thermal

conductance suggests that the conductance of this link is limited by an amorphous substance

(such as oil or grease) (cf. [52]). We can model the foil heat link as a resistor network, as

shown in Fig. 3.15. Between each foil end is a boundary resistance Rbdry, caused perhaps

by an oxide layer or grease film. Each foil has a resistance down its length of Rfoil. Using

standard addition rules for resistances, we obtain a recursive relation for the resistance of

a heat link with N foils:

RN+1 = 2Rbdry +
1

1/Rfoil + 1/RN
. (3.5)

We can solve this equation numerically; the result for a 500 foil heat link is shown in Fig.

3.15. At large boundary resistances, the heat is conducted entirely through the first foil. For

boundary resistances smaller than Rfoil/N
2
foil, the conductance of the total mass of copper

is obtained. Comparing this result to our measured heat link, we find that our thermal

boundary resistance was ≈ 1/100 the resistance of each foil. Despite this small boundary

6The conductance K(T ) is defined here such that the power transmitted between two ends of a heat link
at temperatures T1 and T2 is Plink =

R
K(T )dT . This definition is only valid if temperature is constant

across cross-sections of the heat link.
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resistance, the net effect over 500 boundaries was to greatly reduce the thermal conductance

of the heat link.

Although we could have done better at reducing the foil thermal boundary resis-

tances in our heat link, the poor operation of our foil heat link caused us to go to a heat link

composed of wires. This heat link was produced by Janis Research [86], using 4 bundles,

each containing 600 5 mil diameter wires. Using data from a test conducted by Janis [86,

private communication], we determined that these wires have a RRR of 65. Assuming the

boundary resistances between wires, the heat link clamps, and the cell / mixing chamber

are all negligible, this gives a predicted thermal conductance of 34× (T/K) mW/K. In this

heat link the boundary resistances between copper wires are eliminated by welding the wire

ends together. These wire ends are then welded at each end to a short copper tube. The

copper tubes are then brazed to clamps that can be bolted to the cell or mixing chamber.

The measured thermal conductance of this heat link, as affixed in our experiment (see Fig.

3.13), is 2.8× (T/K) mW/K. While not quite as high a conductance as we might desire,

this gave us a cold enough cell that we could attempt buffer gas removal of trapped Li. A

“thermal schematic” of the cell, showing the cell base temperatures and various conductance

is shown in Fig. 3.16.

3.4.2 Preliminary measurements

We now had an apparatus with good thermal characteristics. Before we proceeded

to buffer gas removal, we wanted to take some preliminary measurements of Li in our trap,

in the diffusive regime. We measured both the yield of thermalized Li and the lifetime of

trapped Li vs. buffer gas density, ablation energy, and the strength of the heater pulse we

use to drive buffer gas into the gas phase.

After reducing our probe power (to prevent optical pumping), and substituting
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PMTs for our photodiodes, we measured the number and lifetime of thermalized Li versus

ablation energy. These results are shown in Fig 3.17. We find that there is a “sweet spot”

of ablation energy. If ablation energy is too low, no atoms are ablated. If the ablation

energy is too high, the atoms and cell are heated by the ablation pulse, leading to short

trap lifetimes. For Li in our cell, we find that a 4 mJ pulse is best for producing large

numbers of Li at long times.

We also investigated how these atom cloud parameters depended on the amount

of energy applied to our cell heater located at the “cell top”. The energy was applied by

sending a fixed voltage for 0.5 s. This heat was applied 0.5 to 1.0 s prior to ablation. The

results of this study, using a 4 mJ ablation pulse, are shown in Fig. 3.18. We found that for

low heater energies, less than 6 mJ (corresponding to a heater voltage of 3 V), the heater

has little affect on the initial production, temperature, or lifetime of the atoms. Presumably

this is because the thermal dynamics of the experiment are dominated by heating from the

ablation pulse. Only a fraction of the heater pulse is deposited in the cell walls, with much

of the heat going directly to the mixing chamber; this contrasts to ablation, in which almost

all of the pulse energy is delivered to the cell interior. As more than 6 mJ is applied, more

and more buffer gas is driven into the gas phase, leading to longer lifetimes. At very high

heater energies, the atoms are heated, leading to decreased lifetimes as η decreases.

3.4.3 Buffer gas pumpout

When we first began the experiment, we would open our valve as quickly as possible

(an opening time of ≈ 30 ms). We hoped to load atoms at hot temperatures, 400 mK or

greater; pumping on the buffer gas at these hot temperatures would ensure a thin buffer gas

film when the cell reached its base temperature of 100 mK. In order to achieve a pumping

time below the atom loss forbidden region (See Fig. 2.6), this would require as short a valve
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opening time as possible. Results for 450 – 550 mK atoms are shown in Fig. 3.19. We find,

for buffer gas densities > 3 × 1015 cc−1, that wind removes all our atoms, due to the fast

valve opening time. For smaller buffer gas loading densities, we simply lose all our atoms

before we traverse the valley of death.

Because we could not successfully remove buffer gas with such fast valve opening

times, we implemented the pneumatic actuator throttling described in §3.4.1. We throttled

the valve such that the time to open the valve was around 300 ms. In addition, we allow

the atoms to cool to between 200 to 350 mK, to prevent valley of death loss. An example

integrated optical density profile for this pump-out method is shown in Fig. 3.20, for atoms

at a loading temperature of 240 mK. After opening the valve, we see atom loss while we

traverse the valley of death. This loss disappears after a few seconds, and we have trapped

atoms for long lifetimes, up to 150 s. At early times, the atom temperature given by spectral

fits tracks the cell temperature given by our resistive thermometer located at the cell top.

These temperatures are discrepant by 20 mK, suggesting a systematic error from either

the thermometer calibration or the laser voltage-to-frequency conversion. At late times we

see that the atom temperature ceases to track the cell temperature. This is suggestive of

thermal isolation — that atom-atom loss is dominating the heating and cooling of the atom

cloud.

The long-term behavior of the trapped Li sample after buffer gas pumpout is shown

in Fig. 3.21, vs. applied heater energy. We observe that the trapped Li is more or less

unaffected by heater energy as long as this energy is less than a critical value, above which

all Li is lost after valve opening. This loss is due either to wind loss (because more buffer

gas is in the gas state in the hot cell) or valley-of-death loss (because the atoms are hotter

at valve opening).

We also found that we could observe long lived atoms without opening the valve.
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Figure 3.20: The upper plot shows an atom optical density profile for a slow (300 ms) valve
opening time. The valve begins opening at 1.5 s after ablation. The heater energy was 8
mJ. The lower plot shows the corresponding atom and cell temperatures. Note the change
of scale on the t axis.



82 Chapter 3: Lithium experiments

0

2

4

6
×1011

N
4

7
 s

 

0

50

100

150

200

T
4

7
 s

 (
m

K
)

0 2 4 6 8 10 12
0

50

100

150

200

EHtr (mJ)

τ
 (

s)

Figure 3.21: Number (circles) and temperature (stars) of Li at 47 s after ablation. Buffer
gas is removed with the valve, opened in 300 ms. Also shown is the long-time lifetime
(squares) after valve opening. Ablation energy was 5 mJ.



Chapter 3: Lithium experiments 83

1010

1011

1012

1013

N
3
0

s

2 3 4 5 6 7 8 9 10
100

120

140

160

180

200

Eabl (mJ)

T
3
0

s 
(m

K
)

Figure 3.22: Long-time behavior of Li after buffer gas removal by freeze-out. No valve or
heater pulse was used. The cell contained ≈ 2× 1019 3He atoms.



84 Chapter 3: Lithium experiments

2 3 4 5
100

200

300

B (T)

τ
 (

s)

1
—
B

2

Figure 3.23: Long-time lifetime of trapped lithium, vs. loading trap depth, after buffer gas
pumpout. The dashed line shows the expected field dependence of Majorana loss. Atom
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Without opening the valve, the buffer gas freezes to the cell walls as the cell cools to its

base temperatures. As long as the atoms are cold enough when loaded, the valley of death

lifetime will be long enough that the atoms survive the freeze out. With no heater pulse

applied to the cell, and using a 4 mJ ablation pulse, we retained 60% of our atoms at long

times (specifically, at 30 s after ablation). Fig. 3.22 shows a plot of the number of atoms

remaining 30 s after a freeze-out of the buffer gas vs. ablation power. Also shown is the

temperature of the atoms at 30 s. For all but the most extreme ablation energy, the atoms

all end up at the same low temperature.

We wished to determine to determine what process was limiting our atom lifetime.

If we were to observe 2-body loss, due to atom-atom evaporation, we could be confident

we had achieved thermal isolation. However, the observed decay after buffer gas removal,

either using the valve or cell wall cooling, was always 1-body. To see if this loss was due



Chapter 3: Lithium experiments 85

to background gas evaporation or due to Majorana loss (cf. [57], Table 2.2), we varied the

loading trap field (the field is still held constant during each time profile observation). A

plot of the observed lifetime vs Btrap is shown in Fig. 3.23. The dashed line shows a 1/B2

power law; this is the behavior of Majorana loss. Because we see that the lifetime decreases

with increasing field, we conclude that the atom lifetime is dominated by Majorana loss.

Before moving on to our next experiment, we wished to see if we could show

thermal isolation in our copper cell. Because the atom lifetime was Majorana limited, we

could not distinguish between background gas evaporation and atom-atom evaporation in

our trapped sample. Because we could not ramp the magnetic field after the buffer gas

pump-out, we could not lower η after loading, in order to make evaporation the dominant

loss mechanism. However, we could lower η using optical pumping. In this scheme we

applied a large amount of laser power (> 10 µW) at a frequency resonant with atoms at

a magnetic field corresponding to η = 5. This should remove all the atoms with orbits

passing through this magnetic field. Because we had only one laser available, this was done

by halting the laser scan. Restarting the laser scan took 100 ms, setting a minimum delay

time before the resultant atomic spectrum could be observed. If the atoms were thermally

isolated, and if the atom-atom rethermalization time were longer than this delay time, we

would see a distorted spectrum that thermalized over time to a colder temperature than

before the optical pumping. We never saw a distorted spectrum, nor did we see cooling

of the atomic cloud after the optical evaporation, even for optical evaporation resulting in

large atom loss. This implies that the atom-background gas rethermalization time is shorter

than 100 ms.
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3.5 Thermal isolation experiment

Because our lifetime in the buffer gas pump-out experiment was not limited by

atom-atom evaporation, we needed to move to lower η to verify thermal isolation. We would

load our trap at η = 15, pump out the buffer gas, then ramp to a low η where atom-atom

evaporation dominated over Majorana loss. If atom-atom evaporation loss were dominant,

we would see 2-body loss and cooling of the atoms. If we were not thermally isolated, we

would expect to see a rapid 1-body loss due to background gas driven evaporation (see the

η = 5 curve on Fig. 2.6) and no cooling of the atoms.

This experiment is discussed in detail in Newman’s thesis [71]; a brief description

is given here. The apparatus is depicted in Fig. 3.24. We wanted to ramp our magnet

while our atoms were contained in the trap. This requires that we minimize induced eddy

currents in the cell. To do this, we added a bucking coil. This coil cancels the magnetic

field between the cell top and the mixing chamber to below 300 gauss at full current. We

replaced all the metallic parts of our valve below the cell top with Vespel. Instead of a

copper cell, our cell was of a composite G-10 / copper wire construction. The cell vacuum

was made by a thin G-10 wall. Over this wall we laid 1000 10 mil diameter copper wires.

These provide the thermal connection between the top and bottom of the cell. The wires

are gathered at the cell top into a bundle (not shown on the figure); this bundle extends to

the level of the mixing chamber, where the wires are welded to a clamp; this clamp is then

bolted to the mixing chamber. In this experiment the base temperature at the cell bottom

was 165 mK. For a complete description of the apparatus, see [60].

To evaporate the atom cloud, one of the top or bottom coil currents would be

reduced. This moves the center of the trap up (to the mirror) or down (to the window).

This brings the atoms closer to an evaporation surface, reducing η. This method is used (as
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Figure 3.24: Apparatus used for the evaporative cooling experiment. The wires running
the length of the cell are gathered into a bundle at the cell top. This bundle (not shown)
extends to the level of the mixing chamber, where the wires are welded to a copper clamp
which is bolted to the mixing chamber cold plate.
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opposed to equal reduction of the coil currents) to ensure tight confinement of the atoms

and therefore a rapid elastic collision rate (cf. [87, §6.6]). As the magnet is ramped, eddy

current heating increases the temperature of the cell. For a 5 A/s ramp of the coil currents,

the cell temperature would increase to 185 mK for ramps to the mirror or 190 mK for ramps

to the window.

When we evaporated the atoms, we observed fast loss of the atoms (less than a

1 s time constant) when η was reduced below 4.5. If η was reduced to 7, atoms remained

long enough that we could observe the atom temperature. The Li temperature was seen

to be around 80 mK. We can calculate the density of background gas necessary to pin

the Li temperature at 80 mK by balancing the background gas heating rate (2.43) at this

trap depth with the atom-atom cooling rate (2.47). This gives a background gas density

of between 1011 and 1012 cc−1. The observed fast atom loss at low η is consistent with

background gas-driven evaporation loss.

We can not tell whether this high background gas density is caused by cell heating

from the magnet ramp. We did reduce the cell heating by ramping more slowly; however

this came at the expense of lower signals and we did not observe any improvement in atom

temperature. It is also possible that we never achieved thermal isolation in the first place,

or that because of the weaker thermal conduction along the sides of the plastic cell, that

we do not have thermal isolation in this apparatus.

3.6 Conclusions

We constructed an experiment to trap 1 µB species using buffer gas cooling. Large

numbers of Li atoms were trapped, up to 10 trillion atoms, at initial temperatures between

250 mK and 500 mK. This was achieved by carefully adjusting the energy of the ablation
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laser, with the most favorable results obtained at Eabl = 4 to 6 mJ. We found that applying

heat to the cell prior to ablation was more or less unnecessary, and in fact detrimental to

trapping for high enough heater powers.

