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Inelastic Scattering of Magnetically Trapped Atomic Chromium

Abstract

Cold collisions of atomc chromium in a magnetic trap are studied. A cryogenic

buffer gas is employed to load 1012 chromium atoms into a magnetic trap at an initial

temperature of ∼ 1 K. The trap depth is then lowered to cool the atoms to temper-

atures as low as 2 mK. After cooling, the steady state temperature and the number

of remaining atoms are measured and the chromium collisional properties extracted.

Elastic and inelastic scattering rates for 52Cr-52Cr are measured at temperatures rang-

ing from 2 mK to 1 K. The inelastic scattering rate coefficient shows a dramatic

variation with temperature. At 1 K it is roughly 10−13cm3s−1. However, at temper-

atures just above the ultra-cold limit, the scattering rate sharply increases to values as

high as 2× 10−9cm3s−1.
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Chapter 1
Introduction

The purpose of this thesis is to describe work done in our lab on buffer-gas

loading and evaporative cooling of magnetically confined chromium. The empha-

sis will be on new measurements we have taken that determine important collisional

properties of magnetically confined chromium. These measurements explore a pre-

viously uninvestigated energy regime and have culminated in surprising results.

This thesis is written with the hope that it will serve as a useful resource to the

student who is beginning to work in the field of magnetic trapping and evaporative

cooling. With this in mind, much of the foundational groundwork for understanding

both the experimental procedures and the theoretical models for systems of magnet-

ically trapped atoms is laid out in detail.

1.1 Importance of Magnetic Trapping

Magnetic trapping and evaporative cooling techniques [1, 2] have enabled the achieve-

ment of very low temperatures and high phase-space densities, leading to a revolution

in atomic physics. These techniques provided the enabling technologies for such im-

portant areas of research as Bose-Einstein condensation, atom interferometry, atom
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lithography and the study of ultra-cold atomic collisions [3, 4, 5, 6, 7]. The new hori-

zons brought into view by magnetic trapping and evaporative cooling have, by no

means, been fully explored.

As an example, one area of new physics awaiting investigation is the study of

dipolar gases. In these systems, the dipole-dipole interactions (either magnetic or

electric) can dominate the dynamics. It has been pointed out by several authors that

new and interesting effects can occur in dipolar gases, including “self-assembled”

complex wavefunction structure [8], robust quantum computation [9], single compo-

nent superfluidity [10] and new quantum phases of matter, including the supersolid

[11].

To date, most trapping and cooling experiments have been performed with a

relatively small number of atomic and molecular species, and with samples contain-

ing small numbers of particles. The full potential of trapping and cooling can only

be fully realized by developing techniques that extend the possibility of magnetic

trapping to as many different species as possible.

1.2 Buffer-Gas Loading

Buffer-gas loading is a technique invented and developed in our laboratory [12] as a

general method for loading virtually any paramagnetic species into a magnetic trap.

Because it relies only on elastic collisions, buffer gas loading is essentially indepen-

dent of the internal structure of the species to be trapped. This independence is
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maintained as long as the internal structure is such that elastic scattering with the

buffer gas dominates any inelastic collisional processes that may exist.

Our implementation of buffer-gas loading is discussed at length in Chapter 2.

Using buffer gas loading, we find it straightforward to magnetically trap up to 1012

atoms at densities approaching 1013 cm−3 and temperatures of ∼ 1K.

1.3 Collisions and Evaporative Cooling

Without evaporative cooling, the production of degenerate quantum gases would not

be a reality. This incredibly powerful technique is the method of choice for achieving

the enormous gains in phase space density required to obtain quantum degenerate

gases. Evaporative cooling is implemented in our experiment by ramping the depth

of the magnetic trap to increasingly smaller values thereby selectively removing the

more energetic atoms confined in the trap.

The efficiency of evaporative cooling in terms of atom loss, as well as in terms

of the lowest temperatures attainable, is a function of the elastic and inelastic scat-

tering rates between trapped atoms. Elastic collisions drive the evaporative cooling

process. Inelastic collisions drive a heating process which competes with the evap-

orative cooling to establish a steady state temperature. Additionally, in our experi-

ment, inelastic collisions provide the dominant mechanism for losing atoms from the

trap. The ratio of elastic to inelastic collision rates is the single most important para-
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meter in determining the success or failure of achieving quantum degeneracy using

evaporative cooling in a magnetic trap.

Because of this, the scattering properties are an extremely important consid-

eration when selecting an atom to study in the quantum degenerate regime. The

scattering properties of all but the simplest atoms are quite difficult to calculate from

first principals. This means that a big part of determining the viability of a given

atom for producing a quantum degenerate gas involves an experimental determina-

tion of its scattering properties.

1.4 Why Atomic Chromium

Although chromium’s scattering characteristics were unknown prior to our experi-

ments, it has many properties which make it an ideal atom not only for buffer-gas

cooling and magnetic trapping, but also for studying in the quantum degenerate

regime. The large ground state magnetic moment of chromium, 6 µB, makes for

a relatively strong interaction with a magnetic trapping field. This allows experi-

ments to be run with trapping magnets that are technically easy to construct. The

large magnetic moment of chromium also makes it a promising candidate for the

study of dipolar gases, as mentioned above.

Chromium has four naturally occurring isotopes: three Bosons, 50Cr, 52Cr,

54Cr and one Fermion, 53Cr. Each of the Bosonic isotopes has nuclear spin equal

to zero. The resulting absence of hyperfine structure greatly simplifies their spec-
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troscopy. Although the nuclear spin of the fermion isotope (I = 3/2) complicates

its observed spectrum, a simultaneous confinement of the Fermion with it’s Bosonic

siblings would make an interesting system for the observation of quantum degener-

acy.

In its ground state, chromium has a 7S3 configuration. This means all the an-

gular momentum of the chromium atom is contained in the spin of its electrons. The

spherically symmetric electron distribution in the 7S3 configuration could avoid cer-

tain inelastic processes present in the buffer-gas cooling of non s-state atoms. If

the atom were not spherically symmetric, one can imagine it would be more suscep-

tible to undergoing inelastic collisions while thermalizing with the cold atoms of a

buffer gas. Even though we are unaware of any experimental evidence supporting

this hypothesis, working with an S state atom eliminates concern over this issue.

The spectroscopy of chromium is well understood. A group of lines around

430 nm (a7S3 →7 P2,3, and, 4) can be probed to provide excellent diagnostic tools

for measuring the properties of magnetically confined chromium. This group of

transitions is virtually closed, which alleviates concerns of optical pumping to unde-

tectable ground states. Furthermore, the different Zeeman shifts of the ground and

excited states for these transition result in spectral shifts that match perfectly with

the scanning range of the laser we use for detection. A detailed description of the

spectroscopy we perform on the a7S3 →7 P4 transition is given in Chapters 2 and 7.
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Finally, chromium is a metal. We find that the laser ablation technique used

as an atom source in our experiments is particularly well suited for use with met-

als. This production technique, combined with the efficiency of buffer gas cooling,

is responsible for the extremely large number (∼ 1012) of atoms we are able to mag-

netically trap.

1.5 Thesis Overview

The research prospects associated with magnetic trapping and evaporative cooling

warrant a detailed study of the collisional processes that play such a prominant role

in determining the dynamics of evaporative cooling. The bulk of this thesis focuses

on measurements of the inelastic collision rates for magnetically trapped atoms of

the Bosonic 52Cr.

Although the apparatus used in these measurements has been detailed else-

where [13], a brief description is given in Chapter 2. However, the main focus of

Chapter 2 is to provide the reader with an in-depth understanding of the procedure

used in our experiment to produce reliable data for our measurements.

The analysis of our data is thoroughly described in Chapter 3. To the casual

reader, the most relevant portion of this chapter is perhaps the section on the founda-

tions of our analysis. This section presents the assumptions and approximations we

make in obtaining our measured values. At the writing of this thesis, theory has not

been able to account for the scattering rates we observe. In working to match the
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results of theory with experiment, it is important to understand the assumptions and

approximations we make in obtaining our values.

A good sense for the effects of these approximations is obtained by studying

the supporting data presented in Chapter 4. These data support our understanding of

the inelastic scattering rates for the 52Cr-52Cr system. We see scattering rate coef-

ficients as large as ∼ 10−9 cm3s−1. This rate is truly enormous when compared to

the typical inelastic rates for other atoms in the ultra cold limit [14, 15], ∼ 10−15 to

10−12cm3s−1. Although we see evidence that this huge inelastic rate is decreasing

at the lowest temperatures we are able to obtain (due to technical limitations in our

apparatus), the general behavior involves the rate blowing up with reducing temper-

ature.

This surprising behavior of the inelastic rate motivated us to develop a model

of the behavior of trapped gases. Although the dynamics of evaporative cooling and

atoms confined in traps has been treated quite extensively in the literature, we were

unable to find a treatment that would adequately describe the conditions observed in

our trap (i.e. low ratio of trap depth to temperature). This resulted in our developing

a model of trapped gases which is described at length in Chapter 5. This model

provides a self-consistency check on our data and increases the confidence level in

our measurements.

At the writing of this thesis, a group of theorists is making rapid progress in de-

veloping a theoretical understanding of our results. The challenges involved in this
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work are largely due to two factors. First, the inter-atomic potentials for chromium,

with its six unpaired electrons, are quite formidable to obtain from ab-initio calcula-

tions. Since these potential are needed to accurately predict the scattering behavior

of chromium, knowing them is essential in understanding our results. Secondly, the

energy regime over which we conduct our measurements is in the cross-over region

between classical and quantum scattering behavior. In the lingo of quantum scatter-

ing physics, most of our measurements are taken in the “few partial wave regime.”

This intermediate energy regime precludes the use of either the classical or the ultra-

cold approximations usually employed in describing scattering behavior. Because of

this, a full quantum calculation is necessary for understanding the system. Although

a full description of the required scattering theory is beyond the scope of this the-

sis, Chapter 6 presents a qualitative description of our shape-resonance hypothesis

for explaining the behavior of the inelastic scattering rate. The interactions respon-

sible for inelastic processes are also briefly discussed and a theoretical “laundry list”

of unanswered questions is presented.

In addition to their impact on both evaporative cooling and the understand-

ing of the classical to quantum transition in scattering theory, our measurements

may have some relevance to the field of ab-initio molecular potential calculations.

Chromium’s six unpaired electrons push the limits of these ab-initio calculations.

The special challenge this presents has generated quite some interest in calculating

the chromium-chromium interaction potentials [16, 17, 18, 19, 20, 21, 22, 23, 24].
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Unfortunately, most of this work has concentrated on the singlet potential. Very little

work has been done in calculating the interaction potential between two spin polar-

ized chromium atoms. Accurate values for these potentials are essential in scattering

rate calculations. It will be interesting to see if the ab-initio calculations for the com-

plete set of chromium interaction potentials produces scattering rates consistent with

our experimental observations.

Finally, the tantalizing downturn we observe in the measured inelastic scatter-

ing rate gave birth to the hope that perhaps we could employ laser cooling to lower

the temperature of our atoms to a regime with smaller inelastic rates. Chapter 7

presents an analysis of laser cooling in the presence of inelastic losses. This chap-

ter also describes how our implementation of laser cooling met with disappointment

due to technical problems. The cryogenic environment of our trapping cell does not

allow illumination of our atom cloud with the laser intensity required for laser cool-

ing. Introducing the cooling laser resulted a degradation of the vacuum inside our

cryogenic trapping cell thereby leading to increased atom loss.
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Chapter 2
Experimental Overview

This chapter gives a brief description of our experimental apparatus. A detailed

discussion of the apparatus has been laid out in the thesis of Jonathan Weinstein [13].

This chapter is intended to compliment that discussion. As such, some components

of our system will be described in detail whereas others will only be summarized.

Additionally, Appendix B of this thesis contains machine drawings for the various

components that make up our experiment.

This chapter also contains a detailed description, not only of the experimental

procedure we use to measure the Cr-Cr inelastic scattering rates, but also a descrip-

tion of how we process our data to obtain the signals used in our analysis.

2.1 Introduction to Experiment

Our experiment uses buffer-gas cooling to load a gas of atomic chromium into a

magnetic trap. Laser ablation is used to inject a hot plume of Cr atoms into a cryo-

genically cooled 4He buffer gas. Collisions with the buffer gas provide translational

thermalization which rapidly cools the the Cr atoms to the temperature of the buffer

gas.

This buffer-gas cooling process takes place inside a thermally conductive cell,

held at cryogenic temperatures by a dilution refrigerator. The buffer gas density in
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the cell is controlled by varying the temperature of the cell walls. An anti-Helmoltz

magnetic trap surrounds the cell. As the cell walls are cooled to remove the non-

magnetic buffer gas, the field of the trapping magnet confines the Cr atoms and pre-

vents them from reaching the cell walls where they would stick and be lost.

This results in a cloud of magnetically trapped chromium atoms at temperatures

on the order of 1K. The cloud can then be cooled by simply ramping down the depth

of the magnetic trap.

Throughout this process, the behavior of the trapped cloud is monitored using

optical absorption spectroscopy.

2.2 Cryogenic Apparatus

Trapping takes place inside a cryogenic cell surrounded by an anti-Helmholtz mag-

net, see Figure 2.1. The magnet is a superconducting spherical quadrupole with depth

that can be varied from 0 to 3 T. The cryogenic cell is constructed of two concentric

plastic tubes with superfluid liquid helium filling the space between to form a ther-

mally conductive jacket. This superfluid jacket is thermally anchored to the mixing

chamber of a dilution refrigerator. Buffer-gas cooling is implemented by filling the

inner volume of the cell with a fixed quantity of 4He vapor. The quantity of vapor

is chosen such that varying the cell temperature from ∼ 1 K to ∼ 140 mK causes

the 4He density to vary from a maximum of roughly 1017 cm−3 down to the theoret-

ically estimiated very low densities (<1 cm−3), indicated from extrapolations of the
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Figure 2.1: Cut-away view of cryogenic trapping apparratus. Atomic Cr is produced
by laser ablating a solid sample affixed to the ceiling of the cell. Varying the temper-
ature of the double-walled plastic cell controls the density of 4He used for buffer gas
loading. Confinement is provided by flowing current through two superconducting
coils arranged in the anti-helmholtz configuration.
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vapor pressure curve [25] of liquid 4He. Our atomic source is a small lump of nat-

ural metallic chromium attached to the inside of the top lid of the cell. The reader

is referred to the thesis of Jonathan Weinstein [13] for a complete description of our

cryogenic apparatus.

2.3 Optical Detection Setup

Figure 2.2 shows a typical configuration for our detection setup. A Coherent 899

titanium sapphire laser is pumped by a Coherent Verdi solid state pump laser to pro-

duce about 1 watt of 850 nm laser light. The frequency of the laser is monitored

with a wavemeter. A commercial doubling cavity doubles the output of the Ti:Saph

to the required 425 nm wavelength for detecting chromium. The detection beam

passes through an intensity stabilizer, affectionately known as the “noise eater,” be-

fore passing through a 50 µm diameter pin hole to clean up the beam profile. After

passing through a variable attenuator, the beam is sent to a small optical breadboard

mounted on the bottom of our dewar. A beam splitter sends a portion of the beam to

a reference photomultiplier tube which is used to monitor the intensity fluctuations

of the detection light. The remaining portion of the beam is sent into the cryostat,

passed through the cloud of trapped atoms and reflected back out to the signal photo-

multiplier. Each photomultiplier is mounted behind an iris and spectral filter to limit

the amount of background light reaching the photocathodes.
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Figure 2.2: The laser ablation beam is generatated by a pulsed doubled YAG. It is
focused and steered onto the solid lump of chromium in the cryo-cell. The pump
and probe beams are both produced by doubling the output of a Ti:Saph laser. A
shutter is used to pass the pump beam only during the times it is needed. The
probe beam goes through a series of conditioning optics before passing through the
trapped atoms. The shutters in front of the PMTs are used to protect them against the
bright pump beam. The band-pass filters in front of the PMTs discriminate against
non-resonant light.
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A second beam, the pump beam, bypasses the conditioning optics and is used to

illuminate the atoms with intense laser light in the hopes of observing laser cooling.

This beam is passed through a variable attenuator to control its intensity. A shutter

is used to turn the pump beam on and off. When the pump beam is introduced into

the cryostat, its high intensity would damage the photomultiplier tubes. To prevent

this, shutters are introduced in front of the photomultipliers.

The current produced by the photomultiplier tubes (PMTs) is passed through

transimpedance amplifiers (HP SR570 current preamps from Hewlett Packard) to

produce the voltages read by our data acquisition system. We employ the built-in

low pass filters on the amplifiers to reduce the noise on our signals.

2.4 Data Acquisition System

We use Lab Windows CVI for the Solaris 2.5 operating system to provide a user

interface for sending GPIB commands to control a CAMAC crate equipped with a

model 3988 crate controller from KineticSystems [26] . The CAMAC crate contains

cards for controlling our experiment.

Timing signals for the experiment are provided using the model 221 timing

simulator card from Jorway [27]. This card is capable of providing 12 channels of

TTL output with microsecond resolution. Three channels of this card are dedicated

to sending control pulses to our YAG laser and sending the trigger pulse to the tran-



16

sient recorder. The remaining channels are designated as flexible timing channels

that can be used for meeting any additional timing needs.

The transient recorder is a six channel, twelve bit analog to digital converter.

It is model TR612 manufactured by Joerger [28]. On receiving a trigger pulse, the

transient recorder fills each channel with up to 128K samples taken at rates ranging

from 20 Hz to 1 MHz. We use the transient recorder to monitor voltages coming

from the signal PMT, the reference PMT, the cryogenic cell thermometer, the control

voltage for the probe laser, and the current flowing through the trapping magnet.

A 16 channel, 12-bit digital to analog converter (model DAC-16 from Joerger

[28]) provides the capability of sending specific analog voltages to various pieces

of equipment. We use these analog outputs to control the frequency of our probe

laser (when not in “sweeping” mode) and to provide low resolution timing signals

for other equipment such as our shutters.

Switching is provided by an electronically controlled mechanical relay card

(model 3075 from KineticSystems [26]). This card provides 16 independently con-

trollable switches. We use these switches to control the currents used to heat our

cryogenic cell in preparation for buffer gas cooling.

2.5 Experimental Procedure

Figure 2.3 nicely illustrates the timing sequence used in a typical run of the exper-

iment for measuring the inelastic scattering rate at a trap depth of 0.9 K (5 amp
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magnet current). In order to clearly show the timing of the experiment, the dura-

tion of the data run shown in Figure 2.3 is deliberately shorter than what we would

typically use for an actual inelastic rate measurement. This figure will be used in

providing a detailed description of a typical run of the experiment.

Figure 2.3.a shows the voltage pulses sent to the cell top heater. The resultant

heating (Figure 2.3.b) boils off the liquid 4He film that covers the inner surface of

the cell. This fills the cell volume with 4He buffer gas.

At the end of the first heating pulse, two things happen. The ablation laser is

fired (denoted by the cross in Figure 2.3.b) to introduce hot chromium atoms into the

buffer gas. Simultaneously, the current through the trapping magnet is ramped down

(Figure 2.3.c).

The ensuing 10 to 15 seconds see some very complicated dynamics. The

atoms are thermalizing with the buffer gas as it is cryopumped to the walls by the

falling temperature of the cell. At the same time, the trap depth is steadily decreasing.

As the buffer gas atoms are cryopumped to the walls, they are able to knock some of

the chromium atoms out of the steadily weakening trap. After the magnet is ramped

down and the buffer gas removed, the remaining number of chromium atoms depends

on the dynamics of the cell temperature and trap depth. The cell heater pulse and

magnet ramping speed are varied to empirically maximize the remaining number of

atoms.
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Figure 2.3: Timing for a single run of the experiment. a) Voltage pulses sent to
cell-heater. b) Temperature dynamics of cryogenic cell caused by the heater and
energy deposited by ablation pulse. c) Current flowing through trapping magnet.
Ramping down the current results in adiabatic and evaporative cooling of trapped
atoms. d) Control voltage used to scan the laser. The laser frequency is linearly
proportional to this control voltage. e) Absorption peaks caused by scanning the
laser through an optical transition of the trapped atoms. The atoms are deliberately
removed near the end of the run to provide a baseline.
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Throughout each run of the experiment, we monitor the intensity of the probe

laser as it passes through the cell. The frequency of this laser is continuously swept

over a preset scanwidth. This is accomplished by sending a ±5 V signal to the

frequency control input of our Ti:Saph. laser. This control voltage, which is triggered

to start scanning at the firing of the ablation pulse, is shown in Figure 2.3.d.

The intensity of the probe laser after passing through the trapped atom cloud

is shown in Figure 2.3.e. The observed intensity dips are caused by the probe laser

passing through an optical resonance of the trapped atoms.

After a sufficient time of monitoring the absorption peaks, the cell heater is

pulsed once again to fill the cell with buffer gas. At the time of this second heating

pulse, the trap depth has been reduced. This allows the buffer gas to remove the

trapped atoms thereby providing a nice baseline to use in extracting the absorption of

the trapped atoms.

2.6 Data Processing

2.6.1 Calculating the Measured Absorption

The voltages coming from the “signal” and “reference” PMT’s are processed to re-

duce the effects of several different sources of noise. There are three sources of noise

that dominate our detection. These are due to laser intensity fluctuations, mechan-
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ical vibration of the cryogenic cell, and shot noise. Intensity fluctuations and cell

vibrations introduce multiplicative noise whereas shot noise is additive.

To measure the absorption of the atoms we perform the following operations on

the voltages acquired from the PMTs. After low pass filtering, we divide the signal

PMT voltage by the reference PMT voltage to obtain a quantity we call the divide

signal. We then subtract the divide signal during the time the atoms are present from

the divide signal taken during the baseline and divide the result by the baseline signal.

This quotient is exactly the absorption presented by the atoms plus some noise terms

which will now be quantified.

We begin with the following definitions.

S ≡ Signal PMT voltage (atoms present)

B ≡ Signal PMT voltage (during baseline)

RS ≡ Reference PMT voltage (atoms present)

RB ≡ Reference PMT voltage (during baseline).

The intensity of the laser at the face of the signal PMT when atoms are present is

Iatoms ∝ (1 + Ls) (1 + Vs)TI0 where Ls is the fractional intensity fluctuations of

the laser, Vs is the fractional intensity fluctuation caused by cell vibrations and T is

the transmission through the atom cloud. During the baseline, the signal PMT will

see Ibaseline ∝ (1 + LB) (1 + VB) I0. The expressions for the intensity at the face

of the reference PMT will be the same except that, since the reference beam does



21

not pass through the cryostat, the cell vibration term will be absent. Let the ratio

of output voltage to optical intensity be denoted by q1 for the signal PMT and q2 for

the reference PMT. Shot noise is denoted by H1 for the signal PMT and H2 for the

reference PMT. This allows us to write

S = q1 (1 + Ls) (1 + Vs)TI0 +Hs1

B = q1 (1 + LB) (1 + VB) I0 +HB1

RS = q2 (1 + Ls) Is +Hs2

RB = q2 (1 + LB) IB +HB2

Dividing the signal PMT voltages by the reference PMT voltages results in two divide

signals, one from when atoms are present and the other during the baseline. They

are

Ds =
q1 (1 + Ls) (1 + Vs)TI0 +Hs1

q2 (1 + Ls) Is +Hs2

DB =
q1 (1 + LB) (1 + VB) I0 +HB1

q2 (1 + LB) IB +HB2

We now consider the case where all fractional noises as well as the absorption are

much less than one. We also assume that the shot noise on each of the two PMTs is

of the formH = const
√
I . Taking the difference,DB−Ds, we expand to first order

in the noise sources and the atom absorption. Being a bit cavalier about the addition

of the various noise terms we obtain

DB −Ds

DB
' A+ 2V +

const√
I0

(2.1)
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where A is the absorption presented by the atoms,DB is the divide signal during the

baseline, Ds is the divide signal when atoms are present, V is the typical size of the

fractional noise due to cell vibrations, and I0 is the typical full scale intensity when

the PMTs are fully illuminated by the probe laser.

The dominant noise on the measured absorption signal depends on the intensity

of the laser. For low laser intensities the const/
√
I0 contribution from the shot noise

dominates. Increasing the laser intensity sufficiently reduces the shot noise until the

noise from cell vibration dominates.

