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Abstract
The ACME collaboration aims to measure the eEDM via Ramsey spectroscopy of

a cryogenic beam of ThO molecules in their metastable H state. This thesis describes

the launch of this new experimental effort. A set of diode lasers has been built to

address all the necessary ThO transitions. The laser frequencies were stabilized to a

stable reference laser via a Fabry-Pérot transfer cavity. A measurement of the mag-

netic dipole moment of the H state has been performed that is complementary to a

previous measurement by the collaboration. This value is important for determin-

ing the sensitivity of the H state to magnetic fields, which can be a source of noise

and systematic errors in the eEDM measurement. Experimental efforts to prepare

the coherent superposition of the M = ±1 Zeeman sublevels in the H, J = 1 state

that is the starting point of the eEDM experiment using transitions to the G state

resulted in a better understanding of transitions between Ω-doublet states in an elec-

tric field. This led to a new technique for normalizing out shot-to-shot fluctuations

in the molecular beam flux, which has also been demonstrated experimentally.
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Chapter 1

Background and motivation

The existence of a permanent electric dipole moment (EDM) associated with the

spin of the electron would represent direct violation of parity and time reversal sym-

metries. Both of these symmetries are known to be violated in nature, and our

current understanding of their violation is encompassed in the Standard Model (SM)

of particle physics. However, the observed dominance of matter over antimatter in

the universe strongly suggests that time reversal is violated in additional ways, the

consequences of which have so far not been observed experimentally. EDM measure-

ments are a uniquely sensitive probe for such additional violation, since the known

time-reversal violation in the SM produces a negligibly small background.

This thesis describes work done as part of the ACME collaboration, a joint effort

between Harvard University (Professors John Doyle and Gerald Gabrielse) and Yale

University (Professor David DeMille). The collaboration began in 2007 with the goal

of using a cryogenic beam of thorium monoxide (ThO) molecules to measure the

electron EDM (eEDM). All major parts of the apparatus - the beam source, electric

1



Chapter 1: Background and motivation 2

field plates, magnetic shields and coils, and laser systems - are now in place. This

year we observed spin precession in electric and magnetic fields using a measurement

technique very similar to the one we will use in the real eEDM experiment.

This thesis describes construction of the laser locking system and some preliminary

measurements for the ACME experiment. The remainder of this chapter discusses

the motivation for eEDM measurements in more detail. Chapter 2 describes the ob-

servable effect of the eEDM in atoms and molecules, while Chapter 3 provides some

background on diatomic molecules necessary for understanding the ACME experi-

ment. The planned experiment is described in Chapter 4, while Chapters 5, 6, and 7

focus on aspects of the work in which I was involved. This includes building diode

lasers and a system to stabilize the lasers’ frequencies (Chapter 5), a measurement of

the magnetic moment of the eEDM-sensitive state of ThO (Chapter 6), and work on

preparation of the initial state for the eEDM experiment (Chapter 7).

1.1 The eEDM and fundamental symmetries

First, let’s convince ourselves that a non-zero eEDM requires violation of both

parity and time reversal. According to the Wigner-Eckart theorem, the expectation

value of any vector operator in an eigenstate of total angular momentum J is pro-

portional to the expectation value of J . For an isolated electron, this means that

〈de〉 ∝ 〈S〉, where S is the electron’s spin. In an eigenstate of Sz, the z-component

of the eEDM must be 〈de,z〉 = β〈Jz〉 = β m, where β is some constant. Since the

z-direction is arbitrary for a rotationally symmetric system, we can write this rela-

tionship as de = βS. As shown in Fig. 1.1, the two sides of this equation transform
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Figure 1.1: Transformation properties of the electron spin (~S) and EDM (~d)
under parity (P ) and time reversal (T ). The spin is even under P and odd
under T , whereas the EDM is odd under P and even under T . A non-zero
EDM would not violate P or T if electrons existed both with ~de = |β|~S
and ~de = −|β|~S; these two states would be degenerate if P and T were
good symmetries. In that case, the relative orientation of the spin and EDM
would constitute an additional degree of freedom for the electron, and another
quantum number would be required to specify its state. Since we know from
atomic structure that this is not the case, only one type of electron exists in
nature. In this situation, a non-zero EDM implies P and T violation.

differently under both parity and time reversal; for this relation to remain valid for

the transformed electron, β must be zero.

Parity and time reversal are two of the three discrete symmetries important in

the Standard Model. Parity (P ) corresponds to inversion of all three spatial coordi-

nates, i.e. x→ −x. Time reversal (T ) corresponds to t→ −t. The third symmetry

is charge conjugation (C), which interchanges particles and antiparticles. A physi-

cal process respects one of these symmetries if the result of applying the symmetry

operation is an equally possible process. The combined action of C, P , and T is a

symmetry of any Lorentz invariant, local quantum field theory [1]. However, neither

the individual transformations C, P , and T nor combinations of any two of them are

good symmetries of nature; they are violated by the weak interaction. Parity viola-

tion is inherent in the structure of the weak interaction, since the W and Z bosons
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interact only with the left-handed component of each quark or lepton field. As we

will now see, T -violation1 can also occur in certain weak interaction processes due to

a complex phase in the Cabbibo-Kobayashi-Maskawa (CKM) matrix.

1.2 The Standard Model

Generically, T -violation arises from complex coupling constants in the Lagrangian2.