We were able to remove buffer gas past the valley of death, with up to a trillion

atoms remaining after buffer gas removal. Buffer gas was removed to a high enough degree

that the Li lifetime appeared to be dominated by Majorana loss, with a 150± 10 s lifetime

at Utrap = 2.7 K. We were able to remove buffer gas using our cryogenic valve, as long as

the valve opening was slow enough to prevent wind loss. We also were able to remove the

buffer gas using a freeze-out, by allowing the cell to cool rapidly to below 140 mK. For both

of these techniques, we found it is generally better to perform a “cold load” of the atoms:

that is, buffer gas is not driven into the gas phase prior to ablation.

When we attempted to show thermal isolation of our trapped Li, we found con-

flicting evidence. On the one hand, a comparison of atom temperatures taken from atomic

spectra with cell thermometer temperatures suggested that the two temperatures were in-

dependent. Optical pumping experiments suggested that the atom temperature was pinned

by the background gas. When we attempted to evaporatively cool the Li atoms, we could

not cool them below 80 mK.

Based on our experience with trapping Li, we give a “recipe” for buffer gas trapping

of 1 µB species. This recipe is shown in Table 3.1. The secret to obtaining dense samples

of buffer gas cooled species after buffer gas removal is to have atoms at a certain minimum

η. Our experiments show that this minimum η is 10. This is similar to the value7 obtained

by a previous buffer gas experiments in a warmer apparatus[58], limiting that experiment

to species with magnetic moments greater than 2 µB. In order to buffer gas-trap trap 1 µB

7Michniak and his collaborators found that, in a nearly identical magnetic field, the minimum magnetic
moment for buffer gas removal was 2 µB , for an atom temperature of 600 mK during buffer gas removal.
This corresponds to η ≈ 10.
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1 µB buffer gas trapping “recipe”

1. Cool the trapping cell to < 150 mK.

2. Introduce hot atoms. The cell temperature should be between 250 mK and 280 mK.

3. Remove the buffer gas with η ≥ 10, slowly enough to avoid wind, using either:
A. Valve pumpout. The valve should be large enough to pump out significantly faster

than the η = 10 valley of death lifetime. The rate at which the valve is opened
should be adjusted to avoid wind.

B. Freeze-out. A minimal amount of heat is applied to the cell during the introduction
of hot atoms. The buffer gas is pumped by the cooling cell.

4. Reduce the residual buffer gas to thermal isolation density. This has not yet been
demonstrated with 1 µB species. The most attractive options are:
A. Bakeout the cell while atoms are present in the trap, with the valve open. In order

not to lose atoms, η must be kept well above η = 10. cf. [58].
B. Cool the cell such that the vapor density of He is lower than the thermal isolation

density. Care must be taken to eliminate “hot spots”.

Table 3.1: 1 µB buffer gas trapping recipe.

species and then remove this buffer gas, we therefore require loading temperatures between

250 mK (to obtain sufficient buffer gas density) and ∼280 mK (to maintain high η). The

upper bound is set by the trapping field — if a deeper magnetic trap is used, this number

should increase.

The required experimental conditions to obtain thermal isolation are more elusive.

Certainly if the entire interior of the cell can be made colder than 100 mK, the background

gas density will be lower than 1010 cc−1 (cf. Fig. 2.5). In our thermal isolation experiment,

we could only obtain cell wall temperatures of 170 mK or so. Michniak showed [58] that the

remnant background gas can be reduced by performing a “cryo-bakeout”: pumping on the

gas with the cell at the hottest temperature the trapped atoms can bear, and then lowering

the cell wall temperature. This method requires a large temperature swing, however. In

his experiment the buffer gas was pumped at temperatures 100 mK to 200 mK hotter than

the base temperature. The behavior of atoms in our experiment after various bakeouts is
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described in Newman’s thesis [71]; we were never able to successfully use this method to

achieve thermal isolation.

Making improvements to the apparatus to lower the base temperature of the cell

are therefore the best chance for achieving thermal isolation of 1 µB species. In addition,

using a more massive species such as potassium (K), would allow more aggressive cryo-

bakeouts, due to the reduced efficiency of energy transfer with the He background gas.



Chapter 4

Noble metal experiments

In applying buffer gas cooling to the noble metals, we wished to show that buffer gas

cooling could open up new 1 µB systems for study. Like the alkali atoms, the noble metals

are composed of closed core electron shells and a single valence s electron, giving a ground

state dipole moment of 1 µB. At the same time, the noble metals copper (Cu), silver (Ag),

and gold (Au) possess narrow two-photon transitions. Ag has garnered particular interest:

it has two-photon transition with a linewidth of 0.8 Hz, which is interogated at 661 nm.

This line has attracted attention as a proposed frequency standard [88], with groups working

on producing cold Ag samples [45] and measuring the clock transition [43]. Meanwhile, Au

is the heaviest stable atom with a single s valence electron. Its atomic spectrum is greatly

influenced by relativistic effects, and is hence a good species for testing relativistic theories

of atomic structure [44]. Furthermore, new classes of atoms can exhibit novel collisional

behavior at cold temperatures, leading to increased theoretical understanding of interatomic

interactions [28, 64, 89, 90]. The large laser powers at UV frequencies needed to laser cool

the noble metals (240 to 330 nm) have posed a serious challenge to experiments thus far,

limiting the number of Ag atoms trapped in a MOT to 3× 106 [45].

92



Chapter 4: Noble metal experiments 93

YVO4 Dye laser BBO To cell

Spatial filter

Figure 4.1: 330 nm light generation for Cu and Ag spectroscopy.
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Figure 4.2: 243 nm light generation for Au spectroscopy.

4.1 Method

4.1.1 Apparatus

The cryogenic apparatus used was the same apparatus as used for our Li thermal

isolation experiment, and described in §3.5. For most of our measurements we simply left

the valve closed, and measured the properties of our buffer gas cooled samples at constant

buffer gas density. In general, due to the high ablation powers needed to produce the noble

metals, the samples were too hot to allow for buffer gas removal.

Light for the spectroscopy transitions at 325 and 327 nm for Cu, 328 and 338 nm

for Ag, and 243 nm for Au, was produced by frequency doubling light from a dye laser.

For the ∼ 330 nm transitions, light was produced using a YVO4-pumped Coherent 899 ring

laser [78] using DCM Special dye, then frequency doubled with a single pass through a BBO

crystal. The light was then spatially filtered into a 2 mm diameter Airy beam, and sent to

the cryostat bottom. Light for the Au transition was produced using an ion laser-pumped

Coherent 699 ring laser using Coumarin 480 dye, then frequency doubled using a Coherent

MBD-200 resonant frequency doubler. For the 243 nm Au light, the divergence of the beam
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after the doubler was compensated by passing the beam through an iris once it reached the

bottom of the cryostat.1 In each case the UV light was delivered via free space coupling, as

opposed to the fiber delivery used for Li.

4.1.2 Collisional studies

We wished to study noble metal-3He inelastic Zeeman relaxation collisions. These

studies were done in the short λ regime, where we would be sensitive to Zeeman relaxing

collisions. In this regime, the total lifetime of atoms in the trap is the reciprocal sum of the

diffusion (2.34) and Zeeman relaxation lifetimes (2.40):

τtrap(nb) =
1

1/τD(nb, η) + 1/τR(nb)
. (4.1)

Ideally we would have a very good knowledge of the background density nb in the trap.

Then the atom-3He diffusion cross-section σ̄D and the relaxation cross-section σ̄R could be

measured by fitting (4.1) to the trap lifetime. Knowledge of nb would ideally be obtained

by measuring the zero-field diffusion lifetime (2.28) of an atom whose diffusion cross section

was well known. Such an atom, however, was not readily availabe to us. We can, however,

extract the ratio γR of σ̄D to σ̄R, without knowing nb precisely.

To eliminate nb, we use (2.28) and (2.34) to transform (4.1) into a relation between

trap-on lifetime and trap-off lifetime τ0. Doing so gives

τtrap(τ0) =
τ0

e−0.31η−0.018η2 + (gcyl v̄2
µ/γR) τ2

0

. (4.2)

To measure γR, we load buffer gas into our cell to achieve a desired τ0. We then turn on

the magnetic trap to measure τtrap. The experiment is repeated for a range of τ0, and τtrap

1Spatial filtering was necessary with the 330 nm light because we only obtained 100 µW from the single-
pass doubling, compared with the 10 mW we obtained from the MBD-200. Spatial filtering of the 243 nm
beam introduced extra noise into our system.
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is fit to

τtrap(τ0) =
τ0

C1 + C2 τ2
0

, (4.3)

where C1 and C2 are the fit parameters. The cross-section ratio is determined from C2, the

geometry factor gcyl, and the thermal velocity of the colliding system:

γR =
gv̄2

µ

C2
. (4.4)

4.2 Measurements

4.2.1 Zero field

Atomic Cu, Ag, and Au were produced via laser ablation. The ablation energies

necessary to achieve similar densities as were achieved with Li were significantly higher,

however. This means that our atoms were very hot after ablation, with atom temperatures

between 500 to 600 mK, at 500 ms after ablation. In the noble metals we also noticed

that, for a given ablation energy, there was a threshold buffer gas density. For densities

above this threshold, the zero-field diffusion lifetime is seen to be a constant for increasing

buffer gas density. At which density this threshold occurs appears to be species dependent

— for Cu and Ag this threshold occurs at λ ≈ 8 µm for the 5 to 12 mJ ablation energies

used in this experiment, while for Au the threshold was highly dependent on the ablation

energy, and is shown in Fig. 4.4. This phenomenon has been observed before in buffer gas

cooling experiments loaded with laser ablation [57, Chapt. 4], and while various mechanisms

have been proposed to explain this behavior, including macroscopic ablation ejecta (a.k.a.

“dust”) and shock waves in the buffer gas, the exact nature of this “non-diffusion” loss

process is unknown. When this process is active, the trap lifetime is seen to be limited to

the same value as the zero-field lifetime — trapping is impossible in this regime. Thus we

only were able to trap Cu and Ag in our experiments. Budker [91] has suggested that large
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Figure 4.3: The zero field spectra of Cu and Ag in our experiment, with peak hyperfine and
isotope assignments, and fit spectra.
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loaded into the cell. Each load adds ≈ 5× 1014 cc−1 to the cell buffer gas density.

numbers of Au can be thermalized in buffer gas cooling experiments with minimal ablation

energies by ablating the tip of a fine (50 µm diameter) Au wire.

Fig. 4.3 shows the measured absorption spectra of Cu and Ag at zero field. We

use known ground state hyperfine splittings [92–94] to calibrate our laser scan, and then

fit the spectrum for all unknown spectroscopic constants. The accuracy of the results is

limited by a ∼ 10% nonlinearity in our laser scan. For Ag, we fit for the isotope shift of the

line center of gravity, yielding ν109 − ν107 = −520 ± 50 MHz, in agreement with Walther’s

−470± 10 MHz result. For Cu we measure ν65 − ν63 = 540± 50 MHz. We also fit for the

excited state hyperfine structure. The measured magnetic dipole and electric quadrupole

hyperfine constants are shown in table 4.2.1.
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Hyperfine constants of excited state Cu

Isotope a3/2 (MHz) b3/2 (MHz)

63 190± 20 −30± 20
65 210± 20 −20± 20

Table 4.1: Measured hyperfine magnetic dipole aj and electric quadrupole bj coefficients of
the 2P3/2 state of copper. For definitions of these coefficients, see App. A.
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Figure 4.5: Measured spectra of Cu and Ag in our 4 T anti-Helmholtz trap, with best-fit
simulations. The fit parameters are number, temperature, probe beam profile and hyperfine
sublevel populations.
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4.2.2 Trapping field

Typical spectra of trapped
∣∣mJ = 1

2

〉
Ag and Cu in our anti-Helmholtz trap are

shown in Fig. 4.5. See App. A. The spectra are simulated from experimental parameters

including atom number, temperature, field profile, and probe beam characteristics [57, 95].

By fitting the simulation to the measured data, we can extract properties of the trapped

atom cloud. We trap 4× 1013 Ag atoms and 3× 1012 Cu atoms at 600 mK, at 500 ms after

ablation.

Atom lifetime is determined by scanning the probe laser rapidly (between 5 and

100 Hz) relative to the atom loss rate. Lifetimes are taken from the decay of the integrated

optical density. Low-frequency noise is reduced by subtracting the integral of an off resonant

portion of the spectrum from the optical density integral. Fig. 4.6 shows an example of the

trap-on lifetime vs. the trap-off lifetime for Ag, along with a fit to (4.3). At low buffer gas

densities, loss from elastic collisions is dominant, while at high buffer gas densities, spin

relaxation is dominant. At low He densities (τ0 < 150 ms), at 420 mK, the trap enhances

atom lifetime by a factor of 20. By tuning the buffer gas density, we were able to trap Ag

for up to 2.3 s and Cu for up to 5 s.

At 420 mK, we measured γR for Ag-3He to be 3.2± 0.2× 106. For these collision

studies we measure cell temperature using a solid-state thermometer. This agrees with the

atom temperature obtained from spectra to within 30 mK over the time ranges for which we

fit lifetimes. The quoted uncertainty in γR includes a 5% systematic uncertainty associated

with this temperature measurement. At 310 mK, γR for Cu-3He was 8.2± 0.4× 106.

We investigated the dependence of γR on temperature in the range 320 mK to

600 mK for Cu-3He and Ag-3He. The measurement is shown in Fig. 4.7. We find a strong

temperature dependence for Ag-3He, with power law exponent = 5.8±0.3 (stat.)±0.3 (sys.).

The systematic uncertainty results from temperature measurement. The temperature de-
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pendence of σ̄D(T ) for Ag-3He was studied independently by measuring τ0 vs. temperature,

for a constant background gas density. We found that τ0 did not depend significantly on

temperature (varying by 20% between 420 mK and 600 mK). Because the thermal de-

pendence of τ0 is weak, we believe the strong temperature dependence of γR(T ) is due to

temperature dependence of the relaxation cross-section σ̄R(T ).

We also investigated the cross-section ratio for Ag-3He vs. magnetic field. At a

constant temperature, the average field experienced by the trapped atoms scales linearly

with trapping field. At 320 mK, for 2 T < Btrap < 4 T (equivalently, 1 T < 〈B〉 < 2 T),

the cross-section ratio was measured to be 4.8± 0.4× 106 (Btrap/T)−0.9±0.2.