The low pass filtering of our amplifiers combined with the technique of sub-

tracting two divide signals results in our being sensitive to typically∼ 1% absorption

per run of the experiment. We believe vibrations in our cryogenic cell are responsi-

ble for this lower limit. Of course, greater sensitivity can be obtained by averaging

together several runs of the experiment.

It should be noted that for most of the analysis we do, the optical density is

of greater interest than the absorption. For a uniform density of atoms, n, having a

homogeneous optical scattering cross section, σ, the optical density presented by the

atoms to a beam passing through a length l of the cloud is defined by the equation

I = I0e
−nσl = I0e

−OD. This means that the atom density is proportional to the

optical density. The relationship between optical density and absorption is OD =

− ln (1−A). Using 1−A = Ds

DB
from Eq. 2.1, we obtain

OD = − ln
µ
Ds

DB

¶
.



23

It is easy to show that for small absorption, the optical density and the absorp-

tion converge to the same value. Since this is the same limit in which the noise

calculation was performed, Eq. 2.1 remains true when A is replaced by OD.

2.6.2 Measuring the Absorption Spectra

Figure 2.4 illustrates how we extract, not only the absorption spectrum of our trapped

atoms, but also how we track atom loss. Figures 2.4.a and 2.4.b are simply the result

of zooming in on 5 seconds of the same data set depicted in Figure 2.3. The intensity

dips occurring as the laser passes through the atomic resonance are clearly resolved in

Figure 2.4.b. A much more useful way of viewing this data is to plot these intensity

dips as a function of laser frequency instead of as a function of time.

Figure 2.4.c shows 5 seconds of probe intensity data plotted against the laser

control voltage. In an ideal world, the laser control voltage would be strictly pro-

portional to the laser frequency. In the real world, however, there is a lag between

the control voltage sent to our Ti:Saph. and the frequency it produces. This leads to

a hysteretic type effect that finds its way into our data. The two intensity dips visi-

ble in Figure 2.4.c are an artifact of this hysteresis. One of the dips corresponds to

the laser passing through the resonance on the way up in frequency and the other dip

corresponds to the laser passing through resonance on its way down.

We deal with this problem using one of two techniques. One technique is

to simply discard all data corresponding to the laser scanning towards higher (or,
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Figure 2.4: Raw data for obtaining the spectrum and temporal behavior of trapped
atoms. a) Control voltage used to scan the laser b) Temporal behavior of absorp-
tion peaks caused by scanning the laser across atomic resonance. c) Raw spectrum
obtained by plotting the divide signal against laser control voltage. Notice the dis-
parity between scanning the laser up and down in frequency. d) The same spectrum
with one of the absorption peaks shifted in frequency. A good overlap of upward and
downward going spectra is observed. The straighter lines show a baseline spectrum
obtained after the atoms have been removed.
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equivalently, towards lower) frequencies. Whenever possible, however, we employ

a different technique that allows us to use all the collected data. This technique

involves separating the data into positive and negative going spectra. Simply shifting

one of the these spectra by a fixed amount results in excellent overlap, as shown in

Figure 2.4.d. This allows us to make full use of our data and eliminates (to first

order) the hysteretic effects of our laser.

We did not fully investigate the character of this hysteresis. A possible concern

is that, in addition to the observed offset of positive and negative going sweeps, there

could be a nonlinearity between the control voltage and the laser frequency. We do

not believe that such a nonlinearity, if it exists, seriously impacts our measurements.

Measuring the absorption of Fermionic 53Cr, we find the hyperfine splitting to be

in good agreement with previously measured values [29] when a linear relationship

between laser control voltage and frequency is assumed. This provides assurance

that our laser scans are behaving as we expect, at least at the larger scanwidths used

for observing the hyperfine structure.

The virtually flat traces in Figure 2.4.d show the spectrum of the probe laser

taken during the baseline (t > 32s in Figure 2.3.e). The difference between the two

sets of traces in this figure is due to the absorption of the atoms. Eq. 2.1 can be used

to extract the average absorption spectrum from 20 to 25 s. This spectrum can then

be fit using a model of the probe beam passing through a Boltzmann distribution of
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trapped atoms. From this fit, and independent knowledge of the oscillator strength of

the transition, the peak density and temperature of the atoms can be extracted.

2.6.3 Measuring the Time Dependence

In the data sets taken to measure the inelastic scattering rates, we find that the shape of

our measured spectra remains relatively unchanged as a function of time, indicating

the atoms reach a steady state temperature. We use this fact to greatly simplify the

process of measuring the time dependant density in our trap.

For distributions at constant η, (where η is the ratio of trap depth to atom tem-

perature) the peak density in the trap will be proportional to the area under the optical

density spectrum. For small absorptions, the optical density and absorption are es-

sentially equal to each other, and the peak density in the trap is proportional to the

area enclosed by the traces in Figure 2.4.d.

The time dependence of the density can be calculated as follows. We first

define the scan range that contains the signal of interest. For the spectrum in Figure

2.4.d, this scan range might be set to be from 0 to 5 volts. Then, for each sweep the

laser makes across the resonance, we calculate the mean of the divide signal across

the scan range and call it hDsi. We then calculate the mean baseline over this same

scan range and call it hDBi. In the limit of a spectrally flat baseline, the mean optical

density over the scan range can be approximated by

hODi ' − ln
· hDsi
hDBi

¸
.
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Since the optical density is proportional to the atom density in the trap, we can write

an expression for the atom density at the time of the k’th sweep as

nk ∝ − ln
· hDsik
hDBik

¸
This equation is useful because if we know the density for one of the sweeps (call it

k0), the density for all other sweeps can be obtained,

nk = nk0

ln
h
hDsik
hDBik

i
ln
h
hDsik0
hDBik0

i (2.2)

Figure 2.5 shows a plot of Eq. 2.2 for the sample data set of this section. In this

plot k0 is defined by the first sweep that occurs after 10 seconds, and nk0 has been

arbitrarily set to unity.

2.6.4 Extracting Density Time Dependence

All the tools are now in place for extracting the time dependant density from a given

data set. The first step in this process is to select a time window over which to

measure a spectrum of the atoms. In our example data set, this time window is from

10 to 15 seconds. (See Fig. 2.4.d) After fitting this spectrum to obtain the density

and temperature of the trapped spectrum, we can track the density time dependence

by applying Eq. 2.2 to the data set. The extracted temperature and density time

dependance are then ready to be analyzed to obtain a value for the two body loss rate

coefficient. This is discussed in Chapter 3.
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Figure 2.5: Each point in this time profile represents the average value of the opti-
cal density over a frequency window containing the absorption peak. The average
optical density is proportional to the peak density in the trap.
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2.6.5 Averaging over Data Sets

In order to improve the signal to noise ratio, data from several identical runs of an

experiment can be averaged together. We use the following procedure to average our

data sets.

Spectrum Averaging

We first extract an absorption spectrum for each data set as described above.

During the time required for multiple runs of the experiment, the center frequency

of the laser scan will often drift. This requires that we compensate for the drift by

artificially introducing a frequency offset to each of the spectra we wish to average

together. These offsets are manually selected by visually overlapping the spectra

from each of the individual data sets. The spectra from each of the data sets are

combined into one big data set and then binned in frequency. The mean and standard

deviation is then calculated for each frequency bin. Figure 2.6 shows the result of

this binning for the actual data used in determining the inelastic scattering rate at a

trap depth of 18mK. This spectrum is the average of thirteen data sets.

Time Profile Averaging

For each data set, we create a time profile plot like that of Figure 2.5. At

the lower trap depths, the signal to noise ratio is too small for obtaining useful data.

We circumvent this problem by averaging together the results obtained from several

different runs of the experiment. To do this, we bin the optical density in time. The
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Figure 2.6: The spectrum obtained by averaging together 13 runs of the experiment.
Averaging is performed by frequency binning the points of the combined spectra.
The points represent the mean in each frequency bin and the vertical hash marks
represent the standard deviations.
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mean and standard deviation is calculated for each time bin. Examples of these

average time profiles are shown in Chapter 3.



32

Chapter 3
Data Analysis Techniques

Once the data has been processed to obtain the spectrum and time dependant

optical density, it can be analyzed to obtain a value for the two body loss rate coeffi-

cient. From this information, we can extract a value for the inelastic scattering rate

coefficient.

3.1 Analysis Foundation

There are several assumptions and approximations that we make about our system

when performing measurements of the inelastic scattering rates. The justification

for each of these will now be discussed.

3.1.1 Assumptions

We assume that the only significant trap loss mechanisms are due to collisions be-

tween two chromium atoms. Other possible loss mechanisms that we neglect are

collisions with background gas, three body recombination, and Majorana losses.

During the time our measurements are being taken, the cell wall temperature

is . 200 mK. If the extrapolated vapor pressure curve for the 4He buffer gas in

our cell is to be believed (see Appendix C), the background gas density is . 1cm−3
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in this temperature range. This background density is so small that any interaction

between it and the trapped atoms can be safely neglected.

Majorana losses in our magnetic trap depend only on the size of the trapped

cloud. The decay time of the resulting exponential loss would scale like

τ ∝ m
∆µ

µ
R2

where m is the mass of the atom, µ is its magnetic moment, ∆µ is the change in

magnetic moment caused by the spin flip and R is the radius of the trapped cloud.

Running the numbers for the smallest clouds we observe, the Majorana loss should

be well below our ability to observe it [13].

Furthermore, the loss we observe from our trap fits quite well to the two-body

loss equation. This provides experimental justification not only for eliminating the

one-body loss processes due to background gas collisions and Majorana losses, but

also three-body collisional processes.

3.1.2 Approximations

Density Distribution Approximation

As will be shown in Chapter 5, there are two approximations that can be used

to model our trapped gas. The “large η approximation” is valid for large ratios of

trap depth to temperature (this ratio is called η). In the low η regime, where this

approximation fails, one can model the trapped gas as if it were confined in a spheri-
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cally symmetric trapping potential. This model is, at best, a crude approximation to

the ellipsoidal-looking equipotential surfaces in our actual magnetic trap. However,

the spherical trap model produces analytic expressions for important parameters of

the gas. Since these expressions remain valid at low η, we will use the spherical trap

model, detailed in Chapter 5, to calculate the average energies, collision rates, etc.

These parameters are needed to extract the scattering rate coefficients from any given

data set.

Spectral Fit Approximations

In the spectral fits described below, we assume that the atom density takes the

form of a Boltzmann distribution in potential energy. As will be discussed at length

in Chapter 5, phase space consideration can significantly alter the the atom distri-

bution from its ideal Boltzmann shape. This is particularly as the ratio between

trap depth and atom temperature becomes small. In the terminology developed in

Chapter 5, we find that using the “large η approximation” for the density distribu-

tion produces better fits to the observed spectra than using the results of the linear

spherical trap model. A possible explanation for this, is that the simulations used

to create the spectral fits to our data incorporate the actual magnetic fields present in

our spherical quadrupole trap. The selection rules for scattering polarized light com-

bine with the effects of non-uniform field gradients to make the simulated spectrum

quite sensitive to the actual geometry of the magnetic field. It is possible that this

fact causes the magnetic field geometry to play a more prominant role in determin-
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ing the character of the observed spectrum than it does in determining the dynamics

of the trapped gas.

Homogeneous Scattering Cross Sections

We assume throughout our analysis that the elastic and inelastic scattering cross

sections are homogeneous throughout the trap. However, in reality, it is quite pos-

sible that the magnitude of the scattering cross sections depends on magnetic field.

Given the steep magnetic field gradients in our trap, the existence of field dependant

cross sections could seriously impact not only the calculation of average scattering

rates, but also the average energies of atoms being lost due to both evaporation and

spin-changing collisions. This would modify the numbers we obtain for the scatter-

ing rate coefficients.

Ongoing theoretical investigation seems to suggest that the inelastic scattering

rate does indeed depend on magnetic field. However, at the writing of this thesis,

we have no information, either theoretical, or experimental, that would allow us to

characterize the field dependence of the elastic and inelastic scattering cross sections.

Because of this, we approximate the scattering cross sections as homogeneous and

await theoretical results to refine this approximation.

3.2 Fitting Techniques
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Figure 3.1: The solid strace is the result of fitting a model of a Boltzmann distribution
to the spectrum measured in our trap. The data is the same as that shown in Figure
2.6. The density and temperature values resulting in the best fit are n0 = 7.5× 108
cm−3 and T = 6.4mK respectively.

3.2.1 Spectral Fits

Figure 3.1 shows a sample fit to the same spectrum shown in Figure 2.6. The solid

line is a simulated spectrum generated by assuming the atoms maintain a Boltzmann

distribution in potential energy. The method used in constructing the simulated

spectra is discussed at length in the thesis of Jonathan Weinstein [13]. We adopt this

method, with a few modifications, to simulate our spectra. These modifications will

now be discussed.
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Low Trap Depth Modifications to Spectral Fit

There are three physical phenomena which become important to our spectrum

simulations at low trap depths. These are, Doppler broadening, natural linewidth

broadening, and the effects of gravity.

At large trap depths, the Zeeman broadening in the magnetic field of the trap

dominates our spectral features. The spectrum is calculated as if atoms at any given

magnetic field produced a delta function spectrum at their resonant frequency. Scal-

ing the strength of this delta function by the atom density at that particular field and

properly taking into account the field gradient, and polarization effects, the contribu-

tion these atoms make to the total absorption spectrum can be calculated. This is the

method described in the thesis of Jonathan Weinstein.

As the trap depth is lowered, however, approximating the atomic absorption

spectrum at a given field by a frequency delta function becomes less valid. The

correct line shape must account not only for the natural linewidth, but for Doppler

broadening as well. If we define a unit-normalized Lorentzian, G (ν, ν 0) to rep-

resent the natural linewidth of the detection transition and define a unit-normalized

Gaussian D (ν 0, ν 00) to represent the Doppler broadening, the real spectrum in the

trap, A (ν), is obtained by convolving these profiles with the results of the delta func-

tion approximation, Aδ(ν
00), to obtain

A (ν) =

ZZ
G (ν, ν 0)D (ν 0, ν 00)Aδ(ν

00)dν 00dν 0.

This convolution is added to the simulation code used to model our data.
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An additional complication presents itself for very low trap depths. For 52Cr,

the gravitational potential gradient is 0.6mK
cm
. At the lowest trap depths in our ex-

periment, ∼ 4.5 mK, the difference in gravitational potential between the top and

bottom of our trap becomes comparable to the magnetic potential. We modify the

spectrum simulation code to account for the distortion this presents to the trapping

potential.

Implementing the Spectral Fit

The input parameters for the simulation include trap depth, peak density, tem-

perature, beam trajectory through the trap, and beam parameters such as polarization,

and beam diameter. For each set of data we take, the beam parameters are measured.

The precision to which we control our magnet current sets our trap depth to a known

value. We take great pains when setting up the experiment to ensure that the beam

is passing through the center of the trap cloud. This leaves only the temperature and

peak density as free floating parameters in the fit to our spectra. (Note that at our

lowest trap depths, trapped fluxes in our superconducting magnet reduce the preci-

sion to which we know our trap depths. This has implications on the number of free

floating parameters. See discussion on error analysis.)

We use a non-linear least squares routine to determine the best fit between the

simulation and the data. From this, we extract the peak density and temperature of

the trapped atoms. This, combined with a knowledge of the trap depth and physical

volume of the trap, allows us to determine η and number of confined atoms.
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3.2.2 Time Decay Fits

Based on our assumptions that the loss from our trap is due strictly to chromium-

chromium collisions, and that the atom density is proportional to the optical density,

we obtain a two-body loss equation for the optical density,

d (OD)

dt
= −god (OD)2 . (3.1)

The solution to this equation can be written as

OD (t) =
1

1 + god (t− t0)
. (3.2)

Writing the proportionality between peak atom density and optical density as OD =

βn0, we can substitute into Eq. 3.1 to arrive at

dn0
dt

= −βgodn20.

If the peak density and optical density are measured over some time interval, resulting

in values of OD and n̄0, the proportionally constant, β, can be measured, and we can

write

dn0
dt

= −g2bn20

where the two body loss rate coefficient is given by

g2b =
OD

n̄0
god. (3.3)

The heavy line in figure 3.2 shows a fit of Eq. 3.2 to the data obtained by averaging

together the optical density time profiles from several data sets. Fits such as this

one provide values for god. The two lighter traces show best fits for 1-body, n =
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Figure 3.2: The solid lines are one, two and three body fits to the average measured
time profile for 21 data sets at a trap depth of 54 mK. The averaging is performed
by binning the combined data points in time. The points and vertical hash marks
represent the mean and standard deviation for each time bin. Our data is best fit to a
two-body loss.

exp [(t− t0) /τ ], and 3-body, n = [2K3 (t+ t0)]
−1/2 decay respectively. The two-

body equation clearly provides the best fit to the data. (note 3 body equation is

ṅ = −K3n
3 which has solution n = [2K3 (t+ t0)]

−1/2.

3.3 Error Analysis
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3.3.1 Least Squares Fitting

Performing a least squares fit to an arbitrary function is a non trivial process. An

excellent treatment of this procedure can be found in chapter 8 of the book on error

analysis and fitting procedures written by P.R. Bevington and D. K. Robinson [30].

The least squares fitting procedure described in Bevington calls for the minimization

of a quantity called χ2, which we will now define.

Suppose there exists a model that gives a functional relationship between two

variables. Take, for example, the two-body loss equation that gives the optical den-

sity in our trap as a function of time, Eq. 3.2. Given quantities we can measure (e.g.

time and optical density) we seek the “best” values for the non-measured quantities

in the functional relation (e.g. god and t0).

Lets say a typical measurement can be described by two variables. One of

these we’ll call the independent variable (in our case, time). The i’th measurement of

this variable is denoted by xi. The other variable is called the dependant variable (in

our case, optical density), and the results of the i’th measurement will be written as

yi. Let the the expected functional relationship between these variables be given by

y (a1, a2, ..., x), where the ai are parameters that enter into the fitting equation. (In

our case, these would be god and t0). In general, the dependant variable should be

the variable with the greatest uncertainty. For each value of the dependant variable,
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yi, let there be an associated uncertainty σi. We can then make the definition

χ2 (a1, a2, ...) ≡
X
i

½
1

σ2i
[yi − y (a1, a2, ..., xi)]

2

¾
. (3.4)

Stated in words, χ2 is the sum of the squares of the ratio between the deviation of the

measurement from its predicted value and the uncertainty of the measurement. A

least squares “best fit” is obtained by finding the values of a1, a2, ... that result in a

minimum value of χ2.

In our analysis, a least squares fit is obtained by using the canned routine “fmin-

search” provided by the MATLAB software we use to manipulate our data sets. This

routine, however, does not calculate the uncertainties in the parameters a1, a2, ... We

must calculate these ourselves. On page 145 of the book by Bevington, [30] we find a

clear statement that varying the parameter ai by one standard deviation from it’s best

value (i.e. minimum χ2), results in increasing χ2 by one. That is, χ2 → χ2min+1 for

ai = (amin)i ± (σa)i.

Bevington refines this argument in Chapter 11 of his book for the case of a

multi-parameter fit. His explanation can be summarized as follows. Imagine a

least squares fit has been performed and the best values for the parameters a1, a2, ...

have been found. Consider what happens by varying the parameter a1 away from

its optimum value. This results in an increase in χ2. But now imagine keeping

a1 fixed at its new deviated value and readjusting the other parameters a2, a3, ... to

compensate for this increased χ2. This readjustment of the other parameters will

allow a1 to be dragged further away from its optimum value while maintaining χ2
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below some threshold value. The 1 σ uncertainty of the parameter a1 is given by

the maximum distance it can be dragged from its optimum value while adjusting the

other parameters to maintain χ2 below the “1 σ threshold” of χ2 ≤ χ2min + 1.

3.3.2 Least Squares Fitting Applied

Calculating χ2

In our experiment, each measurement of the inelastic cross section involves

averaging the results from several runs of the experiment. This averaging procedure

not only improves our signal to noise, but also provides an estimate of our statistical

uncertainties. The mean and standard deviations obtain from these averages and

demonstrated in Figures 3.1 and 3.2 are used in calculating the χ2 of Eq. 3.4.

Floating Parameters in Spectral Fits

At all but the lowest trap depths, the floating parameters in our spectral least

squares fit are the temperature and peak density. At lower trap depths, however, we

allow the trap depth itself to become a floating parameter. This is part of our method

of accounting for the uncertainties in our trap depth due to trapped magnetic fluxes

in our superconducting magnet.

As the current through our magnet is reduced to obtain ever decreasing trap

depths, a point is reached where the magnetic field due to the current becomes equal

to the magnetic field arising from trapped fluxes. The magnetic fields produced by



44

the trapped fluxes are measured to be on the order of 10 gauss [13]. In the absence

of trapped fluxes, a 10 gauss (4 mK) trap depth corresponds to a magnet current

of 22 mA. The lowest current we use in taking our measurements is 25 mA. At

this current, we expect the trapped fluxes to alter our trapping potential in a way

that is not completely understood. As a first order approximation backed by earlier

measurements of trapped fluxes in very similar magnets, we assume that the trapped

fluxes produce a magnetic field that has roughly the same geometry as the trapping

field. In this approximation, the net effect of the trap fluxes is to produce magnetic

fields consistent with an altered, or “effective” current flowing through the coils. We

use our χ2 fitting routine to determine the size of this effective current. As will be

shown in chapter 4, our three lowest magnet currents, 25, 50 and 70 mA, produce

better fits to the data if we introduce a +25mA offset to the magnet current. This is

roughly consistent with our expectation for the size of the trapped fluxes.

The utility of allowing the trap depth to float in our least squares fit goes be-

yond characterizing the size of our trapped fluxes. By adding an additional floating

parameter in the fits, the calculated uncertainties in temperature and density are in-

creased. This is because the additional floating variable allows dragging any given fit

parameter, say, the temperature, further away from its optimum value while maintain-

ing χ2 ≤ χ2min + 1. This allows us to estimate the uncertainty in our measurements

due to the effects of trapped fluxes in our superconducting magnet.
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Floating Parameters in Time Profile Fits

Fitting our time decay data is considerably more simple than fitting our spectra.

We fit our decay curve to the equation

OD (t) =
1

1 + god (t− t0)

and use god and t0 as the free floating parameters. The uncertainties are calculated

as detailed in the discussion on least squares fitting above.

3.3.3 Error Propagation

We now trace the calculational steps required in obtaining the inelastic rate coefficient

from our measurements. This is done to explicitly demonstrate the associated error

propagation.

From the spectral fits, we obtain values for the peak density and temperature

of the trapped atoms. We denote these, along with their uncertainties as n0 ± σn0

and T ± σT . The mean optical density during the time required to take the spectral

measurement is given by OD ± σOD.

From the two-body fits of the optical density time profiles, we obtain a value

for the optical two-body loss rate coefficient and its uncertainty, god ± σgod .

From the expression for the two body loss rate coefficient,

g2b =
OD

n̄0
god,
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the uncertainties are correctly propagated according to

σg2b =

sµ
∂g2b

∂OD

¶2
σ2OD +

µ
∂g2b
∂god

¶2
σ2god +

µ
∂g2b
∂n̄0

¶2
σ2n0

=

sµ
god
n̄0

¶2
σ2OD +

µ
OD

n̄0

¶2
σ2god +

µ
godOD

n̄20

¶2
σ2n0 .

These equations are used to produce the error bars for our measurements of the in-

elastic scattering rate coefficients.
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Chapter 4
Experimental Results

4.1 Scattering Rate Measurements

Figure 4.1 shows a summary of our chromium scattering rate measurements. The

points marked with open circles are measurements of the elastic scattering rate coef-

ficient. Previous measurements of the inelastic scattering rate coefficients are desig-

nated by the filled circles. The points enclosed by the large triangles are the results

of our most recent measurements of the inelastic scattering rate coefficient.

Our measurements of the elastic scattering rate coefficients are described in the

thesis of Jonathan Weinstein [13]. Briefly, we use a resonant laser to selectively

remove atoms via optical pumping from a given region of our trap. This distorts

the atom distribution from its “equilibrium” Boltzmann distribution. The elastic

scattering rate is obtained from the timescale over which the distorted distribution

relaxes back to its thermal Boltzmann configuration.

Our previous measurements of the inelastic rate coefficient (solid circles) were

obtained by analyzing single runs of the experiment. The analysis is virtually the

same as that described in this thesis. There are subtle differences in the analysis due

to the fact that the measurements were obtained from single runs of the experiment.

These measurements are detailed in the thesis of Jonathan Weinstein.
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Figure 4.1: Summary plot of measured 52Cr-52Cr collision rates. The points enclosed
by triangles show the most recent measurements of the inelastic scattering rate coef-
ficient described in this thesis. The circles indicate previously reported values of the
elastic (open circles) and inelastic (filled circles) collision rate coefficients measured
at higher temperatures. [13]

Our latest experiments extend our measurements to lower temperatures. The

low densities obtained at these lower temperatures require averaging together the

results of several runs of the experiment to obtain sufficient signal-to-noise ratios for

making the measurements.

4.2 Supporting Data
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4.2.1 300 mA Data

Figure 4.2 shows the measured spectrum of our trapped atoms at a magnet current

of 300 mA. At this current, the trap depth is about 50 mK. The data is portrayed

by vertical hash marks representing the statistical uncertainty of the optical density.

The solid line is the result of a least squares fit from the spectrum simulation.

On either side of the large absorption peak from the trapped 52Cr isotope, the

smaller absorption peaks due to other isotopes can be seen. We have previously

observed these isotopes in our trap [13]. Our simulation only takes into account the

absorption due to the 52Cr in our trap. This is responsible for the disparity between

the measured and simulated spectral shapes.

Figure 4.3 shows the time profile of the 52Cr absorption peak. The data is again

shown with the statistical error bars. The two-body decay fit is shown by a solid line.

At this trap depth, the data fits quite well to the two-body loss equation.

The ability to resolve the different chromium isotopes allows us to compare

their loss rates at this trap depth. Figure 4.4 shows the measured time profile for

trapped 53Cr atoms that has been scaled to overlap the time profile for the 52Cr atoms.

As can be seen, the signals from the two isotopes exhibit similar decay in the trap.

We don’t believe the presence of 53Cr in the trap contributes significantly to the

observed loss dynamics of 52Cr. The high quality of the two-body fit for the 52Cr

isotope, Figure 4.3, indicates that the dominant loss process is consistent with two-

body 52Cr-52Cr interactions. Additionally, in our previous experiments, we observed
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Figure 4.2: The vertical hash marks represent the result of averaging together 21
experimental runs at a trap depth of 300 mA, or 54 mK. The spectrum is taken
from 20 to 25 s after the ablation pulse. The main spectral feature is caused by 52Cr
absorption. The smaller features on either side are due to absorption from the 50Cr
and 53Cr isotopes. The solid line is the spectral fit to the 52Cr spectrum which gives
temperature and density values of T = 16mK and n0 = 6.9× 109 respectively.
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Figure 4.3: The hash marks and points are the mean and standard deviation obtained
by time binning the combined data from 21 runs of the experiment at a trap depth of
300 mA or 54 mK. The 300 mA spectrum shown in Figure 4.2 shows the average
spectrum of this data taken from 20 to 25 seconds. The solid line is a fit to a two
body decay resulting in best values of god = 0.2325 s−1 and t0 = −7.842 s.
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Figure 4.4: The heavy line is the optical density time profile of trapped Bosonic 52Cr.
The lighter trace is the result of scaling the time profile of Ferminic 53Cr by a constant
to obtain the best overlap. Given the signal to noise, we find the temporal behavior
of the Fermion to be indistinguishable from that of the Boson.
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the 52Cr loss rate to remain unchanged by removal of 53Cr from the trap. These

checks, of course, leave the possibility that the 52Cr-53Cr collision rate is very close,

or equal, to the 52Cr-52Cr collision rate, but this would not change our results.

4.2.2 100 mA Data

Figure 4.5 shows the measured spectrum of atoms confined in the 18 mK deep trap

provided by a magnet current of 100mA. The ability of our spectrum simulation to

accurately represent the physics occurring in our trap is demonstrated by the excellent

agreement between the two curves in this figure. The reduced Zeeman broadening

at this trap depth allows us to zoom in on the spectrum of the 52Cr isotope, thereby

eliminating any distortion arising from 53Cr. Furthermore, at this trap depth, the

magnetic fields due to trapped fluxes are not strong enough to significantly distort

the the shape of the trap.

The 100 mA time profile is shown in Figure 4.6. Notice that the relative size

of our error bars is increasing as we reduce our trap depth. This lack of signal to

noise doesn’t allow us to measure our optical density over multiple orders of magni-

tude. This makes it difficult to distinguish between exponential and two-body loss.

Although the shown two-body curve fits our data quite well, a straight line due to

exponential one-body loss could easily be drawn through our error bars. Since we

have no physical reason to introduce a one-body loss mechanism, we assume that our

observed atom loss is due to two-body processes.
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Figure 4.5: The vertical hash marks represent the result of averaging together 13
experimental runs at a trap depth of 100mA, or 18mK. The spectrum is taken from
20 to 25 s after the ablation pulse. The solid line is a fit to the 52Cr spectrum which
gives temperature and density values of T = 6.4 mK and n0 = 7.5 × 108 cm−3
respectively.
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Figure 4.6: The hash marks and points are the mean and standard deviation obtained
by time binning the combined data from 13 runs of the experiment at a trap depth
of 100 mA or 18 mK. The 100 mA spectrum shown in Figure 4.5 is the average
spectrum of this data taken from 20 to 25 seconds. The solid line is a fit to a two
body decay resulting in best values of god = 1.106 s−1 and t0 = 1.17 s.
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4.2.3 70 mA Data

Reducing our magnet current to 70 mA (13 mK trap depth for 70 mA) results in

a further decrease of the signal to noise. Additionally, fields arising from trapped

fluxes in our superconducting magnet begin to effect our measurement. Figure 4.7

show the result of two separate simulations superimposed on our measured spectrum.

The heavy line assumes that our trapped fluxes act to add a 25 mA effective current

to the 70mA provided by our power supply. The lighter line is the result of running

the simulation assuming the trapping fields come only from the 70 mA of supplied

current. As can be seen, the addition of the effective current coming from trapped

fluxes results in only a slight improvement in the quality of the fit.

The 70 mA time profile shown in Figure 4.8 now spans only about a factor of

five in optical density. The ability to convincingly distinguish between one-body and

two-body behavior is essentially gone. However, we still have no physical reason to

abandon our two-body loss assumption and fit the decay accordingly.

4.2.4 50 mA Data

At a magnet current 50 mA (9 mK trap depth) the trapped fluxes are able to ap-

preciably modify the trapping potential. Running our spectrum simulations with

an additional 25 mA effective current (to account for trapped fluxes) produces a no-

ticeably better fit than running the simulation using only the 50 mA applied current.
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Figure 4.7: The vertical hash marks represent the result of averaging together 20
experimental runs at a trap depth of 70 mA, or 13 mK. The spectrum is taken
from 20 to 25 s after the ablation pulse. The heavy solid line is a fit to the 52Cr
spectrum assuming the trapped fluxes add an effective current of 25mA to the current
supplied to the magnet. This fit gives temperature and density values of T = 6.4
mK and n0 = 7.5× 108 cm−3 respectively. The ligher solid line is the fit obtained
without accounting for trapped fluxes in any way. It gives values of T = 4.4 mK
and n0 = 3.8× 108 cm−3.
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Figure 4.8: The hash marks and points are the mean and standard deviation obtained
by time binning the combined data from 13 runs of the experiment at a trap depth of
70mA or 13mK. The 70mA spectrum shown in Figure 4.7 is the average spectrum
of this data taken from 20 to 25 seconds. The solid line is a fit to a two body decay
resulting in best values of god = 4.557 s−1 and t0 = 11.93 s.
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Figure 4.9 shows a plot of these two fits. Note that while the peak densities obtained

from the two fits are different, the temperature remains relatively unchanged.

The 50 mA time profile is shown in Figure 4.10. Although the two-body fit

passes through the points quite well, the optical density only varies by a factor of

four. By itself, this data does not support the use of a specific functional form for the

loss. We must again rely on our assumption that the loss is two-body in nature.

4.2.5 25 mA Data

Although we do observe signal at lower trap depths, the lowest magnet current at

which we conduct our measurements is 25 mA (5 mK trap depth). At this low

current, we believe the trapped fluxes in our magnet are significantly modifying the

trapping potential. Shown in Figure 4.11 is our data superimposed on the results of

two spectral simulations. As can be seen, introducing the 25mA effective current to

mimic our trapped fluxes results in a much better fit to the measured spectrum.

The only information we have about the trapped fluxes is that their magnitude

is roughly 10 gauss [13]. This is consistent with the 25mA effective current added

to our simulations. We do not know exactly how these trapped fluxes influence the

shape of our trap. Because of this, it would be pointless to take measurements in

a regime where the trapping potential would be dominated by fields caused by the

unpredictable trapped fluxes. This sets the limit on how low we can ramp our trap

depth.
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Figure 4.9: The vertical hash marks represent the result of averaging together 28 ex-
perimental runs at a trap depth of 50 mA, or 9 mK. The spectrum is taken from
20 to 25 s after the ablation pulse. The heavy solid line is a fit to the 52Cr spec-
trum assuming the trapped fluxes add an effective current of 25 mA to the current
supplied to the magnet. This fit gives temperature and density values of T = 3.3
mK and n0 = 3.9× 108 cm−3 respectively. The ligher solid line is the fit obtained
without accounting for trapped fluxes in any way. It gives values of T = 3.3 mK
and n0 = 2.7× 108 cm−3.
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Figure 4.10: The hash marks and points are the mean and standard deviation obtained
by time binning the combined data from 13 runs of the experiment at a trap depth of
50mA or 9mK. The 50mA spectrum shown in Figure 4.9 is the average spectrum
of this data taken from 20 to 25 seconds. The solid line is a fit to a two body decay
resulting in best values of god = 2.99 s−1 and t0 = 10.81 s.
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Figure 4.11: The vertical hash marks represent the result of averaging together 30
experimental runs at a trap depth of 25 mA, or 4.5 mK. The spectrum is taken
from 20 to 25 s after the ablation pulse. The heavy solid line is a fit to the 52Cr
spectrum assuming the trapped fluxes add an effective current of 25mA to the current
supplied to the magnet. This fit gives temperature and density values of T = 2.5
mK and n0 = 8.8× 108 cm−3 respectively. The ligher solid line is the fit obtained
without accounting for trapped fluxes in any way. It gives values of T = 2.5 mK
and n0 = 4.1× 108 cm−3.
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Figure 4.12: The hash marks and points are the mean and standard deviation obtained
by time binning the combined data from 13 runs of the experiment at a trap depth of
25 mA or 4.5 mK. The 25 mA spectrum shown in Figure 4.11 is the average
spectrum of this data taken from 20 to 25 seconds. The solid line is a fit to a two
body decay resulting in best values of god = 0.6618 s−1 and t0 = 4.32 s.
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Figure 4.12 shows a two-body fit to our 25 mA time profile. With the large

error bars and the small range of optical densities, the functional form of the loss rate

is completely undetermined. We again rely on our two-body assumption to model

the trap loss.

4.3 Summery of Observations

It is useful to summarize the results of our chromium measurements. The figures

in this section contain plots showing the dependence of our measurements on trap

depth, temperature and η.

The ensemble averaged collision rates fit quite well to the functional forms.

³ gelastic
cm3s−1

´
= 8.17×10−12

µ
T

Kelvin

¶−0.268
+4.11×10−20

µ
T

Kelvin

¶−4.48
(4.1)

³ginelastic
cm3s−1

´
= 2.34×10−13

µ
T

Kelvin

¶−0.566
+4.11×10−20

µ
T

Kelvin

¶−4.48
. (4.2)

The range of validity for these fits is given by their overlap with the measured values

as shown in Figure 4.13. The low ratio of trap depth to temperature we observe as we

cool indicates that the ratio between elastic and inelastic scattering is of order unity.

The last term in Eq. 4.1 for the elastic scattering rate is included to drive the elastic

and inelastic rates towards the same value at lower temperatures. The addition of

this term represents our guess at the unmeasured behavior of the elastic scattering

rate at low temperatures.
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Figure 4.13: The circles are the measured elastic scattering rate coefficients. The
crosses are the measured inelastic scattering rate coefficients. The solid lines are
ad-hoc functional fits to the elastic and inelastic rates. The elastic functional fit is
only valid for temperatures between 20 and 400 mK. The inelastic functional fit
is only valid for temperatures between 4 and 1000 mK. The units in the fitting
equations are [g] = cm3s−1 and [T ] = Kelvin.

For the specific cryogenic cell and magnet used in these measurements the

measured peak density and peak temperature scale with the magnet current according

to µ
T

Kelvin

¶
= 0.03

µ
I

Amps

¶0.75
(4.3)

³ no
cm−3

´
= 2.4× 1010

µ
I

Amps

¶0.77
. (4.4)
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Imag [mA] n0

h
cm3

s

i
σtotal

h
cm3

s

i
σstat

h
cm3

s

i
σbeam

h
cm3

s

i
σfield

h
cm3

s

i
300 6.9× 109 0.6× 109 0.1× 109 0.3× 109 0.5× 109
100 7.5× 108 2× 108 0.2× 108 0.3× 108 2× 108
70 3.8× 108 1× 108 negligible negligible 1× 108
50 3.9× 108 1× 108 negligible negligible 1× 108
25 8.8× 108 5× 108 negligible negligible 5× 108

Table 4.1: This table shows measured peak density in the trap as a function of the
current running through the trapping magnet. The uncertainties are broken down
into the components arising from statistical fluxuations, error due to probe beam
uncertainties, and uncertainties of the magnetic field due to trapped fluxes.

Imag [mA] T [mK] σtotal [mK] σstat [mK] σbeam [mK] σfield [mK]

300 16.1 0.7 0.1 negligible 0.7
100 6.4 0.4 0.3 0.1 0.3
70 4.4 0.6 0.4 negligible 0.4
50 3.3 0.4 0.2 negligible 0.4
25 2.5 0.6 0.4 negligible 0.4

Table 4.2: This table shows measured temperatures in the trap as a function of the
current running through the trapping magnet. The uncertainties are broken down
into the components arising from statistical fluxuations, error due to probe beam
uncertainties, and uncertainties of the magnetic field due to trapped fluxes.

Tables 4.1 and 4.2 show a summary of the error analysis for our density and

temperature measurements. As can be seen, trapped fluxes in our superconducting

magnet cause the uncertainty in our trapping field to be the dominant source of error

at the lower trap depths.

4.4 Discussion of Results

For chromium, the ultra-cold regime (s-wave scattering) occurs at temperatures just

below 1 mK. Our data clearly shows a dramatic variation in the 52Cr–52Cr inelas-
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Figure 4.14: Summary of measurements as a function of trap depth.
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Figure 4.15: Summary of measurements as a function of temperature.
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Figure 4.16: Summary of measurements as function of η.
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tic collision rate coefficient just warmer than the ultra-cold regime. This may be

indicative of either a shape resonance (See Chapter 6), a magnetic field effect, a gen-

eral feature of dipolar relaxation in this cross-over region, or perhaps something else

unique to either chromium or large-dipole atoms in general.

The enormity of the inelastic scattering rate in chromium causes large inef-

ficiencies in our evaporative cooling. We do see an indication, however, that the

inelastic rate is decreasing at temperatures below 4 mK. Thus, it is possible that as

one continues to cool, the efficiency of evaporative cooling will become good enough

to make continued attempts worthwhile. The large numbers of atoms we have at 2

mK makes this possibility attractive. However, the limitations due to trapped fluxes

in our superconducting magnet prevent us frommaking progress in the immediate fu-

ture. These trapped fluxes could be removed in the future by heating the magnet after

the initial evaporative cooling cycle. Chapter 7 describes our attempt to circumvent

the problem of trapped fluxes by laser cooling our atoms in the hopes of reaching

temperatures resulting in a more favorable ratio of elastic to inelastic collisions.

A consistency check can be performed on the data taken in this experiment.

There is a one-to-one correspondence between the steady state η of a trapped gas

and the ratio of elastic to inelastic scattering rates. The next chapter is devoted

to developing the theory required to ensure that the steady state η observed in our

experiment is consistent with the scattering rates we measure.
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Chapter 5
Properties of Trapped Gases

The literature contains several different treatments on understanding the non-

equilibrium thermodynamics of magnetically trapped gases [31, 32, 14]. However,

none of these seems to contain an appropriate treatment for the case in which the trap

depth is only slightly larger than the temperature of the atoms (the low η limit). Since

much of the new data discussed in this thesis was taken for trap depth to temperature

ratios (referred to as η) as low as 3, understanding this low η regime is important

for grasping the full meaning of our data. As will be shown, there is a one-to-one

correspondence between the observed η in a magnetic trap and the ratio of elastic to

inelastic scattering cross sections. This relation can be used to provide a consistency

check on our measurements.

5.1 Overview of the Analysis

The dynamics of magnetic gases confined in experimentally realizable magnetic traps

is too complex to be perfectly treated analytically. A full description of such a sys-

tem can only be obtained by employing numerical techniques. Fortunately, analytic

descriptions can be formulated by making suitable approximations.

The most common, and perhaps most useful, of these is the “large η approxima-

tion.” This approximation results in very simple, yet useful, expressions for various
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quantities describing trapped gases. Since the analysis in this chapter will focus on

the special case of spherically symmetric traps, the reader is referred to the excellent

treatments by Ketterle and Doyle [14, 32] for discussions of other trap geometries.

In the regime where the large η approximation breaks down, progress can be

made by introducing other approximations. The simplest of these is perhaps the

“spherical trap approximation.” In this model, the actual geometry of experimentally

realizable traps is approximated as if it had spherical symmetry. The anti-Helmholtz

trap used in our experiment has cylindrical, not spherical symmetry. However, con-

structing a spherically symmetric toy model of this trap can provide a great deal of

insight into the dynamics of trapped gases.

This chapter is devoted to modeling our trapped gases as if they were confined

by a spherically symmetric trap in which the potential energy of the atoms varies

linearly with its radial coordinate. We make the additional assumptions that the only

important processes are those arising from the interactions between trapped particles.

Wewill neglect any effects due to collisions with non-trapped atoms. We also neglect

any optical effects that could be introduced by a laser passing through the gas.

5.2 The large η Approximation

The large η approximation is discussed at length in the treatments by Doyle [32] and

Ketterle [14]. A general overview of the results for the special case of a spherical,

linear trap is included here for comparison with the exact results developed in the next
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section. The heart of the large η approximation is that the density of atoms at any

point in the trap is given by a Boltzmann distribution in the potential energy. This

distribution is assumed to be abruptly truncated at the trap wall without taking into

consideration the distortion to the distribution which occurs near the trap edge. At

large values of η, the density of atoms in the region of this distortion is exponentially

suppressed and its effects can be safely neglected.

5.2.1 Distribution Functions

The energy and density distribution functions are easily obtained as functions of ra-

dius (r) and momentum (p) by considering the case of an infinitely deep trap con-

taining atoms at a temperature T . The partition function will be

Z =

∞Z
0

exp

·−U (r)
kT

¸
d3r

∞Z
0

exp

"
− p2

2m

kT

#
d3p, (5.1)

where U (r) is the potential energy, m is the mass of a trapped atom and k is the

Boltzmann constant. The separability of position and momentum coordinates in Eq.

5.1 leads to a counter-intuitive result. In an infinitely deep trap, the kinetic energy

distribution of atoms is independent of position (i.e. potential energy) in the trap.

In a trap of finite depth, the kinetic energy distribution will be distorted as potential

energies approach the trap edge. However, in the large η approximation, atoms are

almost never found near the trap edge, and the infinite trap partition function, Eq. 5.1,

is a good approximation of the actual partition function.
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From Eq. 5.1, it is straightforward to calculate the density and momentum

distributions in the trap. They are

n (r) = n0 exp

·−U (r)
kT

¸
(5.2)

and

P (p) dp =

s
2

π (mkT )3
exp

"
− p2

2m

kT

#
p2dp, (5.3)

where n0 is the peak density in the trap and P (p) dp is the probability of having

momentum between p and p+ dp.

The energy density of states, g (E), can be calculated using two methods. The

first method counts the total number of states,N , having energy less than some value

E. For the special case of a linear spherical potential with U (r) = Gr, this number

is

N (E) =
(4π)2

h3

E/GZ
0

r2dr

√
2m(E−Gr)Z

0

p2dp =
512π2

√
2m3

945 (hG)3
E9/2. (5.4)

Taking the derivative with respect to E results in the expression for the density of

states

g (E) =
256π2

√
2m3

105 (hG)3
E7/2. (5.5)

The second method [31] involves integrating the momentum and position co-

ordinates over all values that result in energies equal to some value E,

g (E) =
1

h3

E/GZ
0

d3r

√
2m(E−Gr)Z

0

δ

µ
E −Gr − p2

2m

¶
d3p. (5.6)

Using the property of delta functions [33], δ [f (x)] =
¯̄̄
df(x)
dx

¯̄̄−1
δ (x− x0), Eq. 5.6

can be evaluated to confirm the result of Eq. 5.5. This delta-function technique for
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finding the density of states will prove quite useful later when we calculate the exact

expression for the density of states.

Once the density of states has been found, an expression for the energy dis-

tribution in the trap can be written down. The probability of finding an atom with

energy between E and E + dE is simply

P (E) dE =
g (E) exp

¡− E
kT

¢Z ∞

0

g (E) exp
¡− E

kT

¢
dE

=
16

105
√
π

E7/2

(kT )9/2
exp

µ
− E

kT

¶
. (5.7)

5.2.2 Average Energies

Using the energy distribution function, Eq. 5.7, the mean energy of trapped atoms is

calculated to be

Ē =
9

2
kT . (5.8)

The average potential energy of the atoms lost due to inelastic collisions in

a spherical-linear trap is calculated by noting that collisions are two body processes

that scale with the square of the density. The average potential energy of collisionally

lost atoms is

Ud =

Z ∞

0

U (r)n2 (r) r2drZ ∞

0

n2 (r) r2dr

=

G

Z ∞

0

exp
£−2Gr

kT

¤
r3drZ ∞

0

exp
£−2Gr

kT

¤
r2dr

=
3

2
kT .

Adding to this the average kinetic energy of an ideal gas, KE = 3
2
kT , the average

energy of atoms lost due to inelastic collisions is

Ēd = 3kT . (5.9)
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It should be noted that the average kinetic in the trap is not quite the same as the

average kinetic energy of atoms lost due to inelastic collisions. The collision rate

depends on the relative velocity between atoms. This causes high energy atoms to

collide at a higher rate than there lower energy counterparts. We neglect this effect

for now, but will take it into consideration in the exact calculation developed in the

next section.

The average energy of an evaporating atom can be approximated by calculating

the average kinetic energy of atoms evaporating over the edge of a box potential of

depth ηkBT . This is found to be

Ēv =

Z ∞

ηkT

E
3/2
K exp

¡−EK
kT

¢
dEKZ ∞

0

E
1/2
K exp

¡−EK
kT

¢
dEK

=
kT

2

3
√
πeη

£
1− erf ¡√η¢¤+ 2√η (2η + 3)√
πeη

£
1− erf ¡√η¢¤+ 2√η (5.10)

' (η + 1) kT (for large η)

5.2.3 Evaporation Fraction

The fraction of elastic collisions that result in an atom with enough energy to leave

the trap is called the evaporation fraction. In the large η approximation, it can be

calculated using the detailed balance model described by Ketterle [14]. This model

starts off considering a thermal ideal gas confined in a finite box potential of depth

ηkT .
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For a Boltzmann distribution, the fraction of atoms with kinetic energy, EK ,

greater than some arbitrary threshold value, say ηkT , is simply

F =

Z ∞

ηkT

√
EK exp

¡−EK
kT

¢
dEKZ ∞

0

√
EK exp

¡−EK
kT

¢
dEK

→
η&4

2

r
η

π
e−η.

If the box potential were infinitely deep, an atom with energy greater than the arbi-

trary threshold, ηkT , would remain confined. However, for large η, (& 4) there is a

high probability that even a single collision will knock this atom to an energy lower

than ηkT . If this is true, then, in order for the energy distribution to remain con-

stant in time, a different atom somewhere in the trap must be promoted to an energy

greater than ηkT . This means that the rate at which atoms are promoted to energies

greater than some threshold, ηkT , is the same as the collision rate rate experience by

the energetic (EK ≥ ηkT ) atoms. This rate is just Γthresh = nσelvη, where n is the

atom density in the infinite box potential, σel is the elastic scattering cross section,

vη =
1
2
v̄
√
πη is the velocity of atoms with energy ηkT , and v̄ =

q
8kT
πm
is the mean

thermal velocity.