4.2.3 Anomalous spin relaxation

I compared the measured temperature dependence to a theoretical prediction of

the Ag-3He cross-section ratio. The dominant mechanism used to explain spin-relaxation

in hydrogenlike (single valence s electron) atoms is the electron spin – molecular rotation

interaction [3, 96, 97]. I generated a theoretical prediction for the Ag-3He spin-relaxation

cross-section ratio using the results of Walker et al. [3] and the Ag-He potentials of Takami

and Jakubek [98]. For completeness I included the Fermi contact hyperfine interaction [99].

The result of this calculation (see App. C) is plotted on the dashed line in Fig. 4.7. At low

temperatures the cross section decreases as T−1. The weakly increasing behavior at higher

temperatures is due to a scattering resonance at 0.07 meV. The absolute magnitude of γR

may depend on details of the scattering potential. However, it is important to note that the

power-law dependence of γR for these interactions must be less than T 2. This is because the

strengths of these spin interaction effects are monotonically increasing functions of collision

energy, save for the effect of possible scattering resonances. Resonances would give rise to

the largest possible temperature dependence, T 2. We therefore conclude that the ∼ T 6
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dependence observed for Ag must be due to a heretofore neglected effect. One possibility is

an anomalous rotation dependence of the interaction, such as has been observed in ground

state YbF molecules [100].

We did not observe an anomalous temperature behavior for the cross-section ratio

of Cu-3He. The two data taken are consistent with the T 2 temperature dependence men-

tioned above. We did not make a theoretical prediction for the Cu-3He cross-section ratio

because we could not find suitable internuclear potentials in the literature.

4.3 Conclusions

We trapped 4 × 1013 Ag atoms for up to 2.3 s, and 3 × 1012 Cu atoms for up to

5 s. We developed a technique to measure transport to relaxation cross-section ratios that

is independent of one’s knowledge of buffer-gas density. This ratio was measured for the

Ag-3He and Cu-3He systems. It was found to be large (> 106) in both cases. For Ag-3He,

an anomalously strong T 5.8 temperature dependence was discovered.

Our measurements of spin relaxation could indicate that atom-atom collisions in

the trap would be favorable for evaporative cooling. By doubling η, either by increasing

the cooling power of the experiment or by using a deeper magnetic trap (using a Nb3Sn

or Nb3Al wound magnet, for example), these atoms could be thermally isolated from the

trapping cell and evaporatively cooled. If so, dense samples of ultracold copper or silver

could be produced using buffer gas loading.
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Prospects

We have shown that buffer gas cooling can be used to generate large trapped samples of 1

µB atoms, with up to 40 trillion atoms, with lifetimes between 3 and 200 s. The longest

lifetimes are achieved when the buffer gas can be removed from the trapping volume.

Buffer gas removal is found to be possible when trapping ηs are larger than 10.

This is in agreement with experiments performed with more strongly magnetic species [58].

While large samples of alkali atoms can be obtained using low laser ablation energies, and

therefore low loading temperatures, this does not extend to species such as the noble metals.

The best way to increase the applicability of buffer gas cooling among 1 µB species is to

increase the loading η. If hot atom gases are to be produced via in situ laser ablation,

deeper magnetic traps would need to be developed. Currently the trapping magnets used

for buffer gas trapping are wound with NbTi superconducting wire. NbTi has a critical

field of 15 K (at 0 K). Other materials, such as Nb3Sn, have higher critical fields (25 K for

Nb3Sn), and could be used to make significantly deeper traps. However, these materials

are brittle, and winding a magnet with one of these materials is not simply a matter of

replacing the wire. A firing step is needed, putting restrictions on the materials used for

104
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spacers and insulation. In addition, the resulting wire is brittle, and could be damaged by

the large forces present within the magnet. An alternative tack to lowering η would be to

produce the 1 µB species outside the cell, such as in a room-temperature supersonic beam

[35], or a buffer gas cooled beam [55].

In order to evaporatively cool the 1 µB species we have trapped, we must achieve

thermal isolation. This was not conclusively demonstrated in these experiments. To achieve

thermal isolation, we must either reduce the thickness of adsorbed buffer gas films in the

cell, or reduce the cell temperature to prevent them from desorbing. Adding a deeper

magnet would allow for pumping of the buffer gas films at higher temperatures, leading to

thinner films. Alternatively work could be done to improve thermal conductivity between

the cell and the mixing chamber, in order to freeze the film.



Appendix A

Spectrum fitting

The buffer gas loading technique brings with it a set of data analysis challenges. Namely, the

challenge of extracting meaningful atomic parameters from the spectra of atoms trapped in

large quadrupole fields in the cold regime. This problem has been attacked since the birth

of the technique, and is well described in [101] and [57].

In order to extract physical parameters such as atom number, temperature, and

state distribution, we compare simulations of the atomic spectrum to observed spectra. By

performing a chi-square fitting routine, we can extract best estimations of these parameters,

together with statistical confidence intervals for these estimations. In this appendix, I first

described details of the of the spectrum simulation. Since our spectrum simulation is similar

to the algorithm presented by Weinstein in his thesis [57], it will only be necessary to discuss

areas in which our simulation differs, or areas for which the description in [57] begs greater

detail. I will discuss in detail three major components of the spectrum simulation: First,

how the Zeeman energies of atoms are calculated in our simulation, with special attention to

atoms displaying the Paschen-Back effect. Second, how we calculate transition probabilities

between the atomic ground and excited state manifolds, including a calculation of the

106
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“polarization factor” mentioned in Weinstein’s thesis. Third, how we calculate the optical

absorption by our laser cloud in general, when certain assumptions made in Weinstein’s

thesis are violated. After describing the spectrum simulation, I give a brief overview of the

MATLAB code we use to execute the calculations.

A.1 Zeeman structure calculation

A general atomic Hamiltonian for an electronic state of a multi-level atom may be

written as:

H ( ~B) = Enl + HFS + HHFS + HZ( ~B) (A.1)

Enl is the center of mass energy of the electronic state. HFS describes the fine struc-

ture of the atom associated with spin-orbit coupling, spin-spin coupling, and the like.

HHFS describes the interaction of the nucleus with the electrons (hyperfine structure),

and is always smaller than fine structure effects. HZ( ~B) describes the Zeeman effect of the

state. Once this Hamiltonian has been constructed, one need only solve the eigensystem

H ( ~B)ψi( ~B) = Ei( ~B)ψi( ~B) to find the energy levels and wavevectors at every ~B. Quantum

numbers may then be found in the usual manner, e.g. to find j: j(j+1) = 〈ψi| (~L+~S)2 |ψi〉.

In practice, the atomic Hamiltonian in (A.1) can not be constructed in the same

manner for all atoms. J2 commutes with the first three terms in the Hamiltonian, but not

the Zeeman term. For most atoms, the Zeeman term is small compared to the fine structure

term for experimentally realizable magnetic fields, and j is always a good quantum number.

For these atoms, we will construct H ( ~B) in the |nilsmijmj〉 basis (called the j basis here).

This is convenient because the coefficients we need to construct the atomic Hamiltonian are

universally published in the j basis. In addition, fine structure reduces to a simple diagonal

matrix in this basis.
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For light atoms, such as helium or lithium, the fine structure term is small, and

experimentally realizable fields (0.4T for hydrogen) can cause the Zeeman term to become

as large as the fine structure term. In this case, j is no longer a good quantum number,

and we must use the |nilsmimlms〉 basis (the ls basis). The challenge becomes that of

constructing the ls basis Hamiltonian from published j basis coefficients and g-factors.

A.1.1 Fine structure term

HFS folds in all splittings between various j states at zero field. These splittings

can arise from many sources: spin-orbit coupling, Lamb shift, jj coupling, etc.

In the j basis, the elements of HFS diagonal in j are described by constant diagonal

(in mj) matrices:

HFS;j = fj (A.2)

For example, for l = 1, s = 1/2, the Hamiltonian1 in the j, mj basis is:

HFS =




f3/2 0 0 0 · ·

0 f3/2 0 0 · ·

0 0 f3/2 0 · ·

0 0 0 f3/2 · ·

· · · · f1/2 0

· · · · 0 f1/2




For simple interactions like spin-orbit coupling, the off-diagonal terms will be 0. In general,

because j is a “good” quantum number of HFS, the off-diagonal terms will be quite small.

1By convention, the elements in Hamiltonians in this section are of block form in the first quantum
number, and checkered in the last quantum number. In the example Hamiltonian, the columns from left to
right are (in |jmj〉)

�� 3
2

3
2

� �� 3
2

1
2

� �� 3
2
− 1

2

� �� 3
2
− 3

2

� �� 1
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Regardless, when we may use the j basis, levels of different j do not cross, and so we need

not worry about terms of the Hamiltonian that couple different j.

For light one-electron atoms such as hydrogen or lithium, fine structure arises

predominantly from spin-orbit coupling. In this case the Hamiltonian is simply written

HFS = f~L · ~S. (A.3)

We typically ignore the Lamb shift, but if it is important it can be included like any other

effect using the method in the following paragraph.

For more complicated atoms displaying the Paschen-Back effect (such as helium),

the situation becomes more difficult. We are given a set of {fj}. First, we use Clebsch-

Gordon coefficients to construct a rotation matrix from the ls basis to the j basis. For each

j level:
∣∣ψjmj

〉
=

∑
ml,ms

ajmjmlms |ψmlms〉 . (A.4)

We construct a fine structure Hamiltonian HFS in the ls basis, with unknown matrix ele-

ments, and require the following:

1. HFS is a symmetric tensor.

2. ∀j∀mj :
〈
ψjmj

∣∣ HFS

∣∣ψjmj

〉
= fj

where (A.4) is used to convert
∣∣ψjmj

〉
to the ls basis.

3. [HFS,J2] = 0.

4. [HFS, ~Jz] = 0.

Note that J2 is constructed in the ls basis as (~L + ~S)2 and ~Jz as Lz + Sz. Combining all

these requirements yields a system of linear equations that can be solved for the matrix

elements of HFS.
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A.1.2 Hyperfine structure term

Hyperfine structure arises from nucleus–electron interactions. In practice only

two of these interactions are significant: the nuclear magnetic dipole and nuclear electric

quadrupole interactions.

The nuclear magnetic dipole interaction

The nuclear magnetic dipole interaction is [102]

HM1 = −~µI · ~Be (A.5)

where ~µI = µN
~I is the magnetic moment of the nucleus, and ~Be is the field at the nucleus

arising from the electron. ~Be arises both from the orbit of the electron about the nucleus

and from the electron spin dipole.

The field from the electron orbit is[103]

~B(r)L =
µB

r3
~L (A.6)

while the electron spin dipole field is[103]

~B(r)S = µB

[
(3~S· r̂)r̂ − ~S

r3
+

8π

3
~Sδ3(~r)

]
. (A.7)

In the ls basis, we will break the Hamiltonian into two terms, one associated with ~L, and

one with ~S.

The first term is

H
M1; ~L

= al
~I · ~L (A.8)

al = −〈nli|µIµB

r3
|nli〉

al does not depend on any of mi, ml, or ms.
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To deal with the second term, we project the term (~S·~r)~r onto ~S. The Wigner-

Eckart theorem allows us to project any tensor operator A onto any other tensor operator

that transforms in the same manner under rotations. By “project” we mean that expectation

values of A in a state |jmj〉 may be written as a product of two terms. The first term is

a constant for a given j, regardless of the value of mj . The second term includes all

dependence on mj , and does not depend on A. In the special case of vector operators, this

second term is the Clebsch-Gordon series.

In constructing the ~S hyperfine term we use the fact that (~S·~r)~r is a vector oper-

ator. Using the Wigner-Eckart theorem, we can write its expectation values in terms of a

projection on ~S [51, pp. 522-4]:

〈sm′
s|(~S·~r)~r|sms〉 =

〈ss|(~S·~r)2|ss〉
s(s + 1)

〈sm′
s|~S|sms〉 (A.9)

Because [~I, ~S] = 0, we can substitute (A.9) into (A.7), yielding the ~S term of the magnetic

hyperfine Hamiltonian:

H
M1; ~S

= as
~I · ~S (A.10)

as = −〈nlss| µIµB

s(s + 1)

[
3(~S·~r)2 − r2S2

r5
+

8π

3
S2δ3(~r)

]
|nlss〉

Because the electronic state has a fixed value of s, this Hamiltonian applies for every

eigenstate. Finally,

HM1 = al
~I · ~L + as

~I · ~S. (A.11)

In the j basis the calculation is similar; we now project both the ~L and the ~S

terms onto ~J using the Wigner-Eckart theorem:

HM1; j = aj
~I · ~J (A.12)
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aj = −〈nljj| µIµB

j(j + 1)

~J · ~L
r3

|nljj〉

− 〈nljj| µIµB

j(j + 1)

[
3~J· (~S·~r)~r − r2~J· ~S

r3
+

8π

3
~J· ~Sδ3(~r)

]
|nljj〉

Note that this analysis only holds for terms of the Hamiltonian that are diagonal in j.

Because J2 does not commute with HM1, these off-diagonal terms may be of similar size to

the on-diagonal terms. But again, since a condition for using the j basis is that different j

levels do not interact, we can ignore the off-diagonal terms.

The nuclear electric quadrupole interaction

We also consider the electric quadrupole interaction. This interaction can be

written:

HE2 = −
2∑

m=−2

QmVm (A.13)

Q and V are spherical harmonic multipole expansions; Q is the 2nd-rank tensor describing

the electric quadrupole moment of the nucleus, and V is the 2nd-rank tensor describing the

electron electric potential.[102]

Ramsey [102] shows how the Wigner-Eckart theorem can be used to project Q

onto the nuclear spin ~I, and to project V onto ~J. The result is:

HE2;j = bj
3(~I·~J)2 + 3

2
~I·~J− I2J2

2i(2i− 1)j(2j − 1)
(A.14)

bj = −〈ii|~ρN (3z2 − r2)|ii〉〈jj|~ρe
3z2 − r2

r5
|jj〉
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Because V is specified by the orbital angular momentum ~L of the electron, we

could project V on ~L instead of on ~J. Doing this gives us the ls basis Hamiltonian:

HE2 = bl
3(~I· ~L)2 + 3

2
~I· ~L− I2L2

2i(2i− 1)j(2j − 1)
(A.15)

bl = −〈ii|~ρN (3z2 − r2)|ii〉〈ll|~ρe
3z2 − r2

r5
|ll〉

Note specifically that when ~L = 0, there should be no quadrupole contribution to the

hyperfine splitting (in the j basis, we would expect ∀j bij = 0). This can be violated in

heavy atoms, for which filled electron shells can contribute to the hyperfine effect.

A.1.3 Zeeman term

The Zeeman term in the ls basis is:[51]

HZ = µB
~B· ~L + 2µB

~B· ~S (A.16)

The canonical application of the Wigner-Eckart theorem is that of writing the

Zeeman term in the j basis. The result is:

HZ;j = gjµB
~B·~J (A.17)

gj = 1 +
j(j + 1)− l(l + 1) + s(s + 1)

2j(j + 1)
; (A.18)

For heavy atoms the actual gj may depart from (A.18). The theoretical equation (A.16)

will always be applicable for atoms in which we must use the ls basis, because such atoms

are always light.

A.1.4 Determining coefficients of the j and ls basis Hamiltonians

In the j basis, the complete Hamiltonian is:

Hj = Enl + fj + aj
~I·~J + bj

3(~I·~J)2 + 3
2
~I·~J− I2J2

2i(2i− 1)j(2j − 1)
+ gjµB

~B·~J (A.19)
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For most atoms, all the coefficients Enl, fj , aj , bj and gj will be published in the literature,

typically as experimental measurements. For some of the more esoteric transitions, however,

Enl (as an isotope shift), aj or bj may be unavailable in one or both of the ground or excited

states. In this case, one may calculate the coefficients by measuring the zero-field spectrum

of the transition. Frequency can be measured using either a known splitting (typically

ground state hyperfine structure) or a Fabry-Perot cavity. We index the manifold of ground

states by m and that of the excited states by n. Choosing test values for the unknown

coefficients gives model energies for the energies of these states, Em and En respectively.

The coefficients can then be fit, by minimizing

χ2 =
∑
mn

[hνmn − (En −Em) + a]2

where the sum is on all measured transitions between states m and n, and νmn is the

measured frequency of the transition. a is an unknown energy offset, constant across all m

and n.

It is tempting to construct the ls basis Hamiltonian by performing a basis transfor-

mation on the j basis Hamiltonian. Doing so is impossible, however. In projecting various

interactions onto the ~J operator, we found only the elements of the j basis Hamiltonian

that were diagonal in j — that is, those elements which do not couple states of different

j. Because ~J does not commute with HHFS, and may, for some atoms, not even commute

perfectly with HFS, these off-diagonal terms are non-zero — and unknown. Assuming these

off-diagonal terms are so small as to be ignored will cause quantum numbers (usually f , and

the various m numbers) to be misassigned, causing the wrong number of predicted peaks

at the wrong frequencies. Hence it is necessary to construct the ls basis Hamiltonian from

the theory developed in this section.



Appendix A: Spectrum fitting 115

The complete ls basis Hamiltonian is:

Hls = Enl + HFS + al
~I· ~L + as

~I· ~S + bl
3(~I· ~L)2 + 3

2
~I· ~L− I2L2

2i(2i− 1)l(2l − 1)
+ µB

~B· ~L + 2µB
~B· ~S

(A.20)

For atoms in which HFS = f~L· ~S, the structure of Hls is known except for four scalar

coefficients, f , al, as, and bl. For atoms with more complicated HFS , the situation is

the same, except that slightly more coefficients are unknown. Because the eigenenergies

of Hls must be identical to the eigenenergies of {Hj} at zero field, we can determine the

unknown coefficients by varying them until both Hamiltonians yield the same eigenenergies.

This is done using a least squares fit, minimizing the least squares difference between the

eigenenergies of Hls and of {Hj=|l−s|, . . . ,Hl+s} at zero field.

A.2 Transition probabilities

Of all the possible pairs of ground and excited states, only a few will be coupled

optically. Furthermore, the rate at which atoms will make transitions between two states

will depend on many factors: the differences of energies of the states, the quantum numbers

of both states, and the polarization of the incoming light.

It will be useful to consider the “optical cross-section” for a transition. Given an

incoming light beam of polarization vector ε̂ and frequency ω, the cross-section σk′k(ε̂, ω)

describes the probability per unit time pk′k that an atom makes a transition between a

ground state k and an excited state k′: [51, p. 451]

pk′k(ε̂, ω) = σk′k(ε̂, ω, ~B)
dṄγ

dA
(ε̂, ω) (A.21)

where dṄγ/dA = I0/hν is the incident photon flux. The cross-section is independent of

both light intensity and atom density. However, the cross-section can depend on external

parameters such as magnetic field. This is because the quantum numbers of a state may
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vary with external field (the energy difference between ground and excited states remains

effectively constant versus field, for optical transitions). The relative intensity I/I0 (a.k.a.

the “transmission”) of a light beam of polarization ε̂ passing through a sample of atoms

of density nk (for each ground state k) and of length L can be found by integrating the

scattering rate in (A.21): [57, p. 150]

ln
[

I

I0
(ε̂, ω, ~ρ)

]
= −

∑

k′k

∫

z
nk(~r)σk′k(ε̂, ω, ~B(~r))dz (A.22)

≡ −OD(ε̂, ω, ~ρ) (A.23)

Here the z axis of a cylindrical coordinate system has been chosen to lie along the axis of

laser propagation; ~ρ describes positions transverse to the laser axis. The quantity in (A.23)

is defined as a matter of convenience; it is called the “optical density”.

The polarization of the light field, ε̂, can be thought of as a vector with lε = 1 and

mε ≡ q ∈ {−1, 0, 1}. Note that the quantization axis is always chosen along the direction of

the local magnetic field. Because the direction of the magnetic field varies with position in

the trap, the fraction of the light field with polarization ε̂q will also vary with position. To

take this quantization of the light polarization into account, we slightly alter the definition

of optical density as follows:

I

I0
(ω, ~ρ) =

∑
q

exp(−ODq(ω, ~ρ))

=
∑

q

exp

(
−

∫

z

∑

kk′
Cq(~r)nk(~r)σk′kq(ω, ~B(~r))dz

)
(A.24)

We will now take this equation as the defining equation of optical density. Now the intensity
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I of the transmitted beam is integrated over all polarizations ε̂q. Cq(~r) is the local fraction

of the light field having polarization ε̂q at location ~r; it is called the “polarization factor”.

A.2.1 Optical cross-section

In order to determine nk(z, ~r) from measured transmission, which in turn yields

information about atom number, temperature, and state distribution, we must calculate

σk′kq(ω, ~B(~r)). Such a calculation is made by applying time-dependent perturbation theory

to a two-state Hamiltonian; the states interact by the dipole interaction of the electron and

the electric field of the incident light. The details of the calculation can be found in [104,

pp. 530-3].

First we will consider the cross-section between states of definite l, ml, s, ms

states. The cross-section can be separated into a radial expectation value and an angular

expectation value. The cross-section is:

σl′m′
ls
′m′

slmlsmsq(ω,~r) =
3λ2

2π

Γ2/4
(ω − ω0)2 + Γ2/4

|Al′m′
ls
′m′

slmlsmsq|2 (A.25)

ω0 represents the resonant frequency of the transition. The resonant frequency of a tran-

sition between two states is proportional to the energy splitting between the states:

ω0k′k( ~B(~r)) =
Ek′( ~B(~r))−Ek( ~B(~r))

~
(A.26)

Al′m′
ls
′m′

slmlsmsq refers to the angular part of the optical cross-section. The angular term

describes the coupling of the light polarization with the angular momentum of the electron.

It is the normalized probability amplitude for adding the ground state electronic angular

momentum ~L with the light angular momentum ε̂q to yield the excited state electronic
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angular momentum ~L′. The angular term is: [25, §4.5]

Al′m′
ls
′m′

slmlsmsq = 〈l′m′
ls
′m′

s|ε̂q· r̂|lmlsms〉

= (−1)l′−m′
l

√
max(l, l′)




l′ 1 l

−m′
l q ml


 δl′,l±1δs′sδm′

sms

(A.27)

The expression in parentheses is a Wigner 3-j symbol (described in [105, §5.1]). It describes

the z projection of the addition of ~L with the light angular momentum. Its presence enforces

the selection rule δm′
lml+q.

In general a ground or excited eigenstate will not have definite values of ml or ms;

instead the eigenstate will be a linear combination of states with definite quantum numbers.

Such a state |k〉 will depend on the external field. We write for the ground state |k〉 and

excited state |k′〉:

∣∣∣k( ~B)
〉

=
∑

mlms

amlms( ~B) |lmlsms〉 (A.28)

∣∣∣k′( ~B)
〉

=
∑

m′
lm
′
s

bm′
lm
′
s
( ~B)

∣∣l′m′
ls
′m′

s

〉
(A.29)

The values of amlms( ~B) and bm′
lm
′
s
( ~B) are obtained by diagonalizing the ls basis Hamil-

tonian at field ~B. Armed with (A.28) and (A.29), we can now write the angular part of
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σkk′(ε̂q, ω, ~B):

Ak′kq( ~B) = 〈k′( ~B)|ε̂q· r̂|k( ~B)〉

=
∑

m′
lm
′
s

mlms

amlms( ~B)b∗m′
lm
′
s
( ~B)〈m′

lm
′
s|ε̂q· r̂|mlms〉

=
∑

mlms

(−1)l′−ml−qamlms( ~B)b∗ml+q;ms
( ~B)

×
√

max(l, l′)




l′ 1 l

−ml − q q ml


 δl′,l±1δs′s (A.30)

Thus we have successfully calculated the optical cross-section when the eigenstates of H

are known in terms of an expansion of ls states.

For many, if not most atoms, we diagonalize a j basis Hamiltonian. In this case the

eigenstates of H are known in terms of an expansion of j states. In this case the angular

term must also take into account the relationship between ~L, ~S, and ~J. This calculation is

performed in [25, §4.5.4]. The result is quoted here:

Ak′kq( ~B) =
∑

j′m′
j

jmj

ajmj ( ~B)b∗j′m′
j
( ~B)〈j′m′

j |ε̂q· r̂|jmj〉

=
∑

j′jmj

(−1)l′+s−mj−qajmj ( ~B)b∗j′;mj+q( ~B)
√

(2j + 1)(2j′ + 1)

×





s′ l′ j′

1 j l








j′ 1 j

−mj − q q mj


 δl′,l±1δs′s (A.31)
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The term in brackets is a Wigner 6-j symbol (described in [105, §5.1]). The 3-j symbol

enforces the selection rules j′ ∈ {j, j ± 1} and m′
j = mj + q.

A.2.2 The polarization factor

The polarization factor is described in [57, pp. 151-154], but no expression for it

is given. In this section we will derive the local polarization factor Cq for linearly polarized

light fields.

First we’ll set a Cartesian coordinate system based on the trap and on the polar-

ization of the probe laser. Choose x̂ to be parallel to the laser polarization, ẑ to be along

the trap axis, and ŷ to be orthogonal to x̂ and ŷ. The origin is the trap center. At any

point (x, y, z) in the trap,

ε̂ = x̂. (A.32)

We wish to project the laser polarization onto the local ~J. In the Cartesian coor-

dinate system just defined, the local magnetic field is:

B̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ (A.33)

where

θ ≡ arccos
Bz

B
(A.34)

φ ≡ arctan
By

Bx
. (A.35)

Define C0, C1 and C−1 to be the projections of ε̂ onto Y10, Y11 and Y1−1, respectively.

Symmetry or the Wigner-Eckart theorem can alternately be exploited to show

C0 =
∣∣∣
〈
ε̂· Ĵ

〉∣∣∣
2

=
∣∣∣
〈
ε̂· B̂

〉∣∣∣
2

(A.36)
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Using this and
∑1

q=−1 Cq = 1:

C0 = sin2 θ cos2 φ

C±1 =
1− sin2 θ cos2 φ

2
.

(A.37)

A.3 Integrating optical density

We would like to use light fields to measure properties of our trapped atoms.

Typically we are interested in the number profile and temperature of the trapped atom

distribution; we may also be concerned with the state distribution of the atom sample. All

these parameters affect only the term nk(~r) in equation (A.24).

Atoms will ergotically explore the spatial dimensions of the trap. If atom density

is sufficiently large, collisions will maintain the atoms in translational thermal equilibrium.

Thermal equilibrium will not be maintained between the quantum states of each atom,

however. Because we are trapping on low-field seeking states, this is in fact a requirement

for trapping; since high-field seeking states are of lower energy than low-field seeking states,

thermalization of the quantum states will cause trap loss.

The density term nk(~r) should be represented in a manner that reflects these

thermal properties. The translational distribution will follow a Maxwell-Boltzmann distri-

bution, while the state distribution will be strongly biased to trapped states. We’ll let Rk

represent the ratio of atom density in a ground state k at ~r = 0, to the total atom density.

Then the atom density is:

nk(~r) = Rkn0e
−(Ek(~r)−Ek(0))/kBT (A.38)

Here n0 is the atom density (integrated over all states) at ~r = 0. Ek(~r) is the eigenenergy of

state k at position ~r, and T is the atom translational temperature. The total atom number
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is just the integrated density over all states and positions:

N =
∫ ∑

k

nk(~r)d3~r (A.39)

We would like to use (A.24) to connect the measured transmission of a light beam

through the trapped sample with the physical parameters of nk(~r). How exactly this is done

will depend on the experimental method used to measure transmission. Transmission can

either be measured via absorption spectroscopy, or via laser induced fluorescence (which

directly measures some geometry-dependent fraction of absorbed light). In this section we

will consider specifically absorption spectroscopy, where the transmission of a narrow-line

laser beam is measured using a spatially-insensitive detection device, typically a photomul-

tiplier tube. The linewidth of the laser is narrow compared to the natural lifetime Γ of the

transition. Because of this we may consider the laser to have a specific frequency ω. A beam

splitter is used to divert part of the laser before it passes through the atom sample — this is

used to measure the incident intensity I0. After passing through the atom cloud the beam

has intensity I. We divide the signal on the detector located after the atom sample (the

”signal” detector) by the signal on the detector before the atom sample (the ”reference”

detector). This division is normalized to unity when no atoms are present; the normalized

divided signal is then:

D =
∫

I(ω, ~ρ)d~ρ∫
I0(ω, ~ρ)d~ρ

(A.40)

It will be useful to make some approximations. The first, and perhaps most egre-

gious, is that the profile of the laser beam is a circular flat-top distribution, of diameter w.