The equality between the rates of upscattering in energy and downscattering

in energy is called detailed balance. It is important to note that the phenomenon of

detailed balance remains unchanged when considering a trap of finite depth, ηkT .

However, in the finite trap case, the upscattered atoms will be ejected from the trap.

This allows us to immediately write down an expression for the evaporation rate from
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a box potential of depth ηkT .

Γbox = nσelvηFN = nσelv̄ηe
−ηN , (5.11)

where N is the number of trapped atoms.

We can now adapt this box potential argument to create an evaporation model

for the linear spherical trap. In such a trap, the kinetic energy required to evaporate

an atom from some radius r is equal to the difference in potential energy experi-

enced by the atom in going from the radius r to the maximum radius in the trap,

rwall. Stated mathematically, EK thresh = U (rwall) − U (r) . This kinetic energy

threshold for ejecting an atom from the trap can be used to define an effective η

for evaporation from within a differential volume at a given radius r in the trap,

ηeff (r) = [U (rwall)− U (r)] / (kBT ). Defining ρ ≡ r
rwall

, using the linearity of the

potential to show U(r)
kBT

= ηρ, and letting

dN = n (r) d3r = 3V0n0e
−ηρρ2dρ,

(V0 is the physical volume of the trap), Eq. 5.11 can be used to write the radially

dependant differential evaporation rate as

dΓv (ρ) = n (ρ)σelv̄ηeff exp
¡−ηeff¢ dN

= 3V0n
2
0σelv̄ηe

−η (1− ρ) e−ηρρ2dρ. (5.12)

The evaporation fraction is simply the ratio of the evaporation rate to the elastic

collision rate. Eq. 5.12 gives us an evaporation rate. We must now calculate the

corresponding elastic collision rate.
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The rate at which one atom undergoes collisions in the trap is given by nσelv̄
√
2

(the mean relative velocity between atoms is v̄
√
2). The total collision rate for dN

atoms found at a radius r in the trap is then just

dΓel (ρ) = n (ρ)σelv̄
√
2dN

= 3V0n
2
0σelv̄

√
2e−2ηρρ2dρ. (5.13)

As a function of radius, the fraction of elastic collisions resulting in evaporation is

then given by

f̃ (ρ) ≡ dΓv (ρ)

dΓel (ρ)
=

1√
2
η (1− ρ) exp [−η (1− ρ)] .

To calculate the mean evaporation fraction for the trapped ensemble, wemust average

this collision rate over the entire volume of the trap. To do this, we first write the

normalized radial probability distribution for collisions in the trap,

Pc (ρ) dρ =
n2 (ρ) ρ2dρZ 1

0

n2 (ρ) ρ2dρ

=
4η3ρ2e−2ηρ

1− (2η2 + 2η + 1) e−2η .

The average evaporation fraction for the trapped ensemble is then calculated to be

f =

1Z
0

Pc (ρ) f̃ (ρ) dρ

=
2
√
2 [e−η (2η − 6) + e−2η (η2 + 4η + 6)]

1− (2η2 + 2η + 1) e−2η . (5.14)

5.2.4 Effective Volumes

In many calculations involving trapped ensembles of atoms, the size of the atom

cloud is an important parameter. A useful definition for the size of the cloud is the
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effective volume. The effective volume is defined such that the total number of atoms

is given by the peak density in the trap multiplied by the effective volume, or N =

n0Veff . From this, it is straightforward to show that, in the large η approximation of

the linear spherical trap,

Veff = 3V0

1Z
0

e−ηρρ2dρ ' 6V0
η3
. (5.15)

It is also useful to introduce a collisional effective volume. The collisional

effective volume is defined such that the total scattering rate for a trapped ensemble

is given by Γ = n20σ
¡
v̄
√
2
¢
Λeff , where Λeff is the collisional effective volume, and

n0σ
¡
v̄
√
2
¢
is the single atom collision rate at the center of the trap.

As mentioned in the discussion of the evaporation fraction, the scattering rate

for dN atoms interacting with a cloud of density n is given by dΓ = nσ
¡
v̄
√
2
¢
dN .

Letting dN = n (r) d3r, the total scattering rate is

Γ = σ
³
v̄
√
2
´ 1Z

0

n2 (r) d3r = 3V0n
2
0σ
³
v̄
√
2
´ 1Z

0

·
n (ρ)

no

¸2
ρ2dρ.

It follows that the collisional effective volume for a linear spherical potential is

Λeff = 3V0

1Z
0

·
n (ρ)

no

¸2
ρ2dρ ' 3V0

4η3
. (5.16)

These effective volumes can then be used to calculate the average scattering

rate for a trapped ensemble. The mean scattering rate is just the total scattering rate

divided by the number of atoms, or

Γ̄ =
Γ

N
=

Λeff

Veff
n0σ

³
v̄
√
2
´
=
1

8
n0σ

³
v̄
√
2
´
. (5.17)
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This says that the mean scattering rate of a cloud of atoms confined at large η in a

linear spherical trap is eight times smaller than the scattering rate at the center of the

trap.

5.3 Exact Solution for the Spherical Trap

As η is reduced, the primary mechanism responsible for the failure of the large η

approximation is the distortion of the atom density from the ideal Boltzmann distri-

bution. This distortion effects all integrals involving the density distribution in the

trap. The average energies, evaporation fraction, effective volumes, etc. all contain

such integrals in their derivation. Therefore, an accurate expression for the density

distribution function is absolutely crucial for describing trapped gases in the small η

regime. This section is devoted to developing an expression for the trap density that

will be valid for all η in a linear spherical trap. The generalized expressions for the

average energies, evaporation fraction, effective volumes, etc. can then be obtained.

5.3.1 Good Coordinates for Spherical Trap

The distribution functions for a trapped ensemble can all be calculated from the par-

tition function. Since the partition function is derived from integrating over all avail-

able phase space,

Z =

Z Z
exp

·−E (r, p)
kt

¸
d3rd3p,
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it is useful to transform the phase space volume element, d3rd3p, into coordinates ap-

propriate for describing the spherically symmetric system, d3rd3p→ drdθdφdprdLdLz,

where r, θ, and φ are the spherical position coordinates, pr is the radial momentum,

L is the total angular momentum, and Lz is its projection along the z axis (θ = 0) of

the coordinate system.

This transformation involves the use of Jacobians. A Jacobian transformation

is simply a procedure for expressing differentials of one coordinate system in terms of

differentials of another coordinate system [34]. Applied to the phase space volume

element, this transformation looks like

dpxdpydpzdxdydz =
∂ (px, py, pz)

∂
³
ṙ, θ̇, φ̇

´ ∂
³
ṙ, θ̇, φ̇

´
∂ (pr, pθ, pφ)

dpr × (5.18)

∂ (pθ, pφ)

∂ (L,Lz)
dLdLz

∂ (x, y, z)

∂ (r, θ, φ)
drdθdφ.

Each of the Jacobian transformations in Eq. 5.18 can be written as a determinant of

derivatives. For example, the first Jacobian is

∂ (px, py, pz)

∂
³
ṙ, θ̇, φ̇

´ =

¯̄̄̄
¯̄̄

∂px
∂ṙ

∂px
∂θ̇

∂px
∂φ̇

∂py
∂ṙ

∂py

∂θ̇

∂py

∂φ̇
∂pz
∂ṙ

∂pz
∂θ̇

∂pz
∂φ̇

¯̄̄̄
¯̄̄ . (5.19)

Using p2 = p2r+p
2
θ+p

2
φ, L2 = p2θ+p

2
φ, Lz = pφ, and applying Lagrangian formalism

to calculate the generalized momenta,

pr = mṙ

pθ = mr2θ̇ =
p
L2 − L2z

pφ = m (r sin θ)2 φ̇ = Lz,
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the derivatives of the transformation equations

px = m
h
(ṙ) sin θ cosφ+

³
θ̇
´
r cos θ cosφ−

³
φ̇
´
r sin θ sinφ

i
py = m

h
(ṙ) sin θ sinφ+

³
θ̇
´
r cos θ sinφ+

³
φ̇
´
r sin θ cosφ

i
pz = m

h
ṙ cos θ −

³
θ̇
´
r sin θ

i
can be substituted into the Jacobian determinant of Eq. 5.19 to get

∂ (px, py, pz)

∂
³
ṙ, θ̇, φ̇

´ =

¯̄̄̄
¯̄ m sin θ cosφ mr cos θ cosφ −mr sin θ sinφ
m sin θ sinφ mr cos θ sinφ mr sin θ cosφ
m cos θ −mr sin θ 0

¯̄̄̄
¯̄

= r2m3 sin θ.

Calculation of the complete Jacobian of transformation of Eq. 5.18 is too

lengthy to be traced out in detail, but gives the following result for the phase space

volume element in spherically symmetric coordinates,

d3rd3p =
Lp

L2 − L2z
drdθdφdPrdLdLz. (5.20)

5.3.2 Dimensionless Units

The conserved angular momentum imposed by the spherical symmetry of the trap-

ping potential allows the energy of a trapped atom to be written as

E = p2r/(2m) + L2/(2mr2) +Gr (5.21)

The motion of the radial coordinate can be described as if the atom were confined in

an effective radial potential

VL (r) = L2/
¡
2mr2

¢
+Gr. (5.22)
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In order to simplify the equations which follow, it will be convenient to define

dimensionless units. This will not only minimize the number of constants to keep

track of, but will also generalize the results to ensembles with arbitrary trap depths,

temperatures, etc.

If an atom is to be confined to a volume of radius less than some value rE, the

maximum energy it can have, will be realized by placing it in a circular orbit of radius

rE. This corresponds to the radial coordinate being nestled in the minimum of the

effective radial potential corresponding to the maximum allowed angular momentum

LE. This angular momentum can be found by setting the radial derivative of Eq.

5.22 equal to zero giving

L2E
mr2E

= GrE. (5.23)

The relationship between the maximum angular momentum, and maximum energy

for orbits enclosed by the r = rE sphere is found by substituting Eq. 5.23 into Eq.

5.21,

L2E
2mr2E

=
1

3
E. (5.24)

Finally, the expression relating maximum allowed energy for an atom confined to

r ≤ rE can be found by substituting Eq. 5.23 and Eq. 5.24 into Eq. 5.22,

GrE =
2

3
E. (5.25)

Defining the potential at the wall of the trap to beGrw ≡ Uw, and setting rE =

rw in Eqs. 5.24 and 5.25, we can express the maximum energy and the maximum
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angular momentum in the trap as

Em =
3

2
Uw

L2m = mr2wUw.

We can now scale any angular momentum, radius, or potential energy by the corre-

sponding maximum allowed value to get the following definitions for dimensionless

variables.

ρ ≡ r

rw

$ ≡ L

Lm
(5.26)

Q ≡ E

Uw

The dimensionless variables of Eq. 5.26 will be used through the remainder of this

discussion. A firm grasp on their definitions will greatly facilitate the understanding

of the following discussion.

5.3.3 Allowed Orbits

For a given angular momentum, the effective potential, Eq. 5.22, can be recast in

dimensionless units as

V$ (ρ) =
$2

2ρ2
+ ρ. (5.27)

A plot of this effective potential for several different values of $ is shown in Fig.

5.1. The lowermost curve (i.e. the straight line) is the effective potential for zero

angular momentum. The uppermost curve is the effective potential for the highest
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Figure 5.1: Effective trapping potentials for atoms with angular momentum taking on
values of $ = 0, 0.1, ..., 1. The x axis of this plot is the radial coordinate of the trap
in units of the maximum trap radius. The y axis is the effective potential (including
angular momentum barrier) in units of the potential energy at the trap wall.

angular momentum allowed in the trap, (i.e. $2 = 1). A great deal of insight can be

gained from this graph.

Angular Momentum Constraints

Consider all atoms with some energy, Q, that pass through a given radius ρ.

If they are to occupy orbits that remain confined in the trap, their angular momenta

must be constrained in some way. Let the energy of one of these atoms correspond
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to the dotted line in Fig. 5.1. The classical turning points for this atom are given by

the intersection of the dotted line with the effective potential curve corresponding to

whatever angular momentum it can take. As this angular momentum is increased,

the distance between the two turning points is decreased until they meet to define a

circular orbit (at the cross in figure 5.1). It is impossible to have angular momentum

greater than this value while maintaining the atom at the fixed energy of the dashed

line. This condition is stated mathematically as

$2max (Q, ρ) = 2ρ
2 (Q− ρ) . (5.28)

Now consider the possible outer turning points for atoms of energy Q. As

the angular momentum is decreased from its maximum value ($ = 1), the outer

turning point occurs at ever increasing radii. At some point, the angular momentum

will reach a value that causes the outer turning point to intersect with the radius of

the trap wall which would result in atom loss. This condition defines the minimum

angular momentum for trapped atoms having energy Q and passing through radius

ρ,

$2min (Q, ρ) = 2(Q− 1). (5.29)

(Subject to the constraint that $2min ≥ 0).

Energy Constraints

A similar argument can be used to calculate the allowed energy values for

atoms passing through a given radius ρ. The minimum energy an atom at radius
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ρ can have is found by setting its kinetic energy to zero. Its total energy will then be

equal to its potential energy,

Qmin (ρ) = ρ. (5.30)

The maximum energy for an atom passing through some radius ρ can be found

by first identifying the effective potential curve with an inner turning point at ρ and

the outer turning point at the trap wall. The value of the effective potential at the

turning points is then equal to the maximum allowed energy for an atom passing

through radius ρ,

Qmax (ρ) = 1 +
ρ2

1 + ρ
. (5.31)

Radial Constraints

The effective radial potential will confine atoms with a given energy Q to cer-

tain radii in the trap. The largest possible radius these atoms can reach is achieved

by riding out on the $ = 0 effective potential curve to the outer turning point, see

Fig. 5.1. At this point the atom will have no kinetic energy and

ρmax (Q) = Q. (5.32)

(Subject to the constraint that ρmax ≤ 1).

As mentioned earlier, the effective potential is the sum of the actual potential

and the “angular momentum barrier.” As long as the energy of an atom is less than

the actual potential energy at the trap wall (neglecting the angular momentum barrier)

it is possible to place the atom in an$ = 0 orbit which samples the center of the trap.
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This means ρmin(Q ≤ 1) = 0. However, the only way to trap an atom with total

energy greater than the trap depth (Q > 1) is to place it in an orbit with $ > 0.

Due to the angular momentum barrier, no orbits with $ > 0 are allowed to sample

the center of the trap. Therefore, atoms with energy greater than the trap depth will

be confined to radii larger than some minimum value. This minimum value can be

calculated by first identifying the effective potential curve that gives an orbit with an

outer turning point at the trap edge. The inner turning point on this curve will then

be the minimum allowed radius. Solving the cubic equation for this inner turning

point and selecting the appropriate root gives a result for the minimum radius that

can be sampled by an atom of energy Q,

ρmin(Q ≤ 1) = 0

ρmin(Q > 1) =
1

2
(Q− 1) + 1

2

p
Q2 + 2Q− 3 (5.33)

Summary of Allowed Orbits

The grey area in Figure 5.2 represents the region of allowed radii and energy

for orbits that can be confined in a spherical linear trap. The allowed radii for a

given energy can be found by drawing a horizontal line along the energy of interest

and observing the intersection of this line with the allowed region. Similarly the

allowed energies at any radius can be found by drawing a vertical line along the

allowed radius and observing the intersection of this line with the allowed region to

get the allowed energies.
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Figure 5.2: The shaded area represents the region in radius/energy space that supports
confined orbits in the trap. Any combination of radius and energy not falling within
the shaded region must follow a trajectory that removes it from the trap.
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Figure 5.3: The solid line is the density of states in a linear, spherical trap obtained
by evaluating the integral of Eq. 5.34. The dotted line shows the ad-hoc fit of Eq.
5.35.

5.3.4 Density of States

Using the delta function technique for calculating the density of states, (see Eq. 5.6),

we can write

g (E) dE = dE
1

h3

ZZ
δ

µ
E −Gr − p2

2m

¶
d3rd3p.

The formalism need to transform this equation into spherically symmetric coordi-

nates has already been discussed. The result is
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g (E) dE = dE
1

h3

Z
dr

Z
LdL

Z L

−L

dLzp
L2 − L2z

δ

·
E − p2r

2m
− L2

2mr2
−Gr

¸
×

πZ
0

dθ

2πZ
0

dφ

= dE
³π
h

´3 ZZZ
δ
£
E − p2r/(2m)− L2/(2mr2)−Gr

¤
d
¡
L2
¢
dPrdr.

Integrating over pr and using δ [f (x)] =
¯̄̄
df(x)
dx

¯̄̄−1
δ (x− x0), this simplifies to

g (E) dE = dE
³π
h

´3√
2m

ZZ
d (L2) drp

E − L2/ (2mr2)−Gr
.

Finally, transforming to dimensionless variables and integrating over all allowed or-

bits, the number of trapped states with energies between Q and Q + dQ (i.e. the

density of trapped states) can be written as

g (Q) = A

ρmax(Q)Z
ρmin(Q)

dρ

$2max(Q,ρ)Z
$2min(Q,ρ)

d ($2)q
Q− $2

2ρ
− ρ

=


64
105

AQ7/2, Q ∈ [0, 1]
4A

ρmax(Q)R
ρmin(Q)

p
Q (ρ2 − 1)− (ρ3 − 1)dρ Q ∈ (1, 3

2
]

0 Q ∈ (3
2
,∞]

 (5.34)

where A ≡ ¡π
h

¢3q
2 (mηkT )3, and the limits of integration are defined in the pre-

vious discussion on allowed orbits. Since the integral in Eq. 5.34 doesn’t have a

simple solution, one can construct an analytic expression in an ad-hoc fashion and

adjust its parameters to approximate the density of states. This approximation is

g (Q) '


64
105

AQ7/2, Q ∈ [0, 1]
70A exp

h
−4 ¡3

2
−Q

¢−1/4 − (Q− 1)i Q ∈ (1, 3
2
)

0 Q ∈ (3
2
,∞]

 (5.35)
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Figure 5.3 shows a comparison of this ad-hoc fit to the density of states with the

exact result obtained by numerically integrating Eq. 5.34. This ad-hoc fit will prove

quite useful in calculating the fraction of elastic collisions that result in an atom being

evaporated.

5.3.5 Energy Dependant Density Distribution

From the expression for the density states, Eq. 5.34, the probability that a parti-

cle with energy between Q and Q + dQ, and angular momentum between $2 and

$2 + d ($2) can be found between radii ρ and ρ + dρ, is given by (in a Boltzmann

distribution)

P
¡
ρ,Q,$2

¢
dρdQd

¡
$2
¢ ∝ dρdQd ($2)q

Q− $2

2ρ
− ρ

exp (−ηQ) .

The dependence on $2 and be removed with the integral

P (ρ,Q) dρdQ ∝ dρdQ exp (−ηQ)
$2max(Q,ρ)Z
$2min(Q,ρ)

d ($2)q
Q− $2

2ρ
− ρ

(5.36)

∝
½

ρ
p
Q (ρ2 − 1) + (1− ρ3) exp(−ηQ)dQ, Q > 1

ρ2
√
Q− ρ exp(−ηQ)dQ, Q ≤ 1

¾
.

Using the fact that the density goes like probability divided by the differential vol-

ume, we arrive at

n (ρ,Q) dQ ∝
½

1
ρ

p
Q (ρ2 − 1) + (1− ρ3) exp(−ηQ)dQ, Q > 1√

Q− ρ exp(−ηQ)dQ, Q ≤ 1
¾
. (5.37)
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Eq. 5.36 is the probability of finding an atom with energy between Q and

Q+ dQ, at a radius between ρ and ρ+ dρ. Similarly, Eq. 5.37 can be thought of as

the density distribution for atoms whose energy lies between Q and Q+ dQ.

Intuition for the allowed orbits in the trap can be built by examining the graph-

ical representations of the probability function, Eq. 5.36 as shown in Figure 5.4.

These distributions have been rescaled to have peak values of unity. Figure 5.4.a

shows the shows the spatial distribution for atoms at a few representative energy val-

ues. As can be seen, for energies Q < 1, the radial distribution vanishes for ρ > Q.

For Q > 1, on the other hand, the distribution starts to “peel away” from the center

of the trap.

Figure 5.4.b shows the energy distribution of atoms passing through a few rep-

resentative radii. It is interesting to note that the energy distribution for atoms near

the center of the trap is closely approximated by a Boltzmann distribution truncated

at Q = 1. This is interesting because most of the atoms in ensembles confined at

large η, will be near the center of the trap. Therefore, approximating the energy dis-

tribution as a truncated Boltzmann distribution introduces only small errors when η

is large. As η is decreased, however, the size of the trapped cloud grows, causing

the distorted energy distributions at larger radii to play a more prominent role. This

leads to a breakdown in the large η approximation.
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Figure 5.4: a) These five traces are the radial probability distributions for energies of
Q = 0.3, 0.6, 0.9, 1.2, 1.45. The distributions have been scaled to have a peak value
of unity. b) These four traces are the energy probability distributions for atoms
found at radii ρ = 0, 0.3, 0.6, 0.9. They have also been scaled to have peak values
of unity.
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Figure 5.5: The solid lines show the trapped density distributions obtained by numer-
ically integrating Eq. 5.38 for η = 2, 4, 6, 8, 10. The high η approximation for the
density, n = n0e

−ηρ, is shown by the dotted traces for the same values of η.

5.3.6 Density Distribution

The density at any point in the trap can then be found by integrating Eq. 5.37 over

the allowed energy values to get

n (ρ) = n0

"
Qmax(ρ)R
Qmin(ρ)

n (ρ,Q) dQ

#
·
1R
0

n (0, Q) dQ

¸ , (5.38)
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where n0 is the density at the center of the trap. Evaluating this integral for the

density is a bit tricky. The numerator of Eq. 5.38 can be written as

1Z
ρ

p
Q− ρ exp (−ηQ) dQ (5.39)

+

1+ ρ2

1+ρZ
1

p
Q (ρ2 − 1) + (1− ρ3) exp (−ηQ) dQ

= I1 + I2

The integral I1 is straightforward to evaluate. The difficulty lies in evaluating I2.

Performing two changes of variables on I2 by letting y =
p
Q (ρ2 − 1) + (1− ρ3),

and then letting u =
p
η/ (1− ρ2)y, we arrive at

I2 =
2

η

s
1− ρ2

ηρ2
exp

·
−η
µ
1− ρ3

1− ρ2

¶¸Z √η(ρ2−ρ3)/(1−ρ2)

0

u2 exp
¡
u2
¢
du.

This is a considerable simplification allowing us to evaluate

n (ρ) = n0
(I1 + I2)

lim
ρ→0

(I1 + I2)

to get

n (ρ) = no
exp (x2) erf (x)− x

y
1
i
erf (iy) exp (−y2)

exp (η) erf
¡√

η
¢− 2pη/π

,

where x ≡pη (1− ρ) and y ≡
q
η ρ2

1+ρ
.

The complex error function can be expanded in the infinite series [35]

erf (x+ iy) =

 erf x+ e−x
2

2πx
[(1− cos 2xy) + i sin 2xy]

+ 2
π
e−x

2
∞P
n=1

e−
1
4n

2

n2+4x2
[fn (x, y) + ign (x, y)]


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where

fn (x, y) = 2x− 2x coshny cos 2xy + n sinhny sin 2xy

gn (x, y) = 2x coshny sin 2xy + n sinhny cos 2xy.

Taking x = 0 as is the case for a purely imaginary argument, the error function

becomes

1

i
erf (iy) =

y

π
+
2

π

∞X
n=1

e−
1
4
n2

n
sinh (ny) .

So, defining

SN (y) ≡ y

π
+
2

π

NX
n=1

e−
1
4
n2

n
sinh (ny) , (5.40)

we arrive at the following analytic expression for the density in the trap:

n (ρ) = no
exp (x2) erf (x)− x

y
SN (y) exp (−y2)

exp (η) erf
¡√

η
¢− 2pη/π

, (5.41)

where x ≡ pη (1− ρ) and y ≡
q
η ρ2

1+ρ
. Numerically integrating the exact expres-

sion for the density, Eq. 5.38, and comparing with the analytic expansion of Eq. 5.41,

we obtain an agreement of around 2% when only five terms (N = 5) are included in

the sum for SN .