By this approximation, the reference signal is:

∫
I0(ω, ~ρ)d~ρ = I0

πw2

4
(A.41)

The second approximation is that the laser is linearly polarized. To some degree

this can be ensured by running the beam through a polarizer before sending it to the
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atom sample. However, if the beam passes through any birefringent elements between the

polarizer and the detector, this polarization will be transformed to an elliptical polarization.

In our experiment, the beam passed through three glass windows, and a sapphire window,

twice, so the incoming beam certainly has elliptical polarization to some degree. If the beam

is retroreflected through the atom sample, this polarization is inverted, and any effects of

birefringence will be canceled out (assuming the laser is not significantly attenuated by

either the atom sample or the retroreflecting mirror). This is done in our experiment,

so the linear polarization approximation is valid. Because the beam is retroreflected, the

integral in the exponential of (A.24) is performed twice, so the OD is doubled.

We will also assume that the optical depth for any one laser polarization q is small.

This allows us to carry integrals through the exponential in (A.24). Note that, when the

trap is on, we typically measure optical depths of 0.3 or less. An effect of this assumption is

that atomic absorption does not change the polarization of the laser. Note that in solenoid

or Helmholtz fields, the optical depth in one polarization can be quite large. In this case the

atoms change the polarization of the laser; for instance a linearly polarized beam travelling

through a sample of atoms in a field axial to the laser will become circularly polarized (in

the non-adsorbing polarization) if the optical depth is large enough. As a consequence, the

maximum absorption that can be measured in such a situation is 50%.

Putting all these approximations together, we can equate the measured divide

with an integration over optical density. It will be useful to define the coordinate system

of (A.24) such that the trap axis lies at ~ρ = 0. For magnetic fields arising from axially

aligned current loops, | ~B| does not depend on φ in this coordinate system. In this case

nk(~ρ) = nk(ρ, z), and σk′kq(ω,~r) = σk′kq(ω, ρ, z). The only remaining component of OD

that depends on the angle, φ, is the quantity Cq(~r).
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The divide is:

D(ω) =
4

I0πw2

∫
I(ω, ρ, φ)ρdρdφ

=
∑

q

∫
e−ODq(ω,~ρ)ρdρdφ

(A.42)

Since ODq ¿ 1, we can bring the integral in φ through the exponential:

D(ω) = 2π
∑

q

∫
exp

(
−

∫
ODdφ/2π

)
ρdρ

= 2π
∑

q

∫
exp

(
− 1

π

∫ ∫
Cq(z, ρ, φ)dφ

∑

k′k

nk(ρ, z)σk′kq(ω, ~B(ρ, z))dz

)
ρdρ

(A.43)

This is done as a computational simplification. Because the quantity
∫

Cq(~r)dφ can be cal-

culated analytically, this simplification removes one numerical integration from the problem.

We shall define

C̄q(ρ, z) =
1
2π

∫
Cq(ρ, z, φ)dφ. (A.44)

Because the laser polarization does not change through the trap, C̄q depends only on the

initial polarization of the light, and the direction of the local magnetic field.

The optical density is now independent of φ:

ODq(ω, ρ) = 2
∫

C̄q(ρ, z)
∑

k′k

nk(ρ, z)σk′kq(ω, ~B(ρ, z))dz (A.45)

The factor of 2 arises from the retroflection of the probe laser. There are now two integrals,

one in ρ and one in z, remaining, as well as sums over states and polarizations. Unfor-

tunately, because the cross-section (due to its narrow Lorentzian shape) is such a rapidly
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Figure A.1: Resonant frequency in an elliptical trap as a function of z for one transition
in 7Li, at ρ = 0. The states are indexed by their quantum numbers at zero field. The
frequency shown is the detuning from the transition center of gravity frequency.

varying function of z, the step size for numerical integrations over z must be made very

small to obtain accurate optical densities.

In his thesis [57], Weinstein shows how this integral in z, which must be performed

with very small step sizes, may be removed from the problem. A summary of the procedure

is given here, along with how we deal with potential pitfalls associated with using the

procedure.

According to (A.26), the resonant frequency ωk′k is a function of z. An example

for a transition in 7Li is shown in Fig. A.1. If the resonant frequency function is invertible,

we can convert the integral in z in (A.45) to an integral over frequencies. In general, of
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course, ωk′k(z) is not invertible, such as in the lithium example shown. We can split the

z domain of the function such that ωk′k(z) is invertible over each subdomain of z.2 Let d

index each domain of z. For each domain d, we’ll let ω′(z) represent the resonant frequency

between states k′ and k in that domain. Note that for every pair of states k′k the set of

domains will differ.

ODq(ω, ρ) =
3λ2

π

∑

k′k

∑

d

∫
C̄q(ρ, z(ω′))nk(ρ, z(ω′))|Ak′kq(ρ, z(ω′))|2

× Γ2/4
(ω − ω′)2 + Γ2/4

dz

dω′
(ω′)dω′ (A.46)

As of yet no computational simplification has been made — we still have an integral that

requires very small step sizes for proper integration.

The simplification is made by realizing that, in the limit of small Γ, the Lorentzian

in (A.46) becomes a δ-function. If Γ is very small, then the integrand is evaluated with

ω′ = ω:

ODq(ω, ρ) =
3
2
λ2Γ

∑

k′k

∑

d

C̄q(ρ, z(ω))nk(ρ, z(ω))|Ak′kq(ρ, z(ω))|2 dz

dωk′k

∣∣∣∣
ω

(A.47)

We pick up a factor of πΓ/2 in converting the Lorentzian to a δ-function. Note that the

quantity Γ dz
dωk′k

(ω) has a very nice physical interpretation: it is the axial length, in each z

domain, containing atoms that will absorb light of frequency ω.

This is a very convenient simplification. In order to use it, we must ask what

we mean when we assume “Γ is very small”. In the neighborhood of ω, the integrand

f(ω′) can be expanded in a Taylor series: f(ω′) =
∑

p fp(ω′ − ω)p. Integrating
∫

(ω′ −

ω)p Γ/2
(ω−ω′)2+Γ2/4

dω′ shows that the Lorentzian acts as a delta function for p = 0, 1, but

2In his thesis, Weinstein takes as domains the upper and lower halves of the trap (where there is a turning
point in B). However, if ωk′k(B) has a turning point for any field in the trap, the function must be split
into additional domains.
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becomes sensitive to values of the function off the Lorentzian peak for greater p.3 Therefore

we require that f(ω′) is well approximated by a linear function in the neighborhood of ω

(for a few natural linewidths on either side of ω). For most terms in (A.46), this is a good

approximation; however, near the turning points of ω′(z), dz/dω′ rapidly becomes infinite.

To deal with these points, we break up the integral near these turning points. We break

the integral at the z points for which the resonant frequency is detuned by Γ/2 from the

frequency ωt at which a turning point occurs:

zb =





z(ωt + Γ/2) Lower turning point at ωt

z(ωt − Γ/2) Upper turning point at ωt

(A.48)

In a given domain d, the integral in z ends at the turning point, zt. The split integral is:

ODq(ω) =
3λ2

π

∑

k′k

∑

d

[∫

z /∈[zb,zt]
C̄q(z)nk(z)|Ak′kq(z)|2L(ω, z,Γ)dz

+
∫

z∈[zb,zt]
C̄q(z)nk(z)|Ak′kq(z)|2L(ω, z, Γ)dz

]
(A.49)

L(ω, z, Γ) represents the Lorentzian of ω, resonant at ω′(z). The first term is dealt with

identically to (A.46), with the exception that the δ-function integral is 0 for ω resonant

with z ∈ [zb, zt]. We take this behavior into account by defining a function ∆(ω, z,Γ) such

that:

∆(ω, z,Γ) =





1 ω′(z)− Γ/2 < ω < ω′(z) + Γ/2

0 otherwise

(A.50)

3For p = 1, the integration is performed for p = 1− ε, then evaluated in the limit ε → 0.
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The first integral of (A.49) is just (A.47) multiplied by 1−∆:

πΓ
2

C̄q(z(ω))nk(z(ω))|Ak′kq(z(ω))|2 dz

dω′k′k

∣∣∣∣
ω

(1−∆(ω, zt, Γ)) .

The second integral of (A.49) is handled by realizing that the range [zb, zt] is quite narrow. In

this narrow range, we may approximate C̄q(z) and nk(z) as constant functions. Additionally,

ω′(z) (by definition of zb) is approximately constant within this range. Approximating all

these functions as constant turns the integral into a simple length. The result is:

C̄q(zt)nk(zt)|Ak′kq(zt)|2L(ω, zt,Γ)|zt − zb|∆(ω, zt, Γ).

In order to combine the two terms, we will approximate L(ω, zt, Γ) by a box function with

the same average value: L(ω, zt, Γ) → π
4 ∆(ω, zt, Γ). After combining the terms, we have

the total optical density:

ODq(ρ, ω) =
3
2
λ2

∑

k′k

∑

d

C̄q(ρ, ω) nk(ρ, ω) |Ak′kq(ρ, ω)|2 ld(ρ, ω) (A.51)

where ld(ρ, ω) is the local length occupied by atoms resonant with frequency ω:

ld(ρ, ω) =





2|zt − zb| ω ∈ [ω′(zt)− Γ/2, ω′(zt) + Γ/2]

Γ dz
dω′

k′k

∣∣∣
ω

otherwise

(A.52)

Additionally, because the tails of the Lorentzian fall off only as 1/ω2, we require

that f(ω′) not grow too large far from ω (for all ω′ within the integration limits — note

that these do not extend to infinity). Because nk(ω′) is essentially an exponential, it could

grow very large at ω′ far from ω. At some trap η, the integral of concern is4

∫ ωmax

0
exp(−ηω′/ωmax)

πΓ/2
(ω − ω′)2 + Γ2/4

dω′

4For a q = 1 or −1 transition.
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Figure A.2: The difference between the integral of nk(ω′) times a Lorentzian and the δ-
function approximation nk(ω). The result has been normalized to the δ-function approxi-
mation value. ωmax was determined for a trap depth of 4 T; the natural linewidth used was
6 MHz. Note that the error becomes large at smaller η for larger linewidth.

The situation is worst when ω is close to ωmax. This integral was evaluated for a 4 T trap

and 6 MHz linewidth, for various values of η. The error between this integration and the δ-

function approximation is plotted versus η in fig. A.2. For these parameters, the normalized

error becomes negligible for η < 13. The absolute error is e−η times the normalized error

and is certainly negligible for all realistic η.

A.4 Code structure

In order to use a spectrum simulation with a least-squares routine efficiently, the

run time of the model function must be made as short as possible. In our spectrum sim-

ulation code, the calculation is broken into four parts. The longest running portions of

the simulation need only be run once or twice per fit, resulting in a simulation run time of

between a few milliseconds to seconds, depending on the variables being fit. The simulation

is calculated using MATLAB [106].

Runtimes of code subroutines are detailed below:
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Code subroutine Approximate runtime

Zeeman 10 s to 1 hr
Field 3 s
Optical interactions 1 s
Atomic distribution 5 ms

The Zeeman subroutine calculates the eigenenergies and quantum numbers of every

energy level versus magnetic field in the ground and excited manifolds of the atom, as well

as the transition probabilities between each state, as a function of magnetic field. This

last calculation is necessary as the mJ quantum number of each state depends on magnetic

field, especially if the atom exhibits hyperfine structure. For an atom such as cobalt, with

80 ground states and 96 excited states, this calculation can take upward of an hour over

1000 magnetic field points. Of course, this calculation is needed only once per atom.

The field subroutine determines the field at every r and z point in the probe beam,

and is repeated whenever the beam position or size changes.

The optical subroutine performs the calculation described in §A.5 of Weinstein’s

thesis[57]. Note that in [57], the axial position of atoms resonant at a frequency ω is assumed

to vary slowly with frequency. In practice this assumption is violated in the neighborhood of

avoided level crossings, or for some ∆mJ = 0 transitions, where line frequency is a constant

versus magnetic field. The solution to this problem is described in §A.2 and §A.2.2. The

output of this portion of the code is a matrix of optical transmission vs. spatial coordinates

for each atomic line and vs. frequency. This section must be recalculated whenever any

beam parameter (including polarization direction) is changed.

The atomic distribution subroutine merely multiplies the matrix returned by the

optical section by the trap distribution of atoms at a given temperature, then integrates

to determine optical depth as a function of frequency. This section of the code must be

repeated for every spectrum simulation.
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Fast cryogenic valves

One of the experimental challenges we faced in developing an apparatus for buffer gas

removal with 1 µB species was the development of a fast, large-aperture, low-force, cryogenic

valve. Due to constraints of our cryostat, and fear of damaging our dilution refrigerator,

we could not use the high-force valve employed by Michniak et al. in a previous buffer

gas experiment. In addition, because we had no direct line-of-sight between the top of our

cryostat and our valve seal, we would need to design an actuation system that could actuate

around corners. The design parameters we chose for our valve are shown in Table B.1.

The valve design occurred in two major stages. The first was the design of the

valve seal, and the second stage was the design of the actuation system. Before describing

our valve as we designed it, it is worth giving some background theory on valve seals.

B.1 Seal theory

An equation to describe the performance of seals (not restricted to only valve seals)

is given by Roth [72]. Discarding the prefactors, the conductance is:

Cseal ∝ v̄
Rs

ws
d2

s e−αF/2πRw.. (B.1)
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Valve design parameters

Parameter Constraint Description

τpump 30 ms Cell pumpout time constant.
Copen 12 L/s Open valve conductance to achieve τpump for our cell.
Cclosed < 10−4 L/s Closed valve conductance.

F < 20 lbf Valve sealing force.
Rv ≥ 0.7 in Valve aperture radius to obtain Copen (in the molecular

regime).
Lopen 1.3 in Distance traveled by opening valve.

Qactuation < 100 mJ Frictive heat released by actuation.
topen 40 ms Time taken to open valve.

materials nonmagnetic
moving parts nonmetallic Prevents eddy current heating when opening valve.