Shown in Figure 5.5 is a comparison between the result of the large η approx-

imation and the exact solution for the density distribution in the trap. As can be

seen, at large η’s, the two distributions are quite similar. The distortion leading to

the breakdown of the large η approximation is clearly visible. As a rule of thumb,

the large-η approximation can be used η & 4.
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5.3.7 Collisional Energy Transfer

In preparation for the discussion on calculating the evaporation rate from a spherical

trap, we must develop an understanding of how energy is transferred during an elastic

collision between two atoms of equal mass. Specifically, we seek an answer to the

following question. Given two atoms of kinetic energy E1 and E2, what is the

probability that one of the atoms comes away with kinetic energy U1?

Consider two atoms that collide in free space (i.e. no external forces). Call

them atom 1 and atom 2. Before they collide, they have momenta P1 and P2, and

kinetic energies E1 and E2. After they collide, they have momenta Q1 and Q2 and

kinetic energies U1 and U2. Let’s make the following definitions:

P ≡ 1
2
(P1 +P2) Q ≡ 1

2
(Q1 +Q2)

p ≡ 1
2
(P1 −P2) q ≡ 1

2
(Q1 −Q2)

E ≡ E1 +E2 U ≡ U1 + U2
G2 ≡ E1E2

From these definitions we can immediately write that

P2+p2=Q2+q2=mE = mU ,

wherem is the mass of one atom. Furthermore, conservation of energy and momen-

tum give

Q= P

q = p. (5.42)
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We will solve for the energy of atom 1 after the collision has occurred. Expressing

this energy in terms ofQ and q, we write

U1 =
Q2
1

2m
=

1

2m
(Q+ q)2 .

But, from conservation of energy and momentum, Eq. 5.42, this can be written as

U1 =
1

2
E +

Pp

m
cos θ

where θ is the angle between q andQ. Substituting for Pp results in

U1 =
1

2
E +

1

2

h√
E2 − 4G2 cos2 α

i
cos θ (5.43)

U2 =
1

2
E − 1

2

h√
E2 − 4G2 cos2 α

i
cos θ

where α is the angle between P1 and P2.

A few words about the angles θ and α are in order. θ is the angle that the

relative momentum of the scattered particles, q, makes with the center of mass mo-

mentum, Q. We will assume that after the two particles collide, their direction, in

the center of mass frame, is randomized in solid angle. We also assume that the

initial momenta P1 and P2 are uniformly distributed over solid angle. Stated math-

ematically, this says the probability that P1 and P2 are oriented at angles α and φ

with respect to one another (arbitrary axis defining φ) is just

P (α, φ) dΩ =
1

4π
dΩ = −1

2
d (cosα) .

Similarly, the distribution of the angles between q andQ is
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P (θ, φ0) dΩ0 =
1

4π
dΩ0 = −1

2
d (cos θ) .

The distribution over both sets of angles is then given by

P (α, φ, θ, φ0) dΩdΩ0 =
1

4
d (cosα) d (cos θ) (5.44)

If we define

x ≡ cosα

y ≡ cos θ,

we can then rewrite Eq. 5.43 for the outgoing kinetic energy of atom 1 as

U1 =
1

2
E +

1

2

h√
E2 − 4G2x2

i
y, (5.45)

and the probability distribution over the angles, Eq. 5.44, simplifies to

P (y, x) dydx =
1

4
dydx. (5.46)

It should be noted that y ∈ [−1, 1], x ∈ [−1, 1]. Furthermore, x2 ≤ U1(E−U1)
G2

, to

ensure the kinetic energy of Eq. 5.45 remains real.

Differentiating Eq. 5.45 with respect to y, and substituting for dy in Eq. 5.46,

the distribution in scattered energy becomes

P (x,U1) dU1dx ∝ dU1dx√
E2 − 4G2x2

. (5.47)
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To find the probability of scattering into U1, we must integrate over all allowed values

of x,

Ps (U1) dU1 ∝ dU1

xmaxZ
−xmax

dx√
E2 − 4G2x2

where xmax = 1
G

p
U1 (E − U1). Properly normalizing, we obtain the probability

distribution

Ps (E,U1) dU1 =
2

E
sin−1

Ã
2
p
U1 (E − U1)

E

!
dU1. (5.48)

When two atoms with kinetic energies summing to E collide, Eq. 5.48 is the proba-

bility that one atom exits the collision with kinetic energy between U1 and U1+ dU1.

(Note that this result is easily transformed to the dimensionless units used in the rest

of this chapter by simply dividing all energies by ηkT .)

5.3.8 Evaporation Probability

In order to calculate the evaporation rate from the trap, the following question must

be answered. What is the probability that an atom of energy Q evaporates from the

trap? Or equivalently, what is the probability that an atom of energy Q remains in

the trap?

Imagine that a trapped atom comes away from an elastic collision with an en-

ergy Q. The collision will place it into one of many possible trajectories in the

trapping potential. If the trap were infinitely deep, each of these trajectories would

remain confined in the trap. In a finite trap, however, it is possible that only a frac-
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Figure 5.6: The solid line shows the probability that an atom of energyQ will evapo-
rate from the trap. The dashed line is a plot of the analytic result for the evaporation
probability obtained by using the ad-hoc fit for the density of trapped states, Eq. 5.35
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tion of these trajectories will result in confined orbits. This suggests a method of

calculating the probability that an atom remains trapped.

The probability that an atom of energy Q is found in a confined orbit of the

trap is given by the ratio of the number of trapped orbits of energy Q in a finite trap

to the number of these orbits in an infinite trap. This is identically the ratio between

the density of states of a finite trap to that of an infinite trap. Thus the probability of

evaporation is

Pv (Q) = 1− g (Q)

g∞ (Q)
(5.49)

Using the fit to the density of states derived in Eq. 5.35,

g (Q) '


64
105

AQ7/2, Q ∈ [0, 1]
70A exp

h
−4 ¡3

2
−Q

¢−1/4 − (Q− 1)i Q ∈ (1, 3
2
)

0 Q ∈ (3
2
,∞]

 ,
and

g∞ (Q) =
64

105
AQ7/2,

we arrive at the following expression for the probability that an atom of energy Q

occupies an orbit leading to evaporation.

Pv (Q) '


0 Q ∈ [0, 1]

1− 3675
32Q7/2

exp
h
−4 ¡3

2
−Q

¢−1/4 − (Q− 1)i Q ∈ (1, 3
2
)

1 Q ∈ (3
2
,∞]

 .
(5.50)

Figure 5.6 shows the evaporation probability as a function of energy, Q. Notice

that an atom must have energy at least that of the trap depth in order to evaporate.

Furthermore, any atomwith energy greater than 1.5 times the trap depth is guaranteed

to evaporate.
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5.3.9 Evaporation Fraction

The groundwork has now been laid to calculate the evaporation fraction for atoms

confined in a spherical linear trap. Eq. 5.13 for the differential elastic scattering rate

occurring at some radius ρ in reproduced here

dΓel (r) = n20 (r)σelv̄
√
2d3r.

This expression can be specialized to account for the energies involved in the col-

lision by using by Eq. 5.37 for n (ρ,Q), the density distribution of atoms with a

particular energy. The collision rate between atoms of energy Q1 and atoms of en-

ergy Q2 in the differential volume about some radius, ρ, is given by

dΓel (ρ,Q1, Q2) ∝ σelvrel (Q1, Q2, ρ)n (ρ,Q1)n (ρ,Q2) dQ1dQ2ρ
2dρ,

where vrel (Q1, Q2, ρ) ∝
√
Q1 +Q2 − 2ρ is the average relative velocity between

atoms. Integrating over all possible energies Q1 and Q2, the total collision rate for

atoms in the differential volume about ρ is

dΓel (ρ) ∝ σelρ
2dρ

Z Qmax(ρ)

Qmin(ρ)

Z Qmax(ρ)

Qmin(ρ)

n (ρ,Q1) v (Q1, Q2, ρ)n (ρ,Q2) dQ2dQ1

(5.51)

where, as before, Qmin (ρ) = ρ and Qmax (ρ) = 1 +
ρ2

1+ρ
.

The dimensionless kinetic energy of atoms with Q1 and Q2 is given by τ 1 =

Q1 − ρ and τ 2 = Q2 − ρ respectively. The sum of these kinetic energies is simply

τ = Q1+Q2−2ρ. We can now use Eq. 5.48 to write the probability, Ps (τ ,H1), that

a collision between two atoms whose kinetic energies sum to τ , results in one of the
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Figure 5.7: The solid line is the result of numerically integrating Eq. 5.52 to obtain
the fraction of elastic collisions that result in an evaporating atom. The dashed line
is a plot of the large η approximation for the evaporation fraction given in Eq. 5.14.
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atoms exiting the collision with kinetic energyH1. The total energy of this scattered

atom is the sum of its kinetic and potential energies, ρ + H1. The probability that

this atom evaporates is then given by Pv (ρ+H1) which was derived in Eq. 5.50.

The evaporation rate of the atoms found in the differential volume about ρ can then

be written as

dΓevap (ρ) =

"
σelρ

2dρ
R Qmax(ρ)
Qmin(ρ)

R Qmax(ρ)
Qmin(ρ)

n (ρ,Q1) v (Q1, Q2, ρ)n (ρ,Q2)×R τ
0
Ps (τ ,H1)Pv (ρ+H1) dH1dQ2dQ1

#
.

The fraction of elastic collisions that result in an evaporating atom is then given by

the mean of the ratio between the evaporation rate and the collision rate, or

f =
hdΓevapi
hdΓeli .

The expression for this average can be explicitly written out as

f =

1R
0

ρ2dρ


QmaxR
Qmin

n (ρ,Q1) dQ1

QmaxR
Qmin

v (Q1, Q2, ρ)n (ρ,Q2) dQ2×

2
τR
τ
2

Ps (τ ,H1)Pv (ρ+H1) dH1


1R
0

ρ2dρ

"
QmaxR
Qmin

n (ρ,Q1) dQ1

QmaxR
Qmin

v (Q1, Q2, ρ)n (ρ,Q2) dQ2

# (5.52)

The integrals in Eq. 5.52 do not have simple analytic solutions, and we resort to

numerical integration. The solid line of Figure 5.7 shows the result of numerically

integrating Eq. 5.52 to get the evaporation fraction. The dotted line is a plot of the

evaporation fraction in the large η approximation given by Eq. 5.14. As expected,

the large η approximation gives good agreement for η & 4.
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5.3.10 Average Energies

The average energies in the trap can be expressed in terms of integrals. These inte-

grals do not lend themselves to simple analytic solutions. For each of the energies

discussed below, the integral expression is written out explicitly along with a plot for

comparison with the large η approximation.

Average Energy in the Trap

The average energy in the trap is straightforward to calculate. We know

n (ρ,Q) from Eq. 5.37. The mean energy is then

Q̄ =

R 1
0
ρ2dρ

QmaxR
Qmin

Qn (ρ,Q) dQ

R 1
0
ρ2dρ

QmaxR
Qmin

n (ρ,Q) dQ

(5.53)

whereQmin = ρ andQmax = 1+
ρ2

1+ρ
. Figure 5.8 shows a comparison of the average

energy in the trap compared with the results of the large η approximation.

Average Energy of Inelastic Loss

Although Eq. 5.51 was derived to describe elastic collisions, it can also be used

to describe inelastic collisions as well. The only requirement is that the elastic cross

section, σel, be replaced with the inelastic cross section σin. Assuming that each

inelastic collision ejects one atom from the trap, the atom loss rate will be the same

as the collision rate. The expression for the average energy of the atoms lost due to
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Figure 5.8: The solid line shows the η dependance of the average energy of a trapped
atom, Q̄, as given by numerically integrating Eq. 5.53. The dashed line is a plot of
the large η approximation for Q̄.
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Figure 5.9: The solid line shows the η dependance of the average energy of atoms
lost due to inelastic collisions, Q̄d, as given by numerically integrating Eq. 5.54. The
dashed line is a plot of the large η approximation for Q̄d.
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inelastic scattering is then

Q̄d =

1R
0

ρ2dρ
QmaxR
Qmin

Q1n (ρ,Q1) dQ1

QmaxR
Qmin

v (Q1, Q2, ρ)n (ρ,Q2) dQ2

1R
0

ρ2dρ
QmaxR
Qmin

n (ρ,Q1) dQ1

QmaxR
Qmin

v (Q1, Q2, ρ)n (ρ,Q2) dQ2

(5.54)

Figure 5.9 shows a comparison of the average energy removed by inelastic collisions

compared with the results of the large η approximation. The discrepancy at large η

is caused by a failure to properly account for the relative velocities between atoms in

the large η approximation.

Average Energy of Evaporative Loss

The average energy of an evaporating atom is calculated by multiplying the dif-

ferential evaporation rate by the energy removed by an evaporating atom, (ρ+H1).

Integrating and normalizing by the evaporation rate gives

Q̄v =

1R
0

ρ2dρ


QmaxR
Qmin

n (ρ,Q1) dQ1

QmaxR
Qmin

v (Q1, Q2, ρ)n (ρ,Q2) dQ2×
τR
τ
2

(ρ+H1)Ps (τ ,H1)Pv (ρ+H1) dH1


1R
0

ρ2dρ


QmaxR
Qmin

n (ρ,Q1) dQ1

QmaxR
Qmin

v (Q1, Q2, ρ)n (ρ,Q2) dQ2×
τR
τ
2

Ps (τ,H1)Pv (ρ+H1) dH1


(5.55)

The solid line in Figure 5.10 shows the average energy removed by evaporating atom.

The dashed line is the trap depth. As can be seen, the average evaporated energy is

Ev = (η + κ) kT , where κ, is the given by the difference between the two lines in

Figure 5.10.
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Figure 5.10: The solid line shows the η dependance of the average energy of an
evaporated atom, Q̄v, as given by numerically integrating Eq. 5.55. The dashed line
is simply a plot of η. The difference between the solid line

¡
Q̄v

¢
and the dotted

line (η) is given by κ in Eq. 5.10 for the average evaporation energy in the large η
approximation.
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5.3.11 Effective Volumes

The effective volumes can be calculated using the same procedure as was taken in the

large η approximation. However, the resulting integrals are not easy to evaluate an-

alytically. Recalling the defining equations, N = n0Veff , and Γ = n20σ
¡
v̄
√
2
¢
Λeff .

The effective volume becomes

Veff (η) = 3V0

Z 1

0

n (ρ)

n0
ρ2dρ

= 3V0

Z 1

0

ñ (ρ) ρ2dρ

where

ñ (ρ) ≡ n (ρ)

n0
=
exp (x2) erf (x)− x

y
SN (y) exp (−y2)

exp (η) erf
¡√

η
¢− 2pη/π

,

SN (y) ≡ y

π
+
2

π

NX
n=1

e−
1
4
n2

n
sinh (ny) ,

N is an integer, x ≡pη (1− ρ) and y ≡
q
η ρ2

1+ρ
.

Similarly,

Λeff (η) = 3V0

1Z
0

ñ2 (ρ) ρ2dρ.

Recall from Eq. 5.17 that the average collision rate is given by

Γ̄ =
Γ

N
=

Λeff (η)

Veff (η)

h
n0σ

³
v̄
√
2
´i
. (5.56)

The quantity in brackets is the scattering rate experienced by a single atom at the

center of the trap. For large η, we previously found that the ratio, Λeff (η) /Veff (η)

evaluates to 1/8. Figure 5.11, shows the reciprocal of this ratio compared to its value

in the large η limit.
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Figure 5.11: The solid line shows the η dependance of the reciprocal to the average
density correction factor, Λeff (η)

Veff (η)
. In the large η approximation, this correction factor

approches 1/8 as shown by the dotted line.
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Figure 5.12: A given ratio between the elastic and inelastic scattering rates causes the
temperature of the trapped atoms to approach a fixed fraction of the trap depth. This
figure shows the cross section ratio that must exist to produce a given “equilibrium
η.”

5.3.12 Equilibrium η and Cross Section Ratio

Atoms confined in a trap and undergoing only collisional loss processes, will be

driven to a thermal distribution with a steady state temperature. This can be un-

derstood by noting that evaporative loss produces cooling whereas inelastic loss pro-

duces heating. These two processes compete against each other to drive the system

to a steady state temperature. The ratio of the trap depth to this steady state tempera-

ture is defined to be the equilibrium η.
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We now show that the equilibrium η will depend only on the ratio of elastic to

inelastic cross sections, γ ≡ σel/σin. To prove this, we differentiate the total energy

in the trap E = NĒ to get

dE

dt
= Ē

dN

dt
+N

dĒ

dt
.

But for steady state temperature, dĒ
dt
= 0, so

Ē =
Ė

Ṅ
=

ṄvĒv + ṄdĒd

Ṅv + Ṅd

,

where Ṅv is the evaporative loss rate and Ṅd is the inelastic loss rate. If the total

elastic and inelastic scattering rates are Γel and Γin and their ratio is γ = Γel/Γin =

gel/gin = σel/σin, the steady state value for the average energy is

Ē =
fγĒv + Ēd

fγ + 1
.

Dividing through by ηkT , the dimensionless steady state value for the mean energy

is

Q̄ =
fγQ̄v + Q̄d

fγ + 1
.

Solving for γ, the following expression for the ratio of cross sections is obtained

γ ≡ σel
σin

=
Q̄− Q̄d

f
¡
Q̄v − Q̄

¢ . (5.57)

Since each variable on the right hand side of Eq. 5.57 depends only on η, the cor-

respondence between cross section ratio and equilibrium η is demonstrated. Figure

5.12 shows the relation between the equilibrium η and the cross section ratio.
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5.3.13 Collision Rate Coefficients

Recall our assumption that the only trap loss mechanisms stem from Cr-Cr interac-

tions. These interactions allow only two avenues for atom loss: inelastic collisions,

and evaporation over the edge. The quantity we experimentally measure is the sum

of these two loss processes, or equivalently, the two-body loss rate. At very large η,

the loss is dominated by inelastic collisions, but as η is decreased one could imagine

the evaporation loss making a significant contribution. It is important to understand

the size of the evaporative contribution to the trap loss.

We assume each inelastic collision results in one atom being evaporated from

the trap. From the defining equation for the collisional effective volume, Γ =

n20σ
¡
v̄
√
2
¢
Λeff , we can write

Ṅin = Γ = Λeffσ
³
v̄
√
2
´
n20

= Λeff (η) ginn
2
0.

where gin ≡ σin
¡
v̄
√
2
¢
. For a trapped ensemble at constant temperature, Ṅ =

Veff (η) ṅ0. Substituting for Ṅ , we obtain a differential equation for the peak density

in the trap when only inelastic losses are considered

[ṅ0]in = −gin
Λeff

Veff
n20.

Using a similar analysis for the evaporation process, the differential equation for the

peak density in the trap due to both inelastic collisions and evaporation becomes

ṅ0 = − (gin + fgel)
Λeff

Veff
n20 = −g2bn20, (5.58)
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Figure 5.13: There are two avenues whereby atoms can leave the trap. They can
either be driven out by inelastic collions, or they can be evaporated over the edge
of the trap. For atoms confined at a steady state temperature, this plot shows the
fraction of the total atom loss attributable to evaporation.
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where g el and gin are the elastic and inelastic scattering rate coefficients, f is the

evaporation fraction, and g2b ≡ Λeff
Veff

(gin + fgel) is the two-body loss rate that we

measure in our experiments. Defining the ratio of elastic to inelastic collisions as

γ ≡ gel/gin, the elastic and inelastic rate coefficients are

gin =
Veff
Λeff

1

fγ + 1
g2b (5.59)

and

gel =
Veff
Λeff

γ

fγ + 1
g2b. (5.60)

The fraction of the two-body loss due to evaporation over the edge of the trap

is

Fevap =
fγ

1 + fγ
=

Q̄− Q̄d

Q̄v − Q̄d

. (5.61)

The last step in Eq. 5.61 uses the relationship between the cross section ratio and the

equilibrium η obtained earlier, γ = Q̄−Q̄d

f(Q̄v−Q̄) , where Q̄, Q̄v, and Q̄d are the average

energies of trapped, evaporated and inelastically lost atoms respectively. A plot of

this fraction is shown in Figure 5.13. As can be seen, the evaporative contribution to

the atom loss rate peaks at around 20% of the total two-body loss rate.

5.3.14 Comparison with Data

We are now prepared to use this model to provide a consistency check on our data.

Shown in Figure 5.14 is a summary of the scattering rate measurements taken in our

experiment. The points and error bars in the upper trace come from our direct mea-

surements of the elastic scattering rate. The points and error bars in the lower plot
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are our measurements of the two body loss rate from our trap. These measurements

were taken some time ago and are fully described in the thesis of Jonathan Weinstein

[13].

The new information on this graph is contained in the solid lines. Given the

measured two-body decay rate, and the measured equilibrium η of the trapped atoms,

we can use Eq. 5.59 and Eq. 5.60 to calculate the elastic and inelastic scattering rates.

These inferred rates are shown by the solid traces.

It should first be noticed that the inelastic scattering rate is slightly smaller than

the measured two-body loss rate. This is because some of the atoms are being lost

due to evaporation. Secondly, it can be seen that the values inferred for the elastic

rate fall to within a factor of 3 of our independently measured values. There is,

however, a disturbing systematic trend. While the measured elastic rate appears to

be either flat or slightly increasing at lower temperatures, the elastic rate predicted by

the equilibrium η calculation is decreasing at smaller temperatures.

One possible reason for this systematic discrepancy is the inadequacy of the

spherical approximation in describing our actual trap geometry. Another possibility

is that the collisional cross sections are not uniform throughout the volume of the trap.

One could imagine a situation where the inelastic scattering rate at low magnetic

fields is much larger than at higher fields. Our model of trapped gases implicitly

assumes uniform scattering cross sections throughout the trap volume. A violation
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Figure 5.14: The points and accomanying error bars show our measured values for
the elastic (upper) and two-body (lower) loss rate coefficients for temperatures be-
tween 20 and 400 mK. Measurements of the “equilibrium η” (not shown) can be
combined with the measured two-body loss rate to infer values for the elastic and
inelastic scattering rate coefficients. These are plotted with solid lines. The in-
ferred elastic rate coefficient falls within the error bars of the values we obtain from
independant measurements. This provides a self-consistency check on our data.
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of this assumption would lead to different predictions for the equilibrium η. This

would impact the inferred scattering rates in Figure 5.14.
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Chapter 6
Scattering Theory

At the writing of this thesis, there is no theoretical explanation for the enor-

mous inelastic scattering rates observed in our experiment. The energy scales for

the collisions in our experiment are in the fuzzy region between classical and quan-

tum physics. It is somewhat surprising that the theory of quantum scattering in the

few-partial-wave regime is understood so poorly. This chapter represents the efforts

of a poor experimentalist in desperately trying to wrap his brain around the surpris-

ingly complicated analyses needed to theoretically describe collisional processes in

this energy regime. Although a rigorous treatment of the scattering theory involved

in this problem will not even be attempted, this chapter will hopefully provide an

intuitive grasp of the problem at hand. The arguments will be qualitative and hand-

wavy in nature. Vigorous theoretical work is currently being undertaken to provide

a thorough and rigorous treatment of the scattering processes we observe in our ex-

periment.

6.1 Experimental Energy Regime

The standard approach to collisional physics is to consider the problem in the center

of mass frame of the colliding atoms. If the interaction potential between the two

atoms depends only on their separation, the center-of-mass angular momentum will
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be preserved in the collision. Considering the problem from the framework of quan-

tum mechanics, the center-of-mass angular momentum will be quantized in units of

}. This introduces the so called “angular momentum barrier” term to the interaction

potential. The effective radial potential for the collision is then given by

Ul (r) =
L2

2µr2
+ V (r)

'
r→∞

}2l (l + 1)
2µr2

− C6
r6
,

where l is the angular momentum quantum number andC6/r6 is the long-range inter-

atomic interaction potential. Figure 6.1.a shows a plot of this effective potential for

various values of l. As can be seen, the effect of the angular momentum barrier is

to create a maximum for each l 6= 0 effective potential curve. Crudely speaking, a

collision will not occur unless the initial kinetic energy of the system is larger than

the effective potential imposed by the angular momentum barrier. The height of

this barrier, for the various values of l is shown in Figure 6.1.b. This height can be

thought of as a threshold below which scattering in the l’th partial wave cannot occur.

Assuming a C6/r6 long range interaction, the threshold radius and energy [36]

corresponding to the peak in the effective potential are

b2 =

s
6C6µ

}2l (l + 1)

Ethresh =
}2l (l + 1)
2µb2

− C6
b6
,

where µ is the reduced mass of the colliding atoms, b is the radius of the peak in the

effective potential and Ethresh is the corresponding theshold energy.
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Figure 6.1: a) The effective potential between two chromium atoms are plotted for
five different values of the angular momentum quantum number. The peak of these
effective potential curves corresponds to the threshold energy below which scattering
in l’th partial is frozen out. b) These threshold energies are plotted as a function of
the angular momentum quantum number.
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In calculating the values for Figure 6.1, the chromium C6 coefficient is esti-

mated by using the relationship between atom polarizability and the C6 coefficient.

Assuming the dominant contribution to the polarizability comes from the a7S3 →

z7P2,3,4 transitions in chromium, this relationship is given by

C6 ' 3

4
α2hν,

where α = 11.6Å3 is the chromium polarizability [37] h is Plank’s constant and ν is

the a7S3 → z7P2,3,4 transition frequency. This gives the estimate,

C6 ' 3.8× 10−77Joule ·meter6

= 390Hartree · bohr6.

In the usual partial wave expansion for elastic scattering [38], the total collision

cross section is given by

σ =
4π

k2

X
l

(2l + 1) sin2 δl.

Due to the symmetrization requirements for interactions between two-identical bosons

(e.g. two 52Cr atoms), only even angular momenta contribute and the cross section

is enhanced by a factor of two. In the ultra-cold limit, scattering between identical

Bosons is entirely due to the s-wave (l = 0) contribution. Since p-wave (l = 1) scat-

tering is forbidden by symmetrization, the ultra-cold limit is achieved when the col-

lision energy is less than the d-wave (l = 2) energy threshold, which for chromium,

is estimated to be ∼ 2.6mK.
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6.2 Possible Observation of Shape Resonances

The inelastic scattering rates measured in our experiments show a sharp increase at

temperatures just above the ultra-cold regime. Although the mechanism behind this

enormous increase is not completely understood, we have a working hypothesis that

seems to form a consistent picture of our results.

We think the behavior of the measured inelastic rates could be caused by the

presence of a shape resonance. Shape resonances can be understood by examining

the two plots in Figure 6.2. In each of these plots, the x-axes represent the inter-

atomic separation. The thicker curve represents an interatomic effective potential

with non-zero angular momentum. The peak in this effective potential is due to the

interplay between the angular momentum barrier and the long-range interaction po-

tential. Bound states have been sketched in the inner region of this potential. One of

these “bound states” has energy greater than zero. This state is called a quasi-bound

state.

Resonant scattering can be understood as follows. Imagine two particles col-

liding with a kinetic energy shown by the thin straight line in Figure 6.2.a. The wave

function can tunnel through the angular momentum barrier to create a non-vanishing

probability of finding the atoms at small separation. However, due to tunneling, the

wavefunction amplitude is exponentially suppressed in the inner region of the poten-

tial.
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Figure 6.2: a) The effective interaction potential (including the “angular momentum
barrier”) is sketched as a function of the distance between atoms. Bound states are
drawn in the resulting energy well. A sketch of a radial wave function for scat-
tering at an arbitary (non-resonant) energy is supperimposed on the potential. b)
The picture is slightly different when the scattering energy coincides with one of the
quasi-bound states in the potential well. The wave function is resonantly enhanced
in the region of the energy well. This mechanism for enhancing the wavefunction at
small distances is called a shape resonance.
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When the kinetic energy of the system coincides with the energy one of the

quasi-bound states in the effective potential as shown in Figure 6.2.b, the wavefunc-

tion at small separations is resonantly enhanced. This enhancement is analogous to

the electric field enhancement inside a resonant optical cavity. In this analogy, the

inner region of the potential takes on the role of the cavity, and the wave function

corresponds to the electric field.

The enhanced probability of finding the two atoms at small separations may

have a significant impact on the inelastic scattering rates. Both of the mechanisms

discussed below for inelastic scattering involve interactions whose strength depends

on the inter-atomic separation. The dipole-dipole interaction varies as ∼ 1/r3, and

second order spin-orbit coupling requires an overlap of the atoms’ electron clouds.

Since the strength of these interactions would be dominated by the portion of the

wavefunction found at short range, one can imagine that a resonant enhancement of

the short-range wavefunction amplitude would also cause a resonant enhancement of

the inelastic scattering processes.

Understanding our observed inelastic rates beyond this hand-waving, qualita-

tive picture requires a full quantum calculation. Although such a calculation is be-

yond the scope of this thesis, a few words about the possible mechanisms for inelastic

scattering are in order.
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6.3 Mechanisms of Inelastic Scattering

Throughout this thesis, the term “inelastic scattering” has been continually used.

This section defines what we mean when we say “inelastic collision” and discusses

the various underlying mechanisms.

Chromium has a 7S3 configuration in its ground state. It has total angular

momentum J = 3 which is due entirely to the spin of its electrons. There is no

orbital angular momentum in the ground state, l = 0. The Bosonic isotope of

chromium, 52Cr, has no nuclear spin. The resulting absence of nuclear-spin hyperfine

interactions greatly simplifies the understanding of its internal structure.

When trapped in a magnetic field, the angular momentum (i.e. the spin) of

a chromium atom will be aligned with the magnetic field. In this orientation, the

atom-field interaction energy, UB = −µ ·B, is maximized. Collisions between two

chromium atoms can result in one or both of them changing its spin projection to

reduce the interaction energy with the field. Any interaction between two chromium

atoms that drives a spin flip to a lower energy state in one or both atoms is defined to

be an inelastic collision.

The interactions involved in the collision between two chromium atoms are due

to the following Hamiltonian

V = − ~
2

2µ

∂2

∂R2
+ Ves (R) + 2J (R)S1 · S2 + Vdip (R) + Vso (R) .
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The first term in this interaction is just the kinetic energy of the colliding atoms in the

center of mass frame. The spin-independent part of the electrostatic interaction is

represented by the Ves (R) term. At large inter-atomic separation this term becomes

the Van-der-Waals interaction. The term involving the dot product of the two atom

spins is due to the exchange interaction. It is used to model Pauli exclusion effects

when the wavefunctions of the atoms begin to overlap [39, 40]. The dipole-dipole

magnetic interaction between the two atoms is represented by Vdip (R). The Vso (R)

term represents interactions stemming from the second-order spin-orbit coupling in

the diatomic molecule temporarily formed by the colliding atoms

6.3.1 Exchange Interaction

The exchange interaction gives rise to spin exchange collisions. These are colli-

sions in which the orbital angular momentum of the collision trajectory remains

constant while the spin projections of the two atoms along the quantization axis

is interchanged. This spin exchange property is easily seen by noting that the

spherically symmetric J (R) cannot change angular momentum. The dot product

S1 · S2 = S1xS2x + S1yS2y + S1zS2z, however, can be expressed in terms of the pro-

jection operator, Sz, and the ladder operators S+ = Sx + iSy and S− = Sx − iSy.

This gives

2J (R)S1 · S2 = J (R) [S1+S2− + S1−S2+ + 4S1zS2z] .
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From this expression it is clear that, for inelastic collisions, the only role played by the

exchange interaction is that of exchanging spin projections between atoms. The total

angular momentum, and its projection along a quantization axis remain unchanged.

6.3.2 Dipolar Interaction

The magnetic dipole-dipole interaction between two magnetic moments, s1 and s2,

can be written as

HD =
µ0
4π

γ2

r3
[S1 · S2 − 3 (S1 · n) (S2 · n)] ,

where γ is the gyromagnetic ratio for each of the spins, r is the separation distance

between them, and n is the unit vector pointing from one spin to the other. As two

atoms collide with one another, this interaction will present a time varying Hamil-

tonian in the quantum mechanical description of the two atoms. The inelastic col-

lisions caused by this time varying Hamiltonian can be broken down into a spin

exchange compenent and a “dipolar relaxation” component.

Spin Exchange Term

To understand the spin exchange interaction, imagine a collision between two

atoms with spins denoted by |s1,m1i and |s2,m2i respectively. The atomic spins

before the collision are described by the product state |αi = |s1,m1i |s2,m2i, and

after the collision by |α0i = |s01,m0
1i |s02,m0

2i.
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A spin exchange collision is a process that doesn’t change the overall combined

spin of the two atoms. It simply swaps angular momentum between them. This can

be symbolically stated as

|s1,m1i |s2,m2i→ |s1, (m1 + 1)i |s2, (m2 − 1)i

As in the case of the exchange interaction, the S1 · S2 term in the dipole interaction

is responsible for the spin-swapping between atoms. Notice that this process cannot

occur if both colliding atoms are in thea state with |m| = s. This means that spin

exchange processes do not occur between atoms that are completely aligned with the

magnetic field.

Dipolar Relaxation

The other process caused by the dipole interaction is often called dipolar re-

laxation. Dipolar relaxation can be understood by expanding on the notation of the

previous section to include the projection, , ml, of the orbital angular momentum

of the colliding atoms along the quantization axis. The state of the two atom sys-

tem before and after the collision can then be written as |αi = |m1i |m2i |mli, and

|α0i = |m0
1i |m0

2i |m0
li respectively. Dipolar relaxation is a collisional process that

exchanges angular momentum between the individual atom spins and the orbital an-

gular momentum the atoms have in their center of mass frame. There are three

possibilities for this, which are schematically described by

|m1i |m2i |mli→
 |m1 ± 1i |m2 ± 1i |ml ∓ 2i

|m1i |m2 ± 1i |ml ∓ 1i
|m1 ± 1i |m2i |ml ∓ 1i

 .



134

Notice that in dipolar relaxation, each atom has its spin projection changed by one.

Conservation of angular momentum is maintained by putting the extra angular mo-

mentum into the relative motion of the atoms.

Dipole-Dipole Selection Rules

The dipole-dipole interaction is explained quite nicely on page 1120 of Cohen

Tanoudi’s book on quantum mechanics [41]. This treatment is reproduced here to

demonstrate how the various inelastic loss processes can be derived from the dipole-

dipole interaction Hamiltonian, and to determine the so-called selection rules for spin

changing collisions mediated by this interaction.

Consider the interaction of two spins denoted by s1 and s2. Let the gyro-

magnetic ratio for either spin be denoted by γ. If the two spins are separated by a

distance r, and the unit vector pointing from one spin to the other is n, the magnetic

dipole-dipole interaction between the two spins can be written as

HD =
µ0
4π

γ2

r3
[s1 · s2 − 3 (s1 · n) (s2 · n)] .

This Hamiltonian can be expressed in terms of quantum mechanical operators by

making the definitions

T0 = A0Y
0
2 S1zS2z

T 00 = A00Y
0
2 (S1+S2− + S1−S2+)

T±1 = ∓A1Y ∓12 (S1zS2± + S1±S2z)

T±2 = A2Y
∓2
2 S1±S2±,
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where A0 = 4
p

π
5
, A00 =

p
π
5
, and A1 = A2 = 3

q
2π
15
, are normalization constants

, Y m
l are the spherical harmonic functions, S1z, S1± are the projection and ladder

operators for the spin of atom 1 and S2z, S2± are the projection and ladder operators

for the spin of atom 2. In terms of these operators, the Hamiltonian can be written as

HD = U (r) [(T0)non−spin−flipping + (T
0
0)spin exchange

+(T1 + T−1 + T2 + T−2)dipolar relaxation],

where the different terms have been labeled to indicate the physical process they are

responsible for. The T0 term does not flip any spins. The T 00 term is responsible

for spin exchange processes. The T±1 and the T±2 terms are responsible dipolar

relaxation.

Before scattering, let the two atom wavefunction be represented by

|αi = |n, l,mli |m1,m2i

where m1 and m2 are the spin projections of the individual atoms and |n, l,mli =

R(n, l, r)Y m
l (θ, φ) is the orbital wave function of the two atom system. If the scat-

tered wavefunction is denoted by |α0i, the scattering calculation will require solutions

with the matrix elements

Sα0,α = hα0|T0 |αi+ hα0|T 00 |αi

+ hα0|T+1 |αi+ hα0|T−1 |αi

+ hα0|T+2 |αi+ hα0|T−2 |αi .
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Each term in this matrix element will involve the integral of a triple product of spher-

ical harmonics Z
Y m0∗
l0 Y q

2 Y
m
l dΩ.

This triple product integral is exactly what we would obtain if we were adding an

angular momentum of l = 2, ml = q to the initial orbital angular momentum of

the two-particle system. As a matter of fact, the so called “triangle rule” of angular

momentum addition is derived from precisely such an integral. This “triangle rule”

constrains the post-scattering angular momentum to l0 = |l − 2| , |l − 1| , ... |l + 2|.

A further constraint is imposed by the fact that the integrand must possess even

parity if the integral is not to vanish. Since spherical harmonics have even parity for

l = even, and odd parity for l = odd, the integrand will be even if l − l0 = even.

This additional constraint leaves us with the orbital angular momentum selection rule

for spin changing collision mediated by the dipole-dipole interaction,

∆l = 0,±2 for l and l0 > 0
∆l = +2 for l or l0 = 0

The integral of triple spherical harmonics also imposes conservation of the z compo-

nent of the total system angular momentum. In any collision, it must be true that

m0
1 +m0

2 +m0
l = m1 +m2 +ml.

6.3.3 Second-Order Spin-Orbit Coupling

Second order spin-orbit coupling is properly understood in terms of molecular the-

ory. It is called second order because in the molecular theory, it makes its appearance
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only in second order perturbation theory. Although it is expected to be a small ef-

fect for chromium, current theoretical work is being carried out to confirm this. A

description of second-order spin-orbit coupling is beyond the scope of this discus-

sion. As such, we will not discuss it further, but merely mention its existence for

completeness.

6.4 Current State of Theory

The theoretical description of chromium scattering is an area of active research. Al-

though steady progress is being made, a full theoretical description does not yet exist.

Preliminary calculations produce a seeming disparity with our measured results for

both the elastic and inelastic scattering rates. The source of this disagreement is

being vigorously investigated. The sensitivity of the calculated scattering rates on

the scattering potentials, combined with uncertainty of the ab-initio methods used to

generate them, makes the scattering potentials a likely suspect for causing the dis-

crepancy between calculated and measured values of the inelastic scattering rates.

6.5 Unanswered Questions

The behavior of our measured inelastic scattering rates is poorly understood. The

unexpected results of our measurements give rise to several unanswered questions

worthy of consideration.
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The broadest question is, what causes the sharp increase in the inelastic scat-

tering rate as the temperature approaches the ultracold limit? What are the physical

mechanisms behind this increase?

Are the inelastic rates caused by dipolar interactions, second-order spin-orbit

coupling, or some other process we don’t fully understand? Is it possible we are

observing a scattering resonance? In the present incarnation of our experiment we

are unable to distinguish between temperature effects and magnetic field effects. If

we are seeing a resonance, is it more sensitive to the temperature of the atoms, or to

the average magnetic field they sample?

The peak in the measured scattering rate occurs at energies not far from the

estimated threshold for d-wave scattering which marks the onset of the ultra-cold

limit. What is the possible significance of this?

How general are these observations? Is this sharp increase in the inelastic rate

a general phenomenon of scattering in this energy regime? Or is it an effect likely to

be observed only for atoms with large magnetic moments like chromium? Or could

it be due to some effect that is unique to the chromium system?

It will be up to further experiment and theory to sort out the full features of this

system.
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Chapter 7
Laser Cooling

Our measurements on magnetically trapped chromium show a dramatic in-

crease in the inelastic collision rate as the temperature is reduced. There is reason

to believe that this inelastic rate could decrease with a further reduction in tempera-

ture. At the end of our initial experiments on creating cold chromium, evaporation

did not look promising as a tool for cooling chromium through this regime of unusu-

ally large inelastic scattering rates. The enormity of the inelastic rate causes very

poor efficiency in the evaporative cooling process. In hopes of pushing through this

region of “bad” inelastic scattering rates, we embarked on a program to implement

laser cooling in our spherical quadrupole magnetic trap.

7.1 Overview of the Model

Lasers are rarely used to provide cooling for magnetically trapped atoms. The large

Zeeman broadening produced by the trapping fields makes it difficult to address a

significant fraction of the atoms. Additionally, at temperatures typically found in

magnetic traps, the Doppler broadening is small compared to the natural line width

of the cooling transition. The combination of these two factors limit the cooling

power attainable with a laser of a given intensity.
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There is a strong, non-trivial interdependence between the various parameters

that are relevant for laser cooling. These include laser beam parameters (diameter,

intensity, spacial offset), magnetic trap depth, atom density, initial atom temperature

and density (before laser cooling), final atom temperature and density (after laser

cooling), the optical transition strength, and Zeeman broadening. In our chromium

experiment, this parameter space is constrained by the conditions that are experimen-

tally realizable in our trap. The transition strength and Zeeman broadening are set

by the properties of chromium. For a given trap depth, the atom density and initial

atom temperature are uniquely determined by the “equilibrium η” imposed by the

ratio of elastic to inelastic scattering rates. The relationship between the other para-

meters (trap depth, beam parameters, and final temperature and density) is non-trivial

to model and numerical methods must be employed.

To do this, a simulation can be performed that accounts for all the possible

heating and cooling and atom loss mechanisms in the trap. By adding the thermal

effects, and additional losses caused by the laser, to the collisional heating/cooling

processes, the number of atoms and their temperature can be traced out as a function

of time.

7.2 Laser Induced Heating and Cooling
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7.2.1 Zero-field Doppler Heating/Cooling

In order to understand Doppler cooling in our trap, it is instructive to first consider the

case of Doppler cooling in the absence of a trapping field. In this case, the transition

used for Doppler cooling will not be subjected to the spatially dependant Zeeman

shifts associated with the trapping fields. The thermal effects of the laser are then

more easily understood.

The atom’s kinetic energy before absorbing a photon can be written asE = p2

2m
.

For a small change in momentum, the change in kinetic energy is simply dE = p
m
·dp.

If the change in momentum is due to the absorption of a photon, one can replace dp

with the momentum of the photon, ~k, to get

dE = ~k · p
m
= ~k · v (7.1)

The validity of assuming the photon kick is small compared to the momentum of the

atom can be confirmed as follows. For temperatures as low as 70 µK, the momentum

of the average Cr atom is still ten times larger than that of a photon resonant with the

a7S3 → z7P4 transition of 52Cr at 427 nm. The average momentum does not

become equal to that of a resonant photon until a temperature of 670 nK.

Due to the Doppler shift, the red detuned photons of the cooling laser are pref-

erentially absorbed by atoms counterpropagating to the laser beam. The photons

reemitted by these atoms will be randomly directed. The probability a photon is

emitted in an arbitrary direction is identical to the probability that it is emitted in

the opposite direction. This causes the expectation value for the emitted photon fre-
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quency in the lab frame to be that of the Doppler free transition regardless of atom

velocity (neglecting relativistic effects).

Since the cooling laser photons are red detuned from the Doppler-free transition

frequency, each of their energies will be less than that of the average photon reemitted

by an atom. This detuning presents a discrepancy between the energy of an absorbed

photon and the average energy of an emitted photon. This discrepancy is accounted

for by a change in the atom’s kinetic energy. It follows that the average photon-atom

energy transfer is simply Plank’s constant multiplied by the detuning from resonance.

This argument can be formalized by substituting the expression for the Doppler shift,

∆ω = −k · v, into Eq. 7.1 which leads directly to

dE = h∆ν,

where dE is the change in kinetic energy for the atom, and∆ν is the detuning of the

laser from resonance.

It is useful to compare this change in energy to the energy carried by a photon,

Ephoton = hν. The ratio dE
Ephoton

= ∆ν
ν
can be thought of as the fraction of the

photon’s energy that goes into heating/cooling the the atom. This can be generalized

to the case of a laser passing through a cloud of atoms by taking the fraction of

photons that get scattered by the laser (a.k.a. the optical absorption of the atoms) and

multiplying that by the fractional change in energy between scattered and incident

photons. This gives

Ptherm

Plaser
= A (ν) · ∆ν

ν
(7.2)
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where Plaser is the power in the laser beam, Ptherm is the heating/cooling power

it provides, and A (ν) is the absorption experienced as the beam passes through a

thermal cloud of atoms having a Doppler broadened transition.

7.2.1 Doppler Heating/Cooling in Trapping Fields

Zeeman Broadening

In a magnetic trap, the Zeeman shift imposed by the trapping fields compli-

cates the Doppler cooling process. The effect of this field can be readily understood

by first considering the case in which Doppler effects are neglected. Imagine being

able to take a snapshot of the magnetically trapped ensemble. Each atom is natural-

linewidth broadened and sitting in a slightly different magnetic field from virtually

all other atoms. The Zeeman shift causes the resonant frequency of a single atom’s

optical transition to be slightly different from that its neighbors. This one-to-one cor-

respondence between an atom’s resonant frequency and the strength of the magnetic

field engulfing it, can be used to determine its location in the trap. A laser beam of

a given frequency passing through an ensemble of magnetically trapped atoms will

be resonant only with those atoms residing at a particular magnetic field. The opti-

cal density that these atoms present to the laser beam is directly proportional to their

number density. By sweeping the laser frequency and monitoring the resulting ab-

sorption, the optical density can be measured as a function of magnetic field, thereby

providing a determination of the atom density distribution in the trap.
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Figure 7.1: Clebsch Gordon coefficients for the 7S3 →7 P4 transition of chromium.

Doppler Cooling Spectrum for Chromium

Laser cooling of chromium is most efficiently performed by cycling on the vir-

tually closed |a7S3,mj = 3i → |z7P4,mj = 4i transition. Figure 7.1 shows the

three allowed dipole transitions for atoms excited from the |a7S3,mj = 3i ground

state of chromium. They are the∆m = +1 transition for |a7S3,mj = 3i→ |z7P4,mj = 4i,

the∆m = 0 transition for |a7S3,mj = 3i→ |z7P4,mj = 3i and the∆m = −1 tran-

sition for |a7S3,mj = 3i→ |z7P4,mj = 2i. Each of the excitedmj states has a dif-

ferent magnetic moment causing each of the associated transitions to experience dif-

fering shifts in the presence of a magnetic field. These differing Zeeman shifts allow

frequency discrimination between the possible transitions from the |a7S3,mj = 3i

ground state. Figure 7.2.a shows a calculated spectrum for a thermal distribution

of atoms confined in a magnetic trap. The large, broad peak on the right is due

to absorption on the ∆m = +1 transition. The smaller, more narrow peak on the
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left is due to ∆m = 0 transitions. Not visible on this spectrum, but also present is

the absorption from the ∆m = −1 transition. The shown calculation is for a peak
52Cr number density of 2 × 1010 cm−3 in thermal equilibrium at a temperature of

30 mK while confined in 180 mK deep trap. The solid trace is calculated ne-

glecting Doppler broadening. The details of this calculation have been expounded

elsewhere [13] and are beyond the scope of this discussion. The dashed trace, how-

ever, shows the changes introduced to the spectrum by taking Doppler broadening

into account. The Doppler broadening can be calculated by a simple convolution of

the Doppler-free spectrum with the unit-normalized Doppler profile [42],

D (ν, ν 0) =
1√
2πv2

s
mc2

kBT
exp

"
− mc2

2kBT

µ
ν 0 − ν

ν

¶2#
,

where ν is the Doppler-free resonant frequency, m is the mass of the atom, kB is

Boltzmann’s constant, T is the temperature, and ν 0 is the probe frequency. The

full-width-half-max of this Doppler profile is

∆ν =
2ν0
c

r
2kBT ln (2)

m
.

A rough estimate of the cooling power obtainable from a laser passing through

a trapped atom ensemble can be obtained from graphs such as Figure 7.2.a by using

the difference in absorption between the Doppler-free and Doppler-broadened spectra

as the relevant absorption factor in Eq. 7.2. A more rigorous approach, however is to

determine the thermal to optical power ratio by convolving the field-free power ratio
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Figure 7.2: a) Simulation results for spectrum of trapped atoms. The solid line
neglects Doppler broadening. The dotted line is Doppler broadend. The larger
feature on the right is due to ∆m = +1 transitions. The smaller feature on the left
is due to ∆m = 0 transitions. b) The fraction of laser power that gets converted to
thermal power is plotted as a function of frequency.
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with the effects of Doppler broadening,

Ptherm (v)

Plaser
=

Z ·
Adoppler_free (ν) ·D (v, v0) · (v − v0)

ν

¸
dv0, (7.3)

whereD (v, v0) is the Doppler profile, andAdoppler_free (ν) is the Doppler free absorp-

tion spectrum of the atoms. This convolution can be understood by considering the

Doppler free absorption at a given laser frequency which is given byAdoppler_free (ν).