Table B.1: Cryogenic valve design parameters

Here Rs is the radius of the seal, ws is the thickness of the seal, F is the sealing force, ds is

the diameter of scratches or leak channels on the surface of the seal, and α is a property of

the sealing materials (which can depend on temperature).

Three different approaches to material selection can be taken to reduce the con-

ductance in (B.1). One tack is to use hard surfaces that can be highly polished, to minimize

ds. Materials to use would be transition metals or ceramics. Another approach is to use

soft materials, to maximize α. Here one would use polymers or poor metals such as indium.

These materials are typically difficult to polish well, and are easily scratched. One can

also combine these two approaches, composing one sealing surface of a hard material and

the other of a soft material. If the seal environment can be contaminated by particles, at

least one soft material is typically required. Use of a soft material will allow the conta-

minant to become embedded in the soft surface. Otherwise this contaminant will prevent

the valve from sealing, dramatically increasing ds. These approaches to material selection

are summarized in Fig. B.1. The “hard-soft” approach is the one most commonly found

in commercial valve designs: The valve can be used in dirty environments, is somewhat
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“Hard-hard”:  Engine cylinder valves

“Hard-soft”:  Plumbing valves

“Soft-soft”:  Pinch valves, biological valves

No deformation when closed; good 

surface flatness / polish necessary.

Sealing surfaces are flat, highly 

polished hard surfaces, e.g. metals, 

ceramics

Hard grit keeps valve from sealing.

One surface is flat, highly polished 

hard surface, other is less tolerant 

soft elastomeric surface.

Elastomer conforms to hard surface 

on short length scales.

Small grit is embedded in elasto-

mer surface.

Two elastomeric surfaces.  Twice 

as sensitive to scratches, long-

range defects.

Both elastomers conform to grit.

Good in extreme temperature, 

clean environments.

Good in normal temperature, dirty 

environments

Surfaces become damaged over 

time

Figure B.1: Varieties of valve seals.
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less susceptible to damage than the “soft-soft” design, and the hard surface can be easily

integrated into the body of the valve.

(B.1) gives two geometric regimes of low seal conductance. In the limit of large

seal area, the path traveled by gas leaking through the seal is long. In this “large area”

regime, the conductance is inversely proportional to the seal width. At very low seal width,

the pressure on the seal at a given force grows very large, and the materials composing the

seal conform to each other, eliminating leak paths. This “knife edge” limit can produce very

small leaks; however, the seal can typically only be made once, as the materials will typically

be damaged by the high sealing pressure. Note that although the transition ws from the

knife-edge to the large-area regime depends on F , larger F always leads to exponentially

smaller leak rates at any ws.

The shape of the seal can also affect the quality of the valve seal. If the two sealing

surfaces are flat planes, the two surfaces must be compressed exactly normal to each other.

If they are compressed at an angle, the closing force is concentrated at one side of the seal,

leading to a macroscopic gap in extreme cases. If one surface is spherical and the other

is conical or a rounded corner, the seal becomes insensitive to such angular misalignment.

However, the seal is now sensitive to translational misalignment of the sealing faces. In

addition, the spherical and corner/conical faces must be round to a very high degree (on

the order of ds). We have found that two very flat surfaces are much easier to achieve

than two very round surfaces, in a typical machine shop. We have devised a mechanism to

remove the problem of angular misalignment, which is described in the next section.
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B.2 Seal design

Because the charcoal sorb in our cell can shed small motes of charcoal dust, we

chose the “hard-soft” seal construction. At 100 mK, the softest materials are the fluo-

ropolymers. In tests of our seal, we found that they all performed similarly well, with

polytetrafluoroethylene (a.k.a. PTFE or Teflon) sealing marginally better than other vari-

eties.1 Because of the issues of dust and repeatable sealing, we chose a large sealing area.

Because it is far easier to produce flat surfaces in the on-site machine shops, we use a

flat-on-flat design. The outer diameter of the seal is chosen as large as possible, limited by

clearance to the cell sorb.

The lower portion of the valve seal is static and includes the valve aperature; we

call this the “valve seat”. It is made from 99.9% alumina, green machined in ring form then

fired. We polish the alumina seat using diamond polish on a lapping machine. The seat is

lapped successively using 45 micron, 6 micron, and 0.5 micron suspensions. The polishing

is limited by the grain structure of the alumina, and contains visible pitting, with pits on

the order of a hundred microns.

The upper, moving portion of the valve seal we call the “valve boot”. It is made

from a 0.35 in thick cylindrical PTFE disk. To polish the boot, we first remove a few mil

from the sealing face of the boot, using a lathe. The boot is then wet-sanded on a granite

table using 600, 1200, and 1500 grit silicon carbide paper, progressively. After each paper

is used, the face is inspected for scratches — if any are discovered the sanding process is

repeated. The boot is then mounted on a lathe and the lathe is set to rotate at ∼ 2000

rpm. The 1500 grit paper is applied to the face for a couple passes. At this point the

boot face should dully reflect overhead lights, and only fine circumferal scratches should be

1Specifically fluorinated ethylene-propylene (FEP), chlorotrifluoroethylene (Kel-F), and ethylene-
tetrafluoroethylene (ETFE).
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observable on the boot face. The face is finally polished on the lathe using Novus Heavy

Scratch Remover plastic polish applied with a Texas Feathers microfiber polishing cloth.

This polish is reapplied as needed for 5 minutes or so. The boot face should now reflect

overhead lights optically, the fine circumferal scratches should be well-smoothed.

In order to deal with shaft misalignment preventing proper valve alignment, we

include a shaft “alignment decoupler”. The valve boot is attached to a short valve shaft. A

ball is affixed to the top of this shaft. To close the valve, a piston pushes on this ball. Even

if the piston does not close normally to the valve seat face, the ball ensures that the valve

boot closes normally to the valve seat. In order to open the valve, the ball is trapped within

a lower plate attached to the piston. When the piston retracts, it pulls this plate, opening

the valve. The lower shaft runs loosely through a bushing (clearance 4 mil), ensuring that

the valve boot does not stray off the valve seat.

The piston is attached to an upper shaft. This upper shaft runs through an upper

bushing, that ensures the piston actuates normally to the valve seat face. To minimize

friction and thermal conduction, both the upper and lower shafts are made from 40%

graphite-filled Vespel polyimide (Vespel SP-22). The valve seat, boot, shafts, and alignment

decoupler are depicted in Fig. B.2.

The valve as designed has a valve closed conductance of < 10−5 L/s at 4 K,

when closed with 20 lbf of force. Assuming the material properties are unaffected by

further reductions in temperature, this conductance will decrease as
√

T with decreasing

temperature (due to reduced thermal velocity).
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Figure B.2: The lower valve apparatus, including all valve apparatus within the cell. The
cell walls are not shown.
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B.3 Actuation design

The valve actuator uses a “string-and-spring” design paradigm. A spring near the

valve seal provides the valve closing force. In our design the spring pushes against the piston

(described in the previous section) from the upper shaft bushing. We desired a nonmagnetic

spring, hence our spring is made from phosphor bronze. 316 stainless steel was not used,

as the nonmagnetic austenitic phase can evolve into the magnetic martensitic phase with

multiple spring compressions. The spring, manufactured by Southern Spring [107], has a

spring constant of 13.7 lbf/in, a valve closed force of 20 lbf and a valve open force of 39 lbf.

Given the mass of the valve shaft and boot, opening the valve in 30 ms requires an opening

force just greater than 39 lbf. The ends of the spring are ground flat so that the spring

pushes as evenly as possible on the piston.

The “string” in our design is a 3/64 in 316 stainless steel wire rope with 7x7 strand

construction. This rope has a breaking strength of 270 lbf. The rope is attached to the

upper valve shaft using an oval compression clip. The rope resides within a tube; this tube

doubles as the pumping line for the cell pumping chamber. Because there is no line-of-sight

between the pumping chamber and the top of the cryostat, this tube contains numerous

bends. Originally the wire rope merely ran through a bent stainless steel tube. However,

high friction between the rope and these bends caused the rope to stick in the tube, caused

damage to the tube, and would have caused excessive heating in the valve actuation.

We therefore replaced the bends in the pull tube with pulleys. The pulleys were

constructed using Barden SR6SSTB5 cryogenic non-lubricated ball bearings [108]. The

pulley shaft and sheaves are constructed from 316 stainless steel to relatively high tolerances;

the exact requirements are described in engineering literature supplied by Barden. The

pulleys are contained within a “pulley box”. The shafts of the pulleys are press fit into the
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Figure B.3: The lower pulley box.

body of the box. Each pulley is made with two bearings and one sheave as depicted in Fig.

B.3. The pulley is held together with a retaining cap attached with a flat-head screw; this

cap is captured in a counterbore in the lid of the pulley box. This counterbore prevents

the pulley shaft from torquing out of the pulley box. The sheave has a groove, slightly

larger and as deep as the diameter of the wire rope; the wire rope runs in this groove. The

clearance between the pulley and the pulley box body is significantly less than the diameter

of the wire rope, preventing the rope from slipping off the sheave. The wire rope enters and

leaves the pulley box through VCR glands aligned with the sheave groove and brazed into

the pulley box. The wire rope is fed through the pulleys and the pulley box lid is attached

with an indium seal.

The path traced by the valve pull line is shown in Fig. B.4. After passing through

the lower pulley box, the wire rope travels up the side of the fridge to a feedthrough in the

IVC top. The pull line between the pulley box and the IVC top is not rigid; instead the
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Figure B.4: Elements of the valve apparatus. Non-essential components including the
cryostat walls, IVC walls, and cell walls have been removed. The third rigid support tube
is hidden behind the pull line.
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Figure B.5: Wire rope joining clip.

rigidity is provided by three support tubes to which the pulley box is attached. This system

allows the cell to be positioned and aligned within the IVC extension, without attention to

the length of the pull tube. The pull tube contains a hydroformed bellows to make up for

adjustments in length and small translations. In order to protect the bellows from torquing

when VCR joints are made, an indium seal with a rotating clamp is included between the

bellows and the IVC feedthrough.

Above the IVC feedthrough the wire rope runs through a heat sink box, sealed

like the pulley boxes with an indium seal. The wire rope is made of a lower and upper

rope; these are joined using a homemade reusable wire-rope clip, shown in Fig. B.5. This

wire-rope clip both allows the two ropes to be repeatably joined without damage to the

ropes, unlike a typical Crosby clip, but also provides approximately three times the pull-

out strength of a Crosby clip. The clip is attached to the interior of the heat sink box using

a flexible copper rope. The box is in turn heat sunk to the top of our aluminum IVC with

another copper rope.

After the heat sink box, the pull line travels to the top of the cryostat, makes a

90◦ bend in another pulley box, then exits the cryostat. A tee is inserted in the line for
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pumping of the cell. The rope is attached to the end of our pneumatic actuator. Vacuum

is preserved by attaching the end of this actuator to the pull tube with an edge-welded

bellows.
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Spin-rotation spin relaxation

theory

This appendix describes the theory we use to predict spin relaxation between hydrogenlike

atoms and noble gases. We consider two effects: the spin-rotation interaction and the

contact hyperfine interaction.

Atoms in magnetic traps are trapped in metastable low-field seeking mJ levels.

Any mechanism that changes the projection of ~J on the magnetic field will therefore cause

loss of the trapped atoms. For instance, if atoms move through a magnetic field zero, the

projection axis is lost. This type of trap loss is described by Weinstein in his thesis [57].

We must also consider atomic collisions that change mJ . In S state atoms, the

total electronic angular momentum is just the electronic spin. In the special case of S

state atoms we call Zeeman state changing collisions spin-relaxing collisions. Because the

electronic spin couples so weakly to the colliding atom, these spin-relaxing collisions will in

general be rare. These collisions were originally studied in the context of optical pumping

experiments of the alkali atoms [109].

143
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These spin-relaxing collisions can be between the atoms themselves, or between

the atoms and some atom of another species occupying the cell. In buffer gas experiments,

this other atom will be the buffer gas, typically 3He or 4He. If the buffer gas density is high,

atom-buffer gas relaxation will occur much more frequently than atom-atom relaxation,

and we may consider only the atom-buffer gas mechanism. Because the noble gases are

frequently used in optical pumping experiments (to increase the diffusion time of the atoms,

and more recently to use spin relaxation to polarize the noble gases themselves), a great

deal of theory has been performed to predict spin relaxation rates between alkalis and the

noble gases. Because we are interested in 1 µB S state atoms, we can lift a large portion of

the alkali-noble gas optical pumping relaxation theory to help predict the buffer gas induced

spin relaxation of our trapped atoms. The important difference with which we must deal

is the greatly different energy ranges of the experiments. Optical pumping experiments are

typically conducted near room temperature, where the motion of the noble gas atoms may

be regarded semiclassically. At the temperature of buffer gas trapping experiments, the

motion is quantum mechanical, ranging over the first few partial waves. In this writeup I

will give an overview of the existing applicable spin relaxation theory and describe how it

is adapted to treat the quantum mechanical motion of the He atom.

The dominant relaxation mechanism in alkali-buffer gas optical pumping systems

is due to coupling of the electronic spin with the rotation of the buffer gas atom about

the atom nucleus. The theory was first investigated thoroughly by Herman [96] and more

recently a very pedagogical examination of the problem was given for He buffer gas by

Walker, Happer, and Thywissen [3]. The treatment in this last paper provides a simple

formula by which even the experimentalist may determine the strength of the spin-rotation

interaction.

We are looking for an interaction that couples the electronic spin anisotropically
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to a variable in the He atom. In spin-rotation, this is accomplished in a three step process.

First, the He atom distorts the ground state wavefunction of the electron. Because of

this distortion the electron is no longer in a pure S state. If there is any ~L · ~S spin-orbit

interaction in this distorted state, the spin will precess. However, at this stage we have

not added any anisotropy; as the He atom moves away the mixing will be undone and no

net rotation of ~S will have occurred. The anisotropy emanates from the rotation of the He

atom about the atom nucleus. Because of this rotation, the axis of distortion is rotated

anisotropically in space as the He atom rotates about the atom nucleus. As ~S follows the

rotating ~L, a net rotation of ~S in space occurs. An equivalent description, and one more

useful for mathematical analysis, is that a Coriolis force is applied to the electron (in the

rotating frame), this force couples ~S to the He rotation.