This absorption is caused by atoms passing through a small equal-field volume in

the trap at which the Zeeman shift brings the atoms into resonance at the frequency

ν. Doppler broadening, however, will cause the absorption of some of the atoms at

neighboring field strengths resonant at a frequency ν0 to spill-over into the absorp-

tion measured in the ν-resonant region. The amount of spill-over that occurs from

ν 0 into ν is given by the Doppler profile D (v, v0). Since this spill-over is due to

the Doppler shift, Eq. 7.2 states that the resulting thermal power is given by the de-

tuning/frequency ratio, (v−v
0)

ν
. Summing these thermal power contributions over all

possible frequencies ν 0 leads to the convolution of Eq. 7.3.

Figure 7.2.b shows the fraction of the laser power that gets converted to use-

ful thermal power acting on a trapped ensemble having the same parameters as the

spectra of Figure 7.2.a. The shape of this curve in relation to the spectrum can be

understood by noting that red detuning leads to Doppler cooling whereas blue detun-

ing leads to Doppler heating. Tuning to frequencies where the spectrum exhibits a

positive slope results in the laser being red detuned from most of the atoms it inter-

acts with, thereby providing a net cooling effect. Conversely, frequencies where the
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spectrum has a negative slope result in net heating. For the chromium parameters

used in the simulation of Figure 7.2, the maximum cooling power obtainable is on

the order of 1010 times smaller than the optical power of the laser. For laser powers

well below the saturation intensity, this fraction scales linearly with both the power

of the laser and the absorption of the atoms.

7.2.2 Maximum Cooling Power Fraction for Chromium

This method for calculating laser cooling power will now be used to model laser cool-

ing for experimentally realizable conditions in our magnetic trap. For the remainder

of this discussion, consider the conditions obtained by ramping the magnetic trap

depth down to 180mK. The density, number, and temperature we observe in ramp-

ing to this trap depth are n0 = 3 × 1010cm3/s, N = 8.8 × 1010, and T = 28 mK

respectively. A 1.5mm diameter laser beam centered 2.5mm away from the center

of the trap and having power ranging from 4 to 250 µW is selected for laser cool-

ing. For these beam parameters the power corresponding to the resonant saturation

intensity is 600 µW .

The maximum fraction of the laser power that can get converted to cooling

power will be a function of both the temperature and the peak density in the trap

as calculated from Eq. 7.3. The points in Figure 7.3 show this maximum power

fraction as a function of density and temperature. These points can be fit to the
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Figure 7.3: For the particular parameters selected in this simulation, the points
show the maximum fraction of the laser power that can be converted to cooling power
as a function of atom density and temperature. An ad-hoc approximation to the
functional form of this dependance, Eq. 7.4, is plotted with solid lines.
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functional form

Pfrac = 9.1× 10−21
³ n0
cm−3

´µ T

mK

¶1/2
exp

"
−12.1¡
T
mK

¢1/2
#

(7.4)

as shown by the solid traces. Eq. 7.4 can be used to calculate the maximum cooling

power obtainable for the selected beam parameters ONLY.

7.3 Loss Mechanisms

Trap loss mechanisms fall into two broad categories: optical loss processes, and

collisional loss processes. Each of these will now be discussed.

7.3.1 Optical Pumping to Other Zeeman Sublevels

During laser cooling, the laser is tuned to the frequency that provides the maximum

conversion of laser power to cooling power. (See Fig. 7.2.) At this frequency, the

optical density is dominated by ∆m = +1 transitions. However, the ∆m = 0, and

∆m = −1 also make small contributions. These contributions are suppressed by a

factor of roughly
¡
∆ν
Γ

¢2 (∼ 10−2 for this simulation), where ∆ν is the detuning of

the maximum cooling frequency from the maximum of the ∆m = 0 peak, and Γ is

the natural linewidth of the transition.

As shown earlier in Figure 7.1, ∆m = 0 and ∆m = −1 optical transitions

from the |a7S3,mj = 3i ground state of chromium have significant probability of

transferring atoms to the |a7S3,mj = 2i and |a7S3,mj = 1i states. Not only are

these states less tightly confined, resulting in higher evaporation rates, but they are
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also more susceptible to the large inelastic scattering rates caused by spin-exchange

collisions.

It is possible that the increased trap loss due to ∆m 6= +1 transitions can

be reduced if the atoms undergoing these transitions scatter more than one photon

before leaving the trap. The
¡
∆ν
Γ

¢2 suppression of the ∆m 6= +1 transitions could

result in optically pumping any |a7S3,mj 6= 3i atoms back to the fully polarized

|a7S3,mj = 3i state thereby reducing the loss. However, in the remainder of the

analysis, we will consider the worst case scenario in which all atoms experiencing a

∆m 6= +1 transition are ejected from the trap.

The points in Figure 7.4 show the calculated optical density of ∆m 6= +1

transitions as a function of density and temperature for the specific experimental

beam parameters used for this analysis. The solid lines show a fit of these points to

the functional form

ODpump = 2.951× 10−14
³ n0
cm−3

´
exp

"
−11.43¡
T
mK

¢0.7861
#
. (7.5)

Eq. 7.5 can be used to calculate the optical density of∆m 6= +1 transitions for

the selected beam parameters ONLY. By turning on and off the loss due to optical

pumping to |a7S3,mj 6= 3i states in the simulation described below, it is determined

that this process plays only a small role in changing the overall efficiency of the laser

cooling process.
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Figure 7.4: For the particular parameters selected in this simulation, the points
show the optical density contribution from the ∆m = 0 transition. An ad-hoc
approximation to the functional form of this dependance, Eq. 7.5, is plotted with
solid lines.



153

7.3.2 Optical Pumping to Metastable States

Photon scattering can also cause atoms loss when atoms in the z7P4 excited state

decay to one of two metastable states, either the 5D3, or the 5D4 state. For a laser

that fully saturates the |a7S3,mj = 3i → |z7P4,mj = 4i transition, the decay rate

to these metastable states [43] is measured to be ∼ 103 s−1. This corresponds to

roughly one out of every 104 transitions decaying to a metastable state. We again

take the worst case scenario and assume that atoms in either of these metastable states

undergo processes that eject them from the trap (e.g. increased inelastic scattering

stemming from the non-zero orbital angular momentum of these states). Comparing

this to the fraction of transitions that drive an atom to a |a7S3,mj 6= 3i Zeeman sub-

level in the ground state, (roughly one out of every 102), we conclude that the loss

rate stemming from decay to metastable states can safely be neglected.

7.3.3 Excited State Collisions

Yet another mechanism whereby photon scattering can increase the atom loss rate

from the trap is a collision event between an atom in the optically excited state and

a ground state atom. In a magneto-optic trap with laser intensity causing an excited

state population fraction of 0.1, this rate is measured [43] to be around 3 × 10−9

cm3s−1. In the low intensity limit, this rate scales linearly with laser intensity to

give

goptical '
¡
3× 10−8cm3s−1

¢µ I

Isat

¶
. (7.6)
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Even for very low laser intensities, this is a very large scattering rate. Fortunately,

the impact it has on atom loss rate is suppressed by the ratio of the “on resonance

volume” to the volume of the trapped cloud of atoms. An estimate of the “on res-

onance volume” can be obtained by multiplying the cross sectional area of the laser

beam by the length over which the magnetic field gradient causes a Zeeman shift of

approximately one natural linewidth. For our trap this corresponds to

Vresonant = Alaser
4.9 cm¡

Trap Depth
mK

¢ . (7.7)

For the trap depth and beam diameter used in this analyses this gives a trap volume

of 4× 10−3cm3. Even at the lowest temperatures considered in this simulation, this

volume is substantially smaller then the trapped cloud volume. By turning on and off

the role of excited state collisions in the simulation described below, it is determined

that they play only a small role in changing the overall efficiency of the laser cooling

process.

7.3.4 Ground State Collisions

The role of elastic and inelastic collisions between ground state atoms in setting a

steady state temperature for a trapped ensemble confined at constant trap depths is

discussed at length in Chapter 5. Those considerations can be extended to include

the role of a cooling laser. Qualitatively, the effect of laser cooling is to drive the

temperature of the atoms lower than the steady state value obtained in its absence.

This causes two things to happen. First, as the temperature of the atoms is lowered,
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evaporative loss is exponentially suppressed. Secondly, the lower temperatures result

in higher number densities leading to a sharp increase in the losses due to inelastic

collisions. A quantitative understanding of the resulting interplay between temper-

ature and peak density is non trivial to model analytically. However, a numerical

simulation is quite straightforward.

7.4 Time Evolution

A numerical simulation of the temperature, and number of atoms remaining in a mag-

netic trap as a function of time can be performed by making a key assumption about

the behavior of the scattering rates. As seen in Figure 4.1, we have no measurements

of Cr-Cr elastic scattering rate at temperatures lower than ∼ 20 mK. However, the

measurement of the inelastic rate combined with the steady state ratio of trap depth

to temperature can be used to estimate the elastic scattering rate. For temperatures

below 20 mK, this measured “equilibrium η” gives elastic to inelastic scattering ra-

tios of order unity. This fact motivates an approximation of the elastic scattering rate

constructed by smoothly joining its measured values at high temperatures with the

values of the inelastic rate as the temperature is decreased.

7.4.1 Equations of motion

The number and temperature dynamics for atoms confined in a spherical quadrupole

trap with η ≡ Etrap depth/kBT & 4 are described by a coupled set of differential
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equations. [32, 14]. Let there be N atoms confined in a spherical quadrupole mag-

netic trap with the trapped cloud having an effective volume of Veff = 6V0/η3 (V0 is

the volume of the trap itself). Elastic collisions occur with a rate coefficient of gel to

create a thermal distribution with average energy of Ē = (9/2) kBT . Inelastic colli-

sions, occurring with a rate coefficient of gin, combine with evaporation over the edge

of the trap and the losses caused by the laser itself (denoted by Ṅopt) and cause the

total atom loss rate to be Ṅ = Ṅv + Ṅd+ Ṅopt, where Ṅv = −18gelf N2

Veff
is the evap-

orative loss rate, Ṅd = −18gin N2

Veff
is the inelastic loss rate, and f is the fraction of

elastic collisions that result in an atom evaporating out of the trap. The average en-

ergies of atoms lost due to evaporation and inelastic collisions are Ēv = (η + κ) kBT

and Ēd = 3kBT respectively (κ is an η-dependant constant with a value around one).

Let the heating/cooling power provided by the laser be denoted by Popt. Assum-

ing that Ṅopt is small enough to have negligible impact on the energy loss rate, the

energy loss rate from the trap is given by

Ė = ṄvĒv + ṄdĒd + Popt. (7.8)

This energy loss rate must equal the time derivative of the total energy in the trap,

E = NĒ, which can be written as Ė =
·
EN+ṄĒ. Explicitly noting the temperature

dependence of the average energy, this can be rewritten as

Ė =
∂Ē

∂T
ṪN + ṄĒ + Popt. (7.9)
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Equating Eq. 7.8 and Eq. 7.9 yields a coupled set of differential equations

governing the number/temperature dynamics of trapped atoms:

Ṫ =
1

N ∂Ē
∂T

h¡
Ēv − Ē

¢
Ṅv +

¡
Ēd − Ē

¢
Ṅd + Popt

i
(7.10)

Ṅ = Ṅv + Ṅd + Ṅopt. (7.11)

Using the expressions derived above for the cooling power of the laser, Popt, as well

as the additional losses it imposes, Ṅopt, this system of differential equations can be

integrated to track the behavior of the trapped atom cloud as a function of time.

7.4.2 Time profiles of cooling

Figure 7.5 summarizes the temporal behavior of a trapped atom cloud exposed to

a cooling beam for several different laser powers. An intuitive understanding of

these results is as follows. The cooling laser is turned on at 0 seconds. As time

progresses, the temperature of the atoms decreases. This causes a reduction in the

effective volume of the trapped cloud thereby increasing the number density which

is reflected by an increase in the phase space density. Since the loss rate due to

collisional processes increases as the square of the number density, the increase in

number density results in the sharp increase in the inelastic loss rate. The time scale

for this behavior depends on the optical power of the cooling laser.
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Figure 7.5: For different powers of the cooling laser, the time dependances of the
temperature, number of atoms and phase space density are plotted. As the temper-
ature falls, the density goes up. This causes a steep increase in the two-body loss
which leads to a rapid loss of atoms.
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7.4.3 Efficiency of cooling

Figure 7.6 shows another way of looking at the simulation results. It shows the num-

ber of remaining atoms as a function of either temperature of phase space density.

Increasing the power of the cooling laser results in a larger number of atoms remain-

ing after cooling to some target temperature. However, the time these atoms remain

trapped decreases dramatically with increasing laser power.

The peak phase space density obtainable also increases with the laser power as

shown in Figure 7.6.b. There is, however, a trade-off between phase space density

and the number of atoms remaining.

7.5 Experimental Implementation

Experimental attempts to observe laser cooling in our trap were met with disappoint-

ment. We find that laser powers of a fraction of a microwatt or greater effect both the

temperature and density of the atoms in our trap. We conducted tests to understand

the cause of this optically generated loss mechanism

The tests are performed by loading our magnetic trap at an initial trap depth of

7.2 K then ramping to a final depth of 0.18 K in about 12 s. Roughly 30 s after

ramping down the trap depth, we introduce a 1 cm diameter, off resonant pump beam

into the cell for 20 s. We then measure the spectrum of the remaining atoms with a

0.2 µW probe beam to determine the effect of the off resonant pump on the atoms.

Figure 7.7 shows the observed spectrum in our trap after the trapped cloud has been
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Figure 7.6: a) The number atoms remaining after laser cooling is plotted as a func-
tion of final temperature for several different powers of the cooling laser. Lowering
the temperature of the atoms comes at a cost of atom loss. b) The number of re-
maining atoms as a function of phase space density is plotted for various powers of
the cooling laser. The maximum attainable phase space densities are denoted by the
circles.
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Figure 7.7: Under identical conditions at a trap depth of 180mk (1 Amp), the cell is
exposed to 20 s bursts of light from a non-resonant laser beam of 1 cm diameter. The
power in the beam is then varied. a) Measuring the post-burst optical density spec-
trum shows a devastating atom loss occuring around laser powers of a few hundred
nW . b) Scaling the individual spectra to have the same magnitude, we observe no
change in their shape. This indicates the atom loss is occuring at constant tempera-
ture.

subjected to off resonant pump beams of various powers. Since the pump beam is

far off resonance, direct atom-photon interactions can be ruled out as the cause of the

observed atom loss at pump powers greater than about half a microwatt. The likely

culprit for this loss is the evaporation of superfluid 4He film that coats the optical

surfaces within the cell.
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Figure 7.7.b shows that the width of the observed spectrum, and hence the

temperature of the trapped ensemble, remains relatively constant as the pump power

is varied. Also observed, but not shown in Figure 7.7 is the fact that even at the

higher pump powers, we observe the post-pump and pre-pump temperatures of the

trapped atoms to be the same. The pump laser causes atom loss without changing

the temperature of the trapped cloud. If one assumes that the helium atoms liberated

by the pump laser have at least 0.17 K of energy (the bulk temperature of the cell

at this time), then, the impact of a helium atom is likely to eject a chromium atom

out of the 0.18 K deep trap before it has a chance to collide with another chromium

atom. This would explain the increase in loss rate without a simultaneous increase

in temperature.

7.6 Laser Cooling Summary

We had hoped that laser cooling would provide amethod for cooling trapped chromium

to temperatures below those obtainable by our implementation of evaporative cool-

ing. There was some hope that the inelastic scattering rate would decrease from its

enormous values at lower temperatures.

The cooling power of a laser can be calculated by convolving the Doppler-free

spectrum of the trapped ensemble with a “Doppler cooling kernel.” Adding the ef-

fects of this cooling power as well as the laser-induced loss rates into the model for

calculating the number and temperature dynamics of trapped atoms is a straightfor-
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ward process. The results of this calculation show that as the temperature is reduced,

the large inelastic scattering rates lead to extremely rapid decay from the trap. For

the inelastic scattering rates measured in our experiment, laser cooling offers little or

no advantage over evaporative cooling in reaching lower temperatures.

Attempts at implementing laser cooling in our trap were stymied by cryogenic

technical difficulties. We are unable to pass more than a fraction of a microwatt

of laser power through our experimental cell without observing significant trap loss.

We believe this loss stems from the laser evaporating the superfluid 4He film which

covers the entire inner surface of our cell. In the future, higher laser power could be

introduced to the cell by using 3He as a buffer gas and implementing an alternative

to cryopumping for buffer gas removal.
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Chapter 8
Conclusions and Future Work

8.1 Summary of Experimental Results

Using the techniques of buffer gas loading and magnetic trapping, we have success-

fully confined chromium in a magnetic trap. For any given trap depth, the temper-

ature of our trapped ensemble approaches a steady state value given by the ratio of

elastic to inelastic collision rates. This ratio is important not only in determining the

temperature of the trapped ensemble, but also the efficiency with which the atoms

can be evaporatively cooled.

We embarked on a program of measuring the elastic and inelastic collision rates

for magnetically trapped atomic chromium. For 52Cr, the ultra-cold regime (where

only a single partial wave dominates the scattering properties) occurs at a temperature

of ∼ 3 mK. Our data clearly shows a dramatic variation in the 52Cr–52Cr inelastic

collision rate just above the ultra-cold regime. This may be indicative of either a

shape resonance, a magnetic field effect, a general feature of dipolar relaxation in the

classical to quantum cross-over region, or perhaps something else unique to either

chromium or to large-dipole atoms in general.

The enormity of the inelastic scattering rate in chromium causes large ineffi-

ciencies in evaporative cooling. However, our measurements indicate the inelastic
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rate is decreasing below 4mK. This provides hope that, as one continues to cool, the

decreasing inelastic rate will lead to more efficient evaporative cooling, thus validat-

ing continued attempts at obtaining quantum degeneracy in atomic chromium. The

large number of atoms we have at 2mK makes this possibility attractive. However,

the limitations imposed by trapped fluxes in our superconducting magnet prevent us

from making progress in the immediate future.

We attempted laser cooling in our magnetic trap in the hopes reducing the tem-

perature of our atoms to a region with cross sections more favorable for evaporative

cooling. These attempts were frustrated by our inability to maintain the vacuum in

our cryogenic experimental cell while introducing the required laser cooling beam.

8.2 Possible Future Work

Further progress can be made in measuring the scattering properties of chromium to

lower temperatures. Doing so, however, would require significant modifications to

our experimental apparatus which we have not yet implemented.

Trapped fluxes in our superconducting magnet set a lower limit on the trap

depths we can obtain reliably. In the future, this problem could be circumvented by

heating the magnet to drive it normal, thereby illuminating the trapped fluxes.

Laser cooling could be more thoroughly explored by developing an alternative

method for removing buffer gas from the cell. For example, a valve could be used in

conjunction with a charcoal cryopump to remove 3He buffer gas from the cell. This
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would eliminate the superfluid film-flow that we believe is responsible for limiting

the laser power we are able to use.

Perhaps the most interesting modification to our experiment would be the in-

troduction of an Ioffe-Pritchard trapping magnet in place of the anti-Helmoltz mag-

net we currently use. Since we implement evaporative cooling by ramping down

the trap depth, there is a one-to-one correspondence between the temperature of the

atoms and the average magnetic field they experience. Because of this, we are un-

able to distinguish between magnetic and temperature effects in our scattering rate

measurements. By varying the bias field of an Ioffe-Pritchard trap, magnetic field

effects could be isolated from temperature effects. This could shed valuable insight

into the scattering processes we observe.

8.3 Ramifications of our Work

Our work clearly demonstrates unexpected scattering behavior in the transition be-

tween the quantum and classical regime. If the surprisingly large values of the

inelastic scattering rate we observe turn out to be a general phenomena for magnet-

ically trapped atoms in this temperature regime, it could have serious ramifications

to the efficacy of buffer-gas loading techniques in the creation of quantum degener-

ate gases. If, on the other hand, our observations are unique to a small subset of the

atoms in the periodic table (perhaps only those with large magnetic moments), our

results preclude a simple path to degeneracy for merely a handful of atoms. A firm
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understanding of the mechanisms behind these enormous scattering rates is essential

in determining the general utility of buffer gas loading techniques in the production

of ultra-cold atoms.

Atomic scattering theory in this energy regime is itself quite interesting. The

relatively poor understanding of the physics involved in these collisions is quite sur-

prising. It is very difficult to model the problem intuitively. The quantum to classical

cross-over regime precludes the use of many of the approximations usually made in

scattering theory, and large scale numerical calculations are required to accurately

describe the physics. It is hoped that the experimental results described in this thesis

will provide the experimental input needed to further the understanding of scattering

in this energy regime.
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Appendix A
General Technique for Laser Locking

In all the work presented in this thesis, detection is achieved by means of laser

absorption. The optical setup used has been briefly described in Chapter 2. The

factory-supplied stabilization circuitry in our Coherent 899 ring laser determines the

frequency stability of our detection light. Over very short time scales (∼ 1 ms) the

laser is stable to within roughly 2MHz. Over timescales of ∼ 1s, the variation in the

laser frequency is measured to be between 5 and 10 MHz. On the tens of minutes

timescale, we observed the laser frequency to drift as much as a few hundred MHz.

For laser cooling applications, it is important to work with a stabile laser capable of

accurately producing the frequency needed to achieve optimal cooling efficiency.

Examining the Doppler cooling spectrum shown in Figure 7.2, shows that the

laser must be stable to . 10 MHz. In many laser cooling experiments, this level of

stabilization is achieved by locking to the saturated absorption peak obtained from a

vapor cell containing the species to be laser cooled. For chromium, however, vapor

cell construction is complicated by the very high temperatures needed to develop a

useful vapor density.

Although the Coherent 899 ring laser has good short term stability, the large

long-term drifts would be detrimental to successfully implementing laser cooling. To

achieve the required stability, an external stabilization system is required to eliminate

the long timescale drifts. We chose to adapt a known [44, 45, 46] frequency stabiliza-
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tion scheme involving the combined use of a scanning confocal cavity and a stabilized

He-Ne laser. This scheme has the advantage of being general. With a simple change

of optics, it can be used to control any laser operating at any reasonable wavelength.

A.1 Overview of Technique

The system is designed to use an ultra-stable master laser for measuring and control-

ling the average length of a scanning confocal cavity. This, in turn provides a very

stable reference to which a slave laser can be locked. A diagram of the system is shown

in Figure 8.1.

The master and slave beam are orthogonally polarized. This allows them to be

combined, passed through the scanning confocal cavity, and guided into separate de-

tectors. A triangle voltage wave, Figure 8.2.a is applied to the scanning piezo of the

cavity, causing it sweep through resonances for each of the beams. The respective res-

onances can be recorded separately by monitoring the signals coming from each of the

detectors, Figure 8.2.b. Since the master and slave lasers have different wavelengths,

the peaks arriving at each detector will not occur at the same scanning voltage. The

relative position of the two peaks will depend on their frequency difference. Their

absolute position will depend on the average length of the cavity, which, if left unsta-

bilized, will drift over time.

As the cavity is scanned, its average length is stabilized by adding a controlled

offset to the piezo scanning voltage. This voltage is generated as follows. The piezo
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Figure 8.1: Optical layout of frequency stabilization system. The master and slave
beams are orthogonally polarized. The polarizing beam splitters serve to combine
the beams before entering the scanning confocal cavity and then separate them into
different detectors. The optical diodes are important to prevent cavity reflections from
feeding back into the lasers.
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Figure 8.2: Time dependance of various system voltages. a)A triangle ramp is applied
to the cavity scanning piezo. b) The cavity scans through resonances of the master
(solid) and slave (dashed) laser beams causing the detectors to record peaks. c) A
square wave is derived by setting a comparator threshold on the piezo scanning voltage.
d) The master laser peak is multiplied by the square wave to produce the error signal
which is integrated to provide feedback to correct for cavity drifts.
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scanning voltage is put into a voltage comparator along with a controllable, stable DC

voltage. The output of the comparator, shown in Figure 8.2.c, is then multiplied by

the signal coming from the resonance peaks of the master laser detector. When a

resonance peak coincides with the comparator changing state, their product will be as

shown in Figure 8.2.d. This product signal is then sent to an integrator which produces

an output proportional to the shaded area in Figure 8.2.d. An amplified version of this

integrated signal is then used as the cavity offset voltage.