C.1 The Spin-Rotation interaction

We will calculate the strength of the spin-rotation interaction by calculating the

strength of each effect in this three-step process: considering the He-induced wavefunction

distortion, then the Coriolis interaction, and finally the ~L· ~S interaction. This method is

taken directly from the paper of Walker, Thywissen, and Happer [3]. Barring the description

of how we calculate the distorted electron wavefunctions, this section is a paraphrase of that

paper.

Because the strengths of these three effects are all small, we may calculate the

spin-rotation interaction perturbatively. We choose as our reference frame that centered on

the atom nucleus, and rotating with frequency

~ωN =
~~N

MR2
. (C.1)

Here ~N is the nuclear rotation, with N2 = ~2N(N + 1), M is the reduced mass of the
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colliding system, and R is the internuclear separation. Note that we shall assume that R is

a parameter, not an operator. This is true in the adiabatic limit; that is, the spin-rotation

interaction can not affect R on a time scale short enough to “feed back” on the calculated

spin-rotation effect. In exothermic collisions (i.e., from low-field seeker to high-field seeker),

we can consider this to be true, as the exiting He atom simply does not contribute to further

spin relaxation.

C.1.1 Wavefunction distortion

Within this reference frame we shall set z to lie along the internuclear axis. In

this frame, the electron feels a potential that is the the free atomic potential, plus the

potential from the He atom, with the helium atom located at ~R = Rẑ. The electron feels

the standard screened 1/r potential from the atomic nucleus. Because the He atom is

neutral and deeply bound, the electron experiences only a weak polarization interaction

from the He atom unless it is actually within the He core. The potential from the helium

atom has the following ~r dependence:

VHe(~r, ~R) = − α∣∣~r − ~R
∣∣4 −

β∣∣~r − ~R
∣∣e
−|~r−~R|/ζ . (C.2)

Here α and β are arbitrary constants representing the strength of each term. The 1/r4

term arises from the electron polarizing the He atom, and the screened term is the core

interaction. The total potential is shown in Fig. C.1.

It has been shown [99, 110] that, for low scattering energies, the potential in (C.2)

perturbs the electron to first order as a δ-function potential, and may be replaced by

VHe(~r, ~R) = −2π~2as

m
δ3

(
~r − ~R

)
, (C.3)

where as is the s-wave scattering length and m is the electron mass. This is known as the

Fermi potential.
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Figure C.1: Potential experienced by the s state valence electron. The atom nucleus is at
(z, ρ) = (0, 0), the He atom is at (z, ρ) = (8, 0). The potential strengths are arbitrary.
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Armed with this simple potential, we can easily calculate the electron wavefunction

distortion. The unperturbed wavefunction is just the ground state atomic wavefunction.

The Fermi potential will mix in wavefunctions from other atomic states, where the electronic

wavefunction for a state with quantum numbers n, l, and m is

ψnlm = Rnl(r)Y m
l (θ, φ). (C.4)

Here Rnl(r) is the radial part of the wavefunction and Y ml
l (θ, φ) is the spherical harmonic

for state l, m. Using first order perturbation theory [51], the distorted wavefunction is

ψ1(~r, ~R) = ψ0(~r) +
∑

nlml

cnlm(~R)ψnlm(~r), (C.5)

cnlm(~R) = −〈ψ0|VHe(~R)|ψnlm〉
Enlm

. (C.6)

Taking the matrix element of the δ-function in the He potential just evaluates the wave-

function at the He position, and the cnlm reduce to

cnlm(~R) =
2π~2as

mEnlm
φ0(Rẑ)Rnl(R)Y m

l (0, 0). (C.7)

φ0(~r) is the ground state s wave-function. Because we have defined the z axis along the

internuclear axis, θ = 0. Note that Y ml
l (0, φ) is nonzero only if ml = 0. Because of this, the

He atom will only mix in electronic states with ml = 0.

We can take φ0(R) from calculated Hartree-Fock radial wavefunctions [111]. For

excited states, we can calculate Rnl(r) from Coulomb approximation wavefunctions [112].

We assume that outside some radius r0, similar to the size of the atomic core, the potential

seen by the unperturbed electron is merely a −2/r Coulomb potential. Outside of r0,

then, the wavefunction can be found by solving the radial Schrödinger equation using the

Coulomb potential and the known energy of the atomic level:

d2R

dr2
+ 2

dR

dr
−

(
l(l + 1)

r2
+ V (r)−E

)
R = 0, (C.8)
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where r is in a0 and V (r) and E are in Rydbergs. Since R is generally large compared

to the size of the atomic core, we will only need to know the wavefunction for r > r0.

The wavefunction is now determined up to a normalization constant. To determine the

normalization constant we manufacture a wavefunction for r < r0, and use it to normalize

the entire wavefunction. An ersatz potential Va is used to calculate this wavefunction for

r < r0. Let Rb be the unnormalized wavefunction for r > r0 and Ra be the unnormalized

solution for r < r0. Ra is scaled such that

Ra(r0) = Rb(r0) (C.9)

and r0 is adjusted such that

dRa

dr

∣∣∣∣
r0

=
dRb

dr

∣∣∣∣
r0

. (C.10)

The normalization constant NR satisfies:

1 =
∫ r0

0
|rNRRa|2 dr +

∫ ∞

r0

|rNRRb|2 dr, (C.11)

and NR can be easily determined by solving this equation. Note that the Y m
l are assumed

to be properly normalized already.

NR does not depend strongly on the Va used. I used a couple different box po-

tentials, as well as various screened Coulomb potentials. All gave the same normalization

constant. For the screened Coulomb potentials, I chose

Va(r) = −2Z

r
e−r/ζ (C.12)

with Z the nuclear charge, and ζ chosen such that Va was continuous with the Coulomb

potential at r0. Depending on the r0 chosen, a certain number of additional nodes are added

to the basic Coulomb wavefunction. To obtain the N used for the theory here, I chose r0

such that the total number of nodes in the wavefunction was n− l− 1. This is the number

of nodes in a hydrogen wavefunction with quantum numbers n and l.
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Figure C.2: Comparison of Coulomb approximation wavefunction normalizations for 5p Ag
(E5p = −Ry/1.8832). Shown are solutions for three different Va. The first two are box
potentials of different depths, the last is a screened Coulomb, with r0 chosen to give a
wavefunction with 3 nodes. The r0 used are, respectively, 1.938, 1.770, and 1.755 a0. Note
that while the choice of Va affects the wavefunction strongly for r < r0, it has almost no
affect on R(r > r0).
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C.1.2 Coriolis interaction

The remaining perturbative terms in the spin-rotation interaction are the spin-

orbit and Coriolis interactions. They may be dealt with in any order; mathematically it is

simpler to deal with the Coriolis interaction first. The effective potential from the Coriolis

interaction is [3]

VC = −~ ~ωN · ~L. (C.13)

Note that this Coriolis interaction will interact only with the l 6= 0 components of ψ1.

Applying perturbation theory once more yields an anisotropic component to the electron

wavefunction:

ψ2(~r, ~R) = ψ1(~r, ~R)−
∑

nl

~2cnl0(R)
MEnlR2

~N· ~L. (C.14)

C.1.3 Spin-orbit interaction

The probability of flipping the spin will be given by the energy difference between

the projections of ~S on ~N. The energy shift is given perturbatively by

〈
ψ2

∣∣ξ(~r)~L· ~S∣∣ψ2

〉
. (C.15)

Here ξ(~r) is the fine-structure interaction at location ~r. Note that 〈ψnl|ξ(~r)|ψnl〉 is just

the fine structure constant fnl. The leading order term of the energy shift connects the

waveform deformation of (C.5) with the Coriolis perturbation of (C.14). It is rather messy,

but written out the energy shift is:

∑

nln′l′

〈
~2cn′l′0(R)
MEn′l′R2

~N· ~Lψn′l′0

∣∣∣∣ξ(~r)~L· ~S
∣∣∣∣cnl0(R)ψnl0

〉
. (C.16)

In Walker’s paper [3], angular momentum vector identities are exploited to show that this

results in a ~S· ~N interaction, with n′ = n, considering only the l = l′ = 1 case. The result

can be shown for higher l by expanding all the momenta into their z, +, and − components,
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and using the fact that N is perpendicular to ẑ and ml = 0. Doing this yields an effective

Hamiltonian term of

Heff = γa(R)~S· ~N , (C.17)

with

γa(R) =
8π2~6a2

s

Mm2R2
φ2

0(R)
∑

nl

fnl

E3
nl

R2
nl(R)Y 2

l0(0, 0) . (C.18)

This formula was used to calculate γa(R) for colliding Ag-He. φ0 was taken from tabulated

Hartree-Fock wavefunction [111], and the ψnl0 were calculated using the Coulomb approxi-

mation method described above. The excited state Ag energies were taken from [37]. The

result is shown in Fig. C.3.

C.2 Semiclassical calculation

C.2.1 Spin-relaxation probability

We now must use this spin-relaxation interaction to calculate the probability of

having a spin flip. In [3] this is done for high temperatures, by treating the He atom as

a classical scatterer. R and N are taken as classical parameters. R(t) is calculated from

the radial molecular potential. N is obtained by identifying it with the classical orbital

momentum, obtained from the collision energy E and the impact parameter b:

N =

√
2MEb2

~2
. (C.19)

R(t) can be obtained from the classical central force Hamiltonian:

E =
MṘ2

2
+
~2N2

2MR2
+ Vmol(R). (C.20)
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Figure C.3: The top plot shows the spin-rotation interaction energy γa(R) for Ag-3He,
versus internuclear separation. See §C.1.3 for the sources of the wavefunctions used to
calculate γa. The lower plot shows the internuclear Ag-He interaction energy, taken from
[98]. At the allowed radii for the He atom, γR is an exponentially decreasing function of
R. This is because the ground and excited state Ag wavefunctions are both exponentially
decreasing in this range.
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Vmol is the interaction energy between the atom of interest and the He atom in the ground

electronic state of the XHe molecule (where X represents the atom of interest). The Vmol

I used for colliding Ag-He is shown in Fig. C.3.

The probability of a spin flip can be found by tracking the evolution of the elec-

tronic wavefunction. We’ll now set the reference frame such that the z-axis is along the

local magnetic field. If the probability of a spin flip is small, the electronic wavefunction

can be written

|ψ〉 = |φ0(~r)〉
(
|↑〉+ α(t) |↓〉

)
, (C.21)

where α(t) represents the probability amplitude to have undergone a spin flip by time t,

and |↑〉 and |↓〉 are the (low-field seeking) spin up and (high-field seeking) spin down states,

respectively. α is assumed to be small for all time. The probability of a spin flip is found

by solving the time dependent Schrödinger equation,

i~
d

dt
|ψ〉 = H0 |ψ〉+

1
2
γ(R) (2SzNz + S+N− + S−N+) |ψ〉 . (C.22)

The time derivative of |φ0〉 |↑〉 cancels with H0 |φ0〉 |↑〉, and likewise for the time derivative

of |φ0〉 |↓〉. The only remaining component is the time derivative of α:

i~ |φ0〉
(

dα(t)
dt

|↓〉
)

=
1
2
γ(R) |φ0〉

[
(Nz + α(t)N−) |↑〉+ (−α(t)Nz + N+) |↓〉

]
(C.23)

Because α(t) is small, we will ignore all terms on the right side where it appears. By collaps-

ing the equation with 〈φ0| 〈↓|, we obtain an integral equation for the spin flip probability

amplitude:

α(∞) = − i〈N+〉
2~

∫ ∞

−∞
γ(R(t))dt (C.24)

Note that because ~N is an external parameter, 〈N+〉 has a nonzero expectation value for

certain collisions. We may convert the time integral in (C.24) to a more manageable integral

in R. To do this we change variables within the integral from t to R; Ṙ is obtained from
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(C.20). The resulting integral over R is:

α(∞) = − i〈N+〉
~

√
M

2E

∫ ∞

R0

γ(R)√
1− b2/R2 − Vmol(R)/E

dR. (C.25)

Here R0 is the minimum radial separation between the atomic and He nuclei. It can

be calculated by solving (C.20) with Ṙ = 0. Note that if E is less than the height of

the centrifugal barrier, the He atom will never penetrate classically within the centrifugal

barrier. We therefore expect this semiclassical method to underestimate the amount of spin

relaxation, with the degree of error increasing in the cold regime.

C.2.2 Relaxation cross-section

To find the cross-section, we merely find the spin flip probability (the square norm

of the probability amplitude), and integrate over all possible values of N . This is equivalent

to integrating over all possible impact parameters b. Note that the phase space density of

impact parameters goes as 2πb. |〈N+〉|2 is taken from [3]. The result for the cross-section

is given in [3]:

σRc(E) =
8πM2

3~4

∫ ∞

0
b3

∣∣∣∣∣
∫ ∞

R0

γ(R)√
1− b2/R2 − Vmol(R)/E

dR

∣∣∣∣∣
2

db . (C.26)

C.3 Quantum mechanical treatment

At low temperatures we expect the semiclassical treatment above to fail. This

is because the behavior of the He atom within the centrifugal barrier becomes important.

Fortunately we can use most of the results up to §C.2.1 to perform the fully quantum

mechanical calculation. There are two salient differences in this calculation. First, we shall

no longer take ~N from a classical parameter, but treat it as a quantum operator. Second,
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the motion of the He atom will no longer be determined from the classical Hamiltonian in

(C.20), but will be obtained by solving a Schrödinger equation.

By treating the He atom quantum mechanically, we can also determine the elastic

scattering cross-section from Vmol(~R). This will allow us to predict the ratio of transport

to inelastic scattering cross-sections.

To calculate either the elastic or relaxation cross-sections, we must calculate the

wavefunctions of the He atom in the scattering potential Vmol. Let |Ψ〉 represent the wave-

function of the He atom. Like the electronic wavefunction, it is separable into a radial and

an angular component:

Ψ(R, θ, φ) = RN (E; R)Y mN
N (θ, φ). (C.27)

The angular components Y mN
N are again the standard spherical harmonics. The radial

part RN (E; R) is obtained by integrating the radial Schrödinger equation, (C.8), with

Vmol(R) as the potential. For positive energies, there is a continuum of solutions to the

radial Schrödinger equation. We can therefore find RN (E; R) at any energy by solving the

Schrödinger equation numerically. To perform this numerical solution, we start at some

Ri deep within the energetically forbidden region (where Vmol(R) À E). We choose the

following initial values for the radial wavefunction: the wavefunction is set to 0 at Ri and

its first derivative is set to unity. We then use an adaptive Runge-Kutta routine to solve R

out to large R. The normalization is somewhat arbitrary, as the wavefunction oscillates out

to infinity. Fortunately, we will not need the normalized wavefunction in order to calculate

scattering cross-sections, as these cross-sections are always calculated from wavefunction

ratios. An example of this calculation, for 1 K Ag-He with N = 2, is depicted in Fig. C.4.
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Figure C.4: An example calculation of the 3He wavefunction in the Ag-He potential [98].
Here we have chosen E = 1 K and N = 3. The real component of the wavefunction is
plotted versus He radius. The Ag nucleus position is fixed at the origin.

C.3.1 Relaxation cross-section

To find the probability of a spin-flip in this fully quantum mechanical treatment,

we will again follow the evolution of the wavefunction, as we did in §C.2.1. However, we

may no longer take the trajectory of the He atom from classical mechanics. In taking R

as a parameter, we shall let the amount of time the He atom spends in a range R1 to R2

be proportional to the integrated probability for the He atom to be located in that same

range. At R far away from the scattering center, this time must match the classical time

the atom spends in this range, which is given by the atom velocity v =
√

2E/M .

At large R the classical time T spent in a range R1 to R2 is

Tclassical(R1, R2) =
|R1 −R2|√

2E/M
. (C.28)

In the quantum calculation, T is proportional to the integrated probability to find the He
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atom in this range:

T (R1, R2) = ξ

∫ R2

R1

|RN (E;R)|2R2 dR. (C.29)

Here ξ is an unknown constant of proportionality. We can find T at large R simply by

writing down the He wavefunction far from the scattering center [51]:

R(R) ∼ AN
eikR

R
+ BN

e−ikR

R
. (C.30)

Note that |AN |2 + |BN |2 is the wavefunction normalization. ~k =
√

2EM is the He momen-

tum. At large R, the classical expression for T in (C.28) should agree with the quantum

calculation of T in (C.29). We can use this to solve for ξ:

|R1 −R2|√
2E/M

= ξ

∫ R2

R1

∣∣∣∣AN
eikR

R
+ BN

e−ikR

R

∣∣∣∣
2

R2 dR. (C.31)

If the range R1 to R2 covers many wavefunction oscillations, the oscillating components of

the integrand may be ignored, and we have

ξ =

√
M

2E

1
|AN |2 + |BN |2 . (C.32)

We now have a quantum mechanical expression for T , valid at all R. We use

this expression for T to change variables from t to R in (C.24). When we do this, we

must include dT/dR in our integral equation for the spin-flip probability. After changing

variables we have:

α(∞) = − i〈N+〉
~

√
M

2E

∫ ∞

0
γ(R)

|RN (E; R)|2
|AN |2 + |BN |2 R2dR. (C.33)

Note that the normalization of R cancels in the equation for α. Also, this equation reduces

to (C.24) when the integral is performed only over large R.

To obtain the relaxation cross-section, we sum the spin flip probability over all N .

In expanding the incoming He plane wave in spherical harmonics, we obtain a prefactor of
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(2N + 1)2PN (cos θ)/k for each N , where PN is the Nth Legendre polynomial [51, p. 234].

After integrating over all outgoing He angles, we have

σR(E) =
2π

3E2

∞∑

N=0

N(N + 1)(2N + 1)
∣∣∣∣
∫ ∞

0
γ(R)

|RN (E; R)|2
|AN |2 + |BN |2 R2dR

∣∣∣∣
2

. (C.34)

Note that this expression agrees with (C.26) up to a factor of 2, if we perform the integrals

only over large R, and we take the classical approximations ~N → mvb and 1/k → db (cf.

[51, p. 235]).

C.3.2 Transport cross-section

Once we have the He wavefunction, we may also readily calculate the elastic scat-

tering cross-section. This is covered in almost any quantum mechanics text, so I will only

describe the procedure briefly here. The cross-section is determined by comparing the He

wavefunction to the asymptotic form of the wavefunction at large R, where Vmol → 0. We

can rearrange the asymptotic form (C.30), and write

R ∼ AN
sin(kR−Nπ/2)

R
+ BN

cos(kR−Nπ/2)
R

. (C.35)

In the absence of any scattering, AN is finite and BN = 0. The scattering induces a phase

shift of the free space sine wave, such that BN 6= 0. This phase shift δN determines the

degree of elastic scattering. The phase shift is [51]:

tan δN = −BN/AN . (C.36)

In the limit of no scattering, δN will be an integer multiple of π. δN is extracted from the

wavefunction by simply comparing the value of the wavefunction at a node of the sin wave

with the value at a node of the cosine wave:

tan δN = − R
(
π(n + N/2)/k

)

R
(
π(n + 1/2 + N/2)/k

) (C.37)
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Here n is some large integer, such that πn/k is far from the scattering well. Note that the

normalization of R drops out in the ratio.

The transport cross-section σD is calculated from the phase shift δN [51, 70, 113]:

σD(E) =
2π~2

ME

∑

N

(2N + 1) sin2 (δN+1(E)− δN (E)) . (C.38)

The transport cross-section discounts small angle scattering, and is the appropriate cross-

section for calculation of transport phenomena; e.g. diffusion lifetimes. It can be compared

with the total elastic cross-section, which is the cross-section for scattering into any angle.

σE(E) =
2π~2

ME

∑

N

(2N + 1) sin2 δN (E). (C.39)

In the s-wave scattering limit, all scattering is isotropic, and the transport and total elastic

cross-sections are identical. In fact, if only one partial wave is involved in scattering at an

energy E (that is, δN (E) is a multiple of π for all but one N), the two cross-sections will

always be identical.

If multiple partial waves contribute to the scattering, the scattering will be biased

toward small-angle scattering, and the diffusion cross-section will grow small compared to

the total elastic cross-section. In the somewhat contrived case where nN consecutive partial

waves contribute and all δN (E) for these waves are identical, the ratio of total elastic to

diffusion cross-sections is less than nN . Note that in the energy ranges dealt with in buffer

gas cooling experiments, only at most a few partial waves will contribute, and usually the

transport cross-section will be within a factor of unity of the total elastic cross-section.

C.4 Thermally averaged cross-sections

To obtain the scattering cross-section for a thermal distribution of atoms, we

average the inelastic scattering rates, with scattering energies distributed according to the
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Maxwell-Boltzmann distribution. The thermally averaged cross-section is [66]

σ̄(T ) =
1

(kBT )2

∫
E σ(E)e−E/kBT dE . (C.40)

An important feature of (C.40) is that the thermal average preserves power laws. That is,

if σ(E) ∼ Ea, then we find σ̄(T ) ∼ T a.

We may also ask what form (C.40) takes when σ(E) is a δ-function. This is approx-

imately the case when we have a scattering resonance, as long as the width of the scattering

resonance ∆E is much smaller than the width of the thermal distribution. The δ-function

approximation gives a thermally averaged cross-section of σ̄(T ) ∼ (1/kbT )2 exp(−E0/kBT ),

where E0 is the resonance energy, with the expression holding for T À ∆E. For small

T , then, we can see exponential increases in σ̄(T ). However, for large T , we will always

see a temperature dependence weaker than T−2. This behavior is confirmed by numerical

integration of a scattering resonance. In the location of a resonance, σ(E) is represented by

the Breit-Wigner function [51]:

σ(E) ∼ 1
E

∆E2

4(E −E0)2 + ∆E2
. (C.41)

We substitute this expression into (C.40) and integrate numerically. The result is shown in

Fig. C.5, confirming the analytic analysis here.

C.5 Results

To make a prediction for the Ag-He spin-relaxation scattering cross-section, I first

calculated γa out to R = 400a0. The result of this calculation is depicted in Fig. C.3. Next,

using the AgHe potentials found in [98], I calculated ΨHe for this same range, for E/kB

between 20 mK and 2 K, and for all N up to 6. Using these scattering potentials gives a

scattering resonance for N = 5 at E/kB = 800 mK. Beyond N = 6, the low-energy elastic
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Figure C.5: Thermal average of the Breit-Wigner cross-section. The thermally averaged
cross-section σ̄(T ) is plotted vs. temperature in the red circles. The dashed green line
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vs. energy.
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scattering behavior becomes inaccurate. This is because the low-energy term is determined

by dividing two terms very close to 0 (sin2 δN/k2). As N becomes large, small errors in δN

at low energies create large errors in the scattering cross-sections.

Elastic cross-sections were calculated using (C.39) and relaxation cross-sections

were calculated from (C.34). Each cross-section was then thermally averaged, for temper-

atures between 200 mK and 700 mK. The ratio is plotted in Fig. C.6. Note that if the

scattering resonance in the N = 5 scattering channel is removed, we find a cross-section

ratio of ∼ 109, decreasing linearly with temperature.

It is worth noting that the location of scattering resonances can be very sensitive

to details of the scattering potentials. We have no reason to believe our Ag-He scattering

potential is at all precise enough to accurately predict scattering resonances. In fact, because

the potential was pulled from a rather coarse plot, significant errors are almost guaranteed.

It is perhaps more useful to note that two behaviors are possible: the 109 linearly decreasing

scattering ratio in the absence of a resonance, and a cross-section ratio behaving in a manner

only generally similar to the behavior calculated using the Takami Ag-He potentials. Note

that we expect power law behaviors stemming from a resonance to agree with our calculated

behavior. Where our prediction might fail is in predicting the magnitude of resonance

behavior and the position of the cross-section maximum.
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Y l
m Spherical harmonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
z Axial coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –
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1 µB species, 3
Recipe for trapping, 90

Ablation
Apparatus, 59
of lithium, 77
of noble metals, 97
Short lifetimes caused by, 97

Absorption
Photons, rate of, 115

Alignment decoupler, see Valve

Background gas, 17
Evaporation, 17, 19, 21–26

Loss fraction, 24
Baseline, in spectroscopy, 50
Bellows, 55, 141, 142
Breit-Wigner function, 161
Buffer gas

as background gas, 17
Filling cell with, see Waiting room
Gases, 9, 38
Removal of, 37, 77–84

Buffer gas cooling, 8
Collisions to thermalize, 8
Energy transfer in, 8, 23

Cell, 59, 65
Collisions, 10
Conductance, of valve, 131
Coriolis interaction, 151
Coulomb potential, 149
Cross-section

Ag-3He relaxation, 163
Elastic, 17, 159
Elastic-to-inelastic ratio, 94
Optical absorption, 117
Relaxation, 20, 32, 159

Resonances in, see Breit-Wigner
function

Thermal averaging, 160–161
Transport, 27, 159
Transport vs. elastic, 160

Cryogenic apparatus, 55
Heat link, 70–74
Lithium experiments

Buffer gas removal, 65–74
Evaporation, 86
Test run, 59

Noble metal experiments, 93

Density
Required for buffer gas cooling, 8
Required for thermal isolation, 37

Diffusion, 20, 26
Drift-diffusion, 19, 28–30
Free, 28

Distribution
After evaporation, 21, 22
Drift-diffusion, 29
Maxwell-Boltzmann, 15, 121

Energy levels
Calculation of, 107–115
of lithium, 53

Evaporation
Atom-atom, 19
Background gas-driven, see

Background gas
of lithium, 86

Evaporative cooling, 9

Fermi potential, 146
Fine structure, 108

Hamiltonian, 107, 152

174
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Hartree-Fock, 148
Hydrogen, 4, 45
Hyperfine structure, 110–113

of copper, 98

Lifetimes, see Loss, of trapped atoms
Lithium, 45–91

6Li, 55
Buffer gas removal, 77–84
Cotrapped with hydrogen, 45
Production of, 74–77
Spectroscopy of, see Spectroscopy

Loss, of trapped atoms, 13–17
1-body, 13
2-body, 13
Common processes, 17, 19
Effective volume, 15
Measurement of, 63, 99

Magnetic dipole interaction, 3, 14, 113
Magnetic trap, see Trap, quadrupole
Magnetic trapping, 1, 6
Majorana, 19, 85
Molecules, 2Σ, 5
Monte Carlo simulations, 24, 30–32

Noble metals, 5, 92–103
Spectroscopy of, see Spectroscopy

Optical density, 50, 116, 128
Extracting lifetimes from, 63
Simulation of, 121–129

Optical pumping, 48

Paschen-Back effect, 107, 109
Pneumatic actuator, 68, 142
Polarization factor, 117, 120
Polarization, in optical absorption,

115–122
Polishing, of valve seals, 135
Pulleys, cryogenic, 138

Relaxation
Anomalous, 103
Dipolar, 19
Measurement of, 94

of copper and silver, 99
Spin-relaxation, see Spin-relaxation
Zeeman, 19, 20, 32, 143

Resonant frequency, for optical
transitions, 117

Sorb, 65
Spectroscopy

Absorption spectroscopy, 46, 122
of lithium, 46–52, 62
of the noble metals, 93

Spectrum simulation code, 129–130
Spin-orbit interaction, 109, 151
Spin-relaxation, 143

Probability of, 152–155
Quantum mechanical cross-section,

157–159
Semiclassical cross-section, 155

Spin-rotation interaction, 102, 144–152
for Ag-3He, 153

Telescope, for ablation laser, 59
Thermal isolation, 9, 35–44

Maximum background gas density, 35
of lithium, 86–88

Transition probabilities, optical, 115–120
Trap depth, 7, 14
Trap, quadrupole, 7, 58

Bucking coil, 58

Valley of death, 19, 20, 30
Valve seals, 131–134
Valve, for buffer gas removal, 67, 131–142

Actuation, 138
Alignment decoupler, 136
Seal design, 135–136

Vapor density, 8, 9, 38

Waiting room, 68
Wavefunction

Coulomb approximation, 148
Distortion of, 146–149
Electronic, 146
Molecular, 156
Normalization of, 149, 158

Wavelength
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of lithium, 46
of the noble metals, 93

Wigner 3-j symbol, 118, 120
Wigner 6-j symbol, 120
Wigner-Eckart theorem, 111, 113
Wind, 40, 80
Wire rope clip, 141
Wire rope, for valve actuation, 138

Zeeman effect, see Magnetic dipole
interaction