Under the conditions shown in Figure 8.2.d, there is equal positive and negative

area resulting in a zero voltage coming from the integrator and zero offset applied to

the cavity. If the cavity length drifts slightly, perhaps due to thermal expansion, the

position of the peaks in Figure 8.2.c will shift. This will introduce asymmetry into

the product signal of Figure 8.2.d, which in turn, causes the integrator to send an offset

voltage to the cavity. This offset voltage will correct for the cavity drift, bringing the

position of the resonance peak back to the conditions shown in Figure 8.2.d.

An identical locking scheme can be used to lock the slave laser to the cavity. In

that case, however, the offset voltage, instead of controlling the average cavity length,

controls the frequency of the slave laser.
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A.2 System Design

The design considerations for building this stabilization system fall into two categories,

optical and electronic. A description of both the optical and electronic setup used is

described below.

A.2.1 The Lasers

The slave laser, in our system, is a Coherent 899 Ti:Saph. ring laser [47] with a

linewidth of approximately 1 MHz. We measured the short term ( ∼ 1 second)

drift of the Ti:Saph to be between 5 and 10 MHz. Over much longer timescales (∼

20 minutes) the drift can be as much as a few hundred MHz. For optimum Doppler

cooling performance, the Ti:Saph. requires stabilization to about a natural linewidth,

which, for chromium, is ∼ 5 MHz.

The master laser is a Melles Grio stabilized Helium-Neon laser [48] with a spec-

ified drift of less than±2 MHz/Hour. The excellent stability of this laser makes it par-

ticularly well suited for frequency standard applications. The stabilization circuitry

within this laser makes it very sensitive to feedback arising from retroreflections. To

prevent damage to the He-Ne circuitry, it is very important that an optical diode be

placed between the laser and the confocal cavity.
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Property Exact
Expression

Approximate
Expression (R ≈ 1) Description

Free Spectral
Range (FSR)

c
(round trip length) -

Frequency separation
of resonance peaks. Also
reciprocal of round trip time.

Finesse π

2 sin−1
³
1−R
2
√
R

´ π
√
R

1−R ' π
1−R

Ratio of FSR to resonance
peak width.

Q ω
FSR ln(1/R2)

ν
FWHM

Ratio of optical frequency
to resonance peak width.

Ring-down
time τ = ( round-trip time)

ln(1/R2)

τ = round-trip time×
finesse / 2π

Round-trip time multiplied
by finesse (to within 2π).

Resonant
circulating
intensity

Icirc =
Iinput
(1−R) Icirc =

Iinput
π × finesse

Circulating to incident
power ratio is transmissivity

Table 8.1: Parameters used to characterize optical cavities. R is the intensity reflectiv-
ity of the optics. FWHM is the full-width-half-max of the resonance peaks, and c is
the speed of light.A Fabry-Perot cavity of length d has a round trip length of 2d and a
round trip time of c/2d. A confocal cavity of length d has a round trip length of 4d and
a round trip time of c/4d.

A.2.2 The Cavity

The scanning confocal cavity is central to the implementation of this stabilization

scheme. There are several important parameters that are useful when discussing the

behavior of resonant optical cavities. The most important of these are summarized in

Table 8.1. The exact expressions [49, 50, 51, 52] in the second column of Table 8.1 are

a bit cumbersome. Since most optical cavities are constructed with high reflectivity

optics, the approximation R ≈ 1 usually applies, leading to the simplified expressions

of the third column.

As the heart of this system, we chose the scanning confocal cavity provided with

the Coherent Model 240 spectrum analyzer. When equipped with standard optical

coatings, this cavity is specified to have a free spectral range of 1.5 GHz and a finesse
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> 200. This results in a resonance peak of FWHM less than 7.5 MHz. This is

sufficiently narrow to allow stabilizing the slave laser to about 5MHz with respect to

the master laser.

To meet the specifications needed to Doppler cool chromium, the cavity reflec-

tors require a custom coating to provide the requisite reflectivity for both the He-Ne

master laser (633 nm) and the Ti:Saph. slave laser (850 nm). We purchased the un-

coated fused silica substrates directly from Coherent. The substrates were then sent

to Lamda Research Optics [53] for coating at the required wavelengths. Each cavity

optic must be coated on both surfaces. The specifications provided by Coherent for

achieving a finesse > 200 are that the high reflector surface have 99.75 ± 0.15 % re-

flectivity. The opposite surface should be anti-reflection coated for a reflectivity of

less than 0.25 %. These reflectivities result in theoretical finesse of 1255. However,

practical considerations such as cleanliness, alignment, etc., result in the actual finesse

falling short of this predicted value.

A.2.3 The Electronics

A block diagram of the stabilization electronics is shown in Figure 8.3. The system

consists of two essentially identical subsystems which we will call the master and

slave subsystem. The master subsystem locks the cavity to the master laser. The

slave subsystem locks the slave laser to the cavity. Each subsystem consists of three

modules. The detector module serves as a variable gain transimpedance amplifier for

the photodiode detectors. The discriminator module eliminates unwanted peaks from



181

Figure 8.3: Block Diagram of Laser Locking System

the raw detector signal. The feedback module creates the control voltages which are

used to control the offset of the cavity and the frequency of the slave laser. The design

of these modules will now be discussed.

Detector Module

The detector module is a two stage variable gain amplifier that takes the current

from the photodiodes and produces a voltage to be sent to the discriminator module.

A schematic diagram of the detector module is shown in Figure 8.4. It has two parts,

a transimpedance amplifier and a variable gain voltage amplifier.

The gain and frequency characteristics of a transimpedance amplifier depend on

the value of the feedback impedance. This impedance is set by the values of the

feedback resistor and capacitor. The appropriate resistor and capacitor values depend

onthe gain bandwidth product of the OP AMP and the desired frequency response.
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Figure 8.4: Laser Locking Detector Module
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The important design equations are [54, 55]

1

2πRfCf
=

s
(GBP )

4πRfCd
(A.1)

and

f−3db =

s
(GBP )

2πRfCd
(A.2)

where Cd is the photodiode capacitance (plus other input capacitance), Rf is the feed-

back resistance, Cf is the feedback capacitance, GBP is the gain bandwidth product

of the op amp, and f−3db is the frequency at which the amplifier gain will be suppressed

by 3db.

The component selection process starts with selecting a photodiode. In addition

to spectral response, sensitivity, and the size of the detector area, the capacitance of

the photodiode must be considered. Next comes the selection of the OP AMP. It must

have a gain-bandwidth product large enough to handle the frequencies of the expected

signals. Once the photodiode and OP AMP have been selected, Eqs. A.1 and A.2

are used in selecting the feedback resistance and capacitance for the desired frequency

response. The output voltage, of course, will be simply the product of the photodiode

current and the feedback resistance.

The first stage transimpedance amplifier is followed by a standard non-inverting

variable-gain voltage amplifier. This second stage of amplification provides a means

for varying the gain of the amplifier without significantly effecting its frequency re-

sponse. For a given light level incident on the photodetector, the gain can be manually

adjusted to send an appropriate signal level to the discriminator module.
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Discriminator Module

The confocal cavity, unless precisely aligned and mode matched, produces mul-

tiple voltage peaks on the detector when scanned over a single laser line. Operation of

the locking scheme requires the presence of one and only one resonance peak per scan

for each laser. The role of the discriminator module is to suppress any superfluous

resonance peaks. This is accomplished by adjusting the laser alignment into the cav-

ity such that one of the peaks becomes larger than the others. The discriminator then

passes only voltages greater than some threshold, and suppresses all others to ground.

In this way, only the single large- amplitude peak remains unsuppressed.

In addition to eliminating redundant peaks, the discriminator module is designed

to eliminate a hysteresis-related problem generated by scanning the confocal cavity.

Ideally, there would be a one-to-one correspondence between the voltage applied to

the cavity scanning piezo and the optical length of the cavity. In practice, however, the

cavity length at a given piezo voltage will depend on whether the voltage is increasing

or decreasing. This hysteresis would introduce unacceptable variation in the position

of the resonance peaks. The discriminator is used to suppress the voltage coming

from the detector module to ground when the piezo is ramping up. This passing of

only negatively sloped scans eliminates one of the hysteresis paths from consideration

thereby ensuring a one to one correspondence between the scanning voltage and the

optical length of the cavity.
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Figure 8.5 shows a schematic diagram of the discriminator module. It has three

subcomponents: the threshold clamp, the slope clamp and a differentiator. The thresh-

old clamp consists of a comparator whose output drives the gate of an analog switch.

If the input signal from the detector module is less than the threshold voltage set by

adjusting R1, the output of the threshold clamp will be driven to ground. Above

threshold, the input signal is passed on to the output.

The slope clamp is a comparator that gets its input from a differentiator acting

on the piezo ramp signal and sends its output to an analog switch. For rising ramp

signals, the comparator goes high, closing switch S2. This sends the output of the

slope to ground. When the ramp signal falls, the switch will be open causing the

input signal to pass through the slope clamp. The threshold and slope clamps work

together to only pass peaks above an adjustable threshold when the piezo ramp voltage

is falling.

Feedback Module

The feedback module is responsible for generating the output signals that control

the cavity offset voltage (average cavity length) and the frequency of the slave laser.

To accomplish this, it takes the resonance peaks that are detected and passed through

the discriminator and processes them together with the piezo ramp voltage to produce

an error signal similar to that of Figure 8.2.d. This error signal is then passed through

an analog integrator whose output can be used to send the required control voltages to

the cavity offset and slave laser frequency controls.
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Figure 8.5: Laser Locking Discriminator Module
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Figure 8.6: Laser Locking Feedback Module

A schematic diagram of the feedback module is shown in Figure 8.6. It con-

sists of five subcomponents: the setpoint comparator, the multiplier, the integrator, the

amplifier, and the inverter.

As can be seen by referring back to Figure 8.2.d, the resonance peaks passing

through the cavity are detected and multiplied together with the output of a compara-

tor acting as a threshold detector on the piezo ramp voltage. This is accomplished by

the set point comparator and multiplier shown in Figure 8.6. The setpoint at which

the comparator changes state is determined by the potentiometer R1. The comparator
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output is fed directly into an analog multiplication chip which also receives the res-

onance peaks signals and produces the error signal output. The stability of the set

point will be directly dependant not only on the stability of the voltage sources V+ and

V−, but also on the stability of R1. Because of this, high quality power supplies and

potentiometers must be used for these components.

An analog multiplication chip is used to produce the error signal. The output

of this chip can have small offsets. Since the output of the chip is sent to an inte-

grator, these offsets can significantly impact the performance of the feedback circuit.

The long-lived, small-amplitude offsets coming from the multiplier chip integrate to

values large enough to interfere with the desired integration of the short-lived, large-

amplitude signals coming from the resonance peaks. To solve this problem, the back-

to-back zener diodes, D1 and D2, were introduced. These diodes suppress the offset

voltage coming from the multiplier to values low enough to have little impact on the

performance of the circuit. Once the offset of the multiplier chip has been suppressed

with the zener diodes, the remaining signal is passed to the integrator.

The integrator is the key component for providing the feedback signal. It can be

easily understood by ignoring the existence of the bypass resistor, R4, which simply

sets the timescale over which the integration takes place. The voltage pulses coming

from the multiplier will drive current through R3. This current will pile charge onto

C1. The voltage created by the charge across C1 is the desired output of the integrator

and will be sent to control the offset of the cavity or the frequency of the slave laser.
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Consider what happens when the signal coming from the multiplier is like that

of Figure 8.2.d. In this specific case, the setpoint comparator and the resonance peak

are phased such that their product is symmetric about zero. This will cause the cur-

rent through R3 to contribute no net charge across C1. Each scan across the resonance

peak will reproduce the shape of this product signal, causing the charge on C1 to re-

main fixed thereby maintaining the voltage across it constant. Now consider what

happens when the phase of the resonance peak drifts slightly from that of the setpoint

comparator. In this case, there will more area under, say, the positive peak. Now

each cycle will contribute some net charge across C1 resulting in a changing volt-

age. Since this voltage is used to control the cavity length offset (or the slave laser

frequency), when it varies, it will produce a change in the cavity length (slave laser

frequency). This will, in turn, shift the phase of the resonance peak with respect to

the setpoint comparator and alter the positive/negative area ratio of the error signal

sketched in Figure 8.2.d. The resulting change in cavity length (slave frequency) will

continue until each cycle of the error signal contributes no net charge across C1. This

stabilization of the cavity (slave laser) to the set point comparator provides the desired

locking.

The two remaining components of the feedback module are quite straightfor-

ward. The output of the integrator is passed through a variable gain voltage amplifier

which allows for adjusting the feedback level of the system. The output of this am-
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plifier is sent through a switchable inverter which sets the sign of the feedback control

voltage.

Piezo Driver Module

The length of the confocal cavity is controlled by sending a relatively high volt-

age signal to a piezoelectric transducer that supports one of the cavity reflectors. The

piezo driver module is designed to amplify the low voltage cavity control signals into

the higher voltage signals required to drive the piezo. A schematic diagram of the

piezo drive module is shown in Figure 8.7. It consists of two components, a summing

circuit and an amplifier. It takes two inputs, a ramp signal and an offset signal. The

voltages of these two signals are added together with a summing circuit. The result-

ing sum is then passed through an amplifier capable of producing the ±40V signals

which are then sent to the piezo of the scanning confocal cavity.

A.3 Results/Improvements

Due to the constraints on laser power forced on us by cryogenic concerns, the laser

locking system was not needed in our experiment. Although it was never used in its

designed capacity, the system was tested. These tests indicated several shortcomings

which would need to be addressed in a next-generation implementation of this laser-

locking scheme.
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Figure 8.7: Laser Locking Piezo Driver

These tests of the system are performed by using an oscilloscope to monitor the

transmission peaks passing through our scanning cavity. We determine that the laser

locking system is able to maintain a stable frequency separation between the titanium-

sapphire laser and the helium-neon master laser. This frequency separation is stable to

within approximately the width of the cavity transmission peak. Assuming the width

of the transmission peak corresponds to a finesse ≥ 200, we are able to stabilize our

titanium sapphire laser to a constant frequency with a jitter of between 5 and 10MHz.

The uncertainty in this number is dominated by the uncertainty in the finesse of the

cavity. The response time of the electronics also becomes important in determining

this uncertainty when the cavity is scanned at frequencies greater than about 100Hz.
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When in locked mode, this system imposes a jitter on the slave laser. Although

this jitter is not large enough to significantly impact the expected performance of the

slave laser for Doppler cooling purposes, it adds unacceptable interference if used to

control a probe laser for absorption detection of trapped atoms. The cause of this jitter

stems from an unforeseen problem related to the way the discriminator and feedback

modules create and process the error signal.

As the cavity is continuously scanned, there is some variation in the height of

the resonance peaks measured by the detector module. The discriminator passes res-

onance peaks having a magnitude greater than some threshold, but does nothing to

change the magnitude of the unsuppressed peaks. Furthermore, the time for which a

given peak remains unsuppressed by the discriminator depends on its magnitude. This

causes the amplitude variation in peak height to be mapped onto a position/width vari-

ation in the discriminator output leading to the observed frequency jitter of the locked

slave laser. A solution to this problem would be to add the functionality of a discrim-

inator module to the published method of using a peak detector to stabilize one laser

with respect to another [44].

Another shortcoming of this system is its inability to accommodate scanning the

slave laser. This system was designed to lock the laser to a specific frequency with

the idea of laser cooling in mind. However, after it was built, we recognized the need

for a method of measuring the frequency of a tunable detection laser relative to that of

a fixed frequency master laser. Combining the idea of a discriminator with the idea
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of using a peak detector to measure the position of the resonance peaks[44], a cavity

could readily be used to measure the frequency difference between two lasers. More

to the point, the drift of one laser with respect to the other could be monitored as a

function of time and used to calibrate measured spectra of trapped atoms.
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Appendix B
Machine Drawings

This appendix contains many of the machine drawings used in designing our

experiment. These drawings are intended to be used as a reference to those who are

familiar with the apparatus. As such, each of the drawings is presented as an AutoCAD

printout with minimal explanation. It is hoped that these drawing will prove useful in

designing the changes required for future generations of the experiment.

The designs presented are the work of the various students who worked on this

experiment. Special acknowledgement should be given to Dima Egorov for doing

most of the design work on our superconducting magnet.
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Figure 8.8: Full Assembly
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Figure 8.9: Mixing Chamber Cold Plate
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Figure 8.10: Heat Exchanger Body
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Figure 8.11: Heat Exchanger Fin
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Figure 8.12: Heat Exchanger Lid



200

Figure 8.13: Cell Parts
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Figure 8.14: 4 K Window Angler
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Figure 8.15: 4K Window Flange
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Figure 8.16: Top flange of lower IVC
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Figure 8.17: Bottom flange of lower IVC
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Figure 8.18: Upper bellows flange
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Figure 8.19: Lower bellows flange
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Figure 8.20: Bellows to Dewar 4K Transition Plate
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Figure 8.21: 300 K Plate
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Figure 8.22: Magnet Side View
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Figure 8.23: Magnet Sections A and C
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Figure 8.24: Magnet Top View and Section B
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Figure 8.25: Magnet Top View
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Figure 8.26: Magnet Side Plates
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Figure 8.27: Magnet Pegs
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Appendix C
Useful Experimental Information

C.1 Resistor calibration

The chip resistors we use for thermometry below 1K are all taken from a single batch

we like to call the “MIT resistors.” This name reflects the fact that they were cali-

brated at MIT a very long time ago by people and methods which remain mysterious

to this author. We have not carefully calibrated this batch of resistors ourselves. How-

ever, the calibration curves we have for them give results consistent with a few NOR

thermometry measurements taken in our lab to verify their behavior.

Using these calibration curves as well as the calibration curves for the manufacture-

supplied thermometers mounted at various points on our dilution refrigerator, we ob-

tain the following fits to the temperature vs. resistance curves. The functional form

of these fits stems directly from the discussion of chip resistors found in the excellent

book on low-temperature physics written by Pobell [25].

C.1.1 MIT Resistors

The MIT resistor calibration curve was fit for resistance values between roughly 2.2

KΩ and 6 KΩ, or 0.15 Kelvin and 0.9 Kelvin. In this range, the calibration curve
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fits well to ·
T

K

¸
= 1.5369

·
ln

µ
R

0.6108KΩ

¶¸− 1
0.3497

.

We perform all thermometry using two-wire measurements. This causes the (often sig-

nificant) resistance of the wires leading to the resistors to be included in all resistance

measurements. It is important to subtract this lead resistance from any measurement

to obtain the true resistance of the thermometer.

C.1.2 5 K Resistors

In our experiment, 5 KΩ resistors are mounted on the 1K pot and the still. The

calibration curves for these resistors span resistance values of roughly 6.2 KΩ to 16

KΩ, or 0.75Kelvin to 9Kelvin. In this range, the calibration curve fits well to·
T

K

¸
= 1.0115

·
ln

µ
R

4.5484KΩ

¶¸− 1
0.6603

C.1.3 2 K Resistors

In our experiment, 2 KΩ resistors are mounted on the mixing chamber and the cold

plate. The calibration curves for these resistors span resistance values of roughly 3.4

KΩ to 10 KΩ, or 0.2 Kelvin to 2 Kelvin. In this range, the calibration curve fits

well to ·
T

K

¸
= 9.2798

·
ln

µ
R

0.6646KΩ

¶¸− 1
0.2549
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C.1.4 1 K Resistors

In our experiment, a 1 KΩ resistor is mounted on the mixing chamber. The cali-

bration curves for this resistors span resistance values of roughly 2 KΩ to 4 KΩ, or

0.1Kelvin to 1Kelvin. In this range, the calibration curve fits well to

·
T

K

¸
= 48.0724

·
ln

µ
R

0.2424KΩ

¶¸− 1
0.1613

C.2 Helium Vapor Pressure

The low temperature physics book written by Pobell [25] is an excellent source for the

properties of liquid helium. From the general discussion on vapor pressure found in

this book, the vapor pressure of a liquid scales like

Pvap = P0 exp

·
− L

RT

¸

where L is the latent heat of evaporation and R is the gas constant. This general

formula can be applied to the case of liquid 4He and 3He to extrapolate their vapor

pressure curves to temperatures below the range of feasible measurements. These

extrapolations are performed by taking the 10 coldest vapor pressure values listed on

pages 230 and 231 of Pobell [25] and doing a least squares fit to the functional form for

the vapor pressure. The results of these fits can then be expressed in terms of density
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rather than pressure. They areh n

cm−3

i
3He

=
3.54× 1021£

T
K

¤ exp

Ã
−3.93£

T
K

¤!
h n

cm−3

i
4He

=
3.233× 1022£

T
K

¤ exp

Ã
−10.33£

T
K

¤ !
It should be emphasized that these expressions are extrapolations and the den-

sity values they give are not necessarily a reflection of reality. However, since vapor

pressure measurements do not exist for the lower temperatures achieved in our experi-

mental cell, these extrapolations are a best guess at estimating the vapor pressures.
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Appendix D
Atom Photon Interactions

D.1 Saturation Intensity

The saturation intensity is given by

Isat =
}ω30Γ

12πc2
³
d̂ · ε̂

´2

where ω0 is the resonant frequency Γ is the natural lifetime, c is the speed of light and

d̂ · ε̂ is the cosine of the angle between the polarization vector and dipole operator. If

one assumes
³
d̂ · ε̂

´2
= 1, this can be rewritten as

·
Isat

(mW/cm2)

¸
=

20.8£
τ
s

¤ £
λ
nm

¤3

where τ is the excited state lifetime and λ is the resonant wavelength. A transition

is saturated when photons are scattered at a rate approaching one scattered photon per

natural lifetime.
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D.2 Photon Scattering Rate

The photon scattering rate is given by

γ =
Γ

2

I
Isat

1 +
¡
2∆0
Γ

¢2
+ I

Isat

where Γ = 1/τ is the transition rate, Isat is the saturation intensity, k is the optical

wave vector and v is the atom velocity. The effective detuning is given by

∆0 = [(ω − ω0)− k · v]

D.3 Optical Scattering Cross Section

The scattering cross section presented by a single atom to a stream of photons is given

by

σ =
3

2π
λ20

1 + I
Isat

1 +
¡
2∆0
Γ

¢2
+ I

Isat

where λ0 is the resonant wavelength, Isat is the saturation intensity, k is the optical

wave vector and v is the atom velocity. The effective detuning is given by

∆0 = [(ω − ω0)− k · v]
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D.4 Doppler Broadening

For a thermal ensemble of atoms at a temperature T , the normalized Doppler profile is

given by

D (ν, ν0) =
1p
2πv20

s
mc2

kBT
exp

"
− mc2

2kBT

µ
ν − ν0
ν0

¶2#
.

The full width at half max for this profile is given byµ
∆ν

ν0

¶2
= 8 ln (2)

·
kBT

mc2

¸
where ν is an arbitrary frequency of interest, ν0 is the resonant frequency, ∆ν is the

FWHM of the Doppler profile, kBT is the approximate thermal energy, and mc2 is

the rest mass energy of the atom. This relationship can be inverted to obtain the

temperature as a function of the Doppler width,

T =
λ2 (∆ν)2m

8 ln (2) kB
.

Plugging in actual numbers, we obtain the general formula·
T

K

¸
=
¡
2.168× 10−23¢ · λ

nm

¸2 ·
∆ν

Hz

¸2 h m

a.m.u

i
where T is the atom temperature, λ is the resonant wavelength, ∆ν is the FWHM

Doppler width,m is the mass of the atom, and a.m.u is the atomic mass unit.

For typical spectra taken in the laboratory, the FWHM is not obtained directly.

Usually the spectra are fit to a Gaussian profile with three parameters. If we write this

profile as

Spectrum = A exp

"
−
µ
ν − a

b

¶2#
,
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the FWHM can be extracted using the relation

∆ν = b
p
4 ln (2) = 1.6651b.

Again, plugging in the numbers, we obtain·
T

K

¸
=
¡
6.011× 10−23¢ · λ

nm

¸2 ·
b

Hz

¸2 h m

a.m.u

i