In the SM, there is only one source of T -violation, the complex phase δCKM in the

CKM matrix3. When the SM Lagrangian is expressed in terms of the mass eigenstate

fields (i.e. the couplings to the Higgs are diagonalized), T -violation appears only in

the charged current weak interaction of the quarks4. To see how this occurs, we write

down the Lagrangian for the charged current weak interaction

LCC =
g√
2

(
Vkl ūkL γ

µ dlLW
+
µ + V ∗lk d̄kL γ

µ ulLW
−
µ

)
(1.1)

Here the indices k = u, c, t and l = d, s, b run over all possible flavors of up-type and

down-type quarks, respectively, and the parameter Vkl is the appropriate element of

the CKM matrix. T would be a good symmetry if LCC were unchanged under a

T transformation: TLCC T−1 = LCC . Using the T -transformation properties of the
1Assuming CPT invariance, as we do throughout this thesis, T -violation is equivalent to CP

violation and is more commonly discussed under this name.
2Complex couplings lead to T -violation because the operator that implements the T transforma-

tion is antiunitary. See [2] for a more detailed discussion.
3A P - and T -violating term θQCD can also occur in quantum chromodynamics. Limits on the

neutron EDM impose the constraint |θQCD| < 10−9 [3]. Providing a natural explanation for the
smallness of θQCD remains problematic (this is the strong CP problem). We ignore this term since
it is irrelevant for the electron.

4For the moment, we are assuming that neutrinos are massless. The effects of neutrino mass will
be discussed at the end of this section.
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fields [2]

TψlT
−1 = eiβlγ∗0γ

∗
5C
∗Aψl (1.2)

T ψ̄kT
−1 = e−iβkψ†(C−1)∗γ∗5γ

∗
0 (1.3)

TW+
µ T

−1 = eiβWW µ+, (1.4)

we find that T will be a symmetry of LCC if the CKM matrix elements satisfy

V ∗kl = ei(ξl−ξk−ξW ) Vkl. (1.5)

If we write the CKM matrix elements as

Vkl = Rkl e
iθkl , (1.6)

the theory will be T -invariant if we can define the T transformation phases such that

ξl − ξk − ξW = −2 θkl. (1.7)

To see whether we have enough independent phases ξk at our disposal, we first consider

the SM with n generations of quarks and later specialize to the case of our world where

n = 3. For n generations, VCKM is an n × n unitary matrix, which means there are

(n2 + n)/2 independent θkl (n2 matrix elements minus (n2 − n)/2 constraints from

unitarity). There are 2n quark fields (n up-type and n down-type); thus, there are

2n−1 phase differences5. The number of θkl that cannot be eliminated using Eqn. (1.7)

is thus (n− 2)(n− 1)/2. This means that T violation can occur via the CKM matrix

only for n ≥ 3. For n = 3, there is only one complex phase in the CKM matrix that

cannot be eliminated by phase redefinitions of the quark fields. This phase δCKM is

the only source of T violation in the Standard Model.
5A phase common to all the quark fields does not affect VCKM .
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We can change the phases of the CKM matrix elements by rephasing the quark

fields, i.e. uk → eiφkuk, dk → eiφkdk. Since physical observables cannot depend on

such arbitrary phase choices, the only observable parameters of the CKM matrix are

those invariant under phase redefinitions. The only rephasing invariant quantities

that can be built from CKM matrix elements are the magnitudes of the elements

|Vkl|2 and quantities of the form

Qijkl = Vik Vjl V
∗
il V

∗
jk, (1.8)

where there is no summation over repeated indices. The condition for T -invariance,

Eqn. (1.7), also guarantees that all quantities Qijkl in Eqn. (1.8) are real. Thus, we

are led to an alternative formulation of the T -invariance condition: the theory is T -

invariant if and only if all of the rephasing invariants of the CKM matrix are real [2].

Since the SM contains only one complex phase, the imaginary parts of all Qijkl are

equal up to a sign. If we define the Jarlskog invariant [4] as

J ≡ |Im(Vik Vjl V
∗
il V

∗
jk)|, (1.9)

all CP -violating quantities in the Standard Model are proportional to J . In terms

of the mixing angles between quarks of different generations and the complex phase

δCKM , the Jarlskog invariant is [5]

J = s12 s13 s23 c12 c
2
13 c23 sin δCKM , (1.10)

where sij = sin θij and cij = cos θij. Each angle is labeled with two indices indicating

the two generations that are mixed; θij = 0 would indicate that the two generations

i and j are decoupled. Although δCKM = 1.05 ± 0.24 radians [5] is large, J =
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2.91+0.19
−0.11×10−5 [6] is small due to the smallness of the mixing angles between different

generations θ12, θ13, and θ23.

1.2.1 The eEDM in the Standard Model

In the SM, the eEDM arises from loop diagrams involving quarks and W bosons.

The lowest order diagram that could produce a result proportional to the Jarlskog

invariant is shown in Fig 1.2 (a). Pospelov and Khriplovich [7] proved that the sum

of all diagrams of this form is zero; however, they expect a non-zero result if strong

interactions of the quarks in the loop are included, as shown in Fig 1.2 (b). To our

knowledge, an exact calculation of the electron EDM in the SM has not been done.

A rough estimate of the sum of all diagrams of the form shown in Fig. 1.2 (b) is

de ∼ e
α3 αs J me

(2
√

2 sin θW MW )6 π4

∑
i,j,k,l

(m2
i −m2

k)(m
2
j −m2

l ), (1.11)

where α is the fine structure constant, αs is the strong interaction coupling constant,

θW is the weak mixing angle, MW is the mass of the W boson, me is the electron

mass, and the sum runs over all quark flavors of the appropriate type (up-type for i,

k and down-type for j, l). The dependence on quark mass differences is a key feature

of the SM and comes about as follows. Each diagram of the form in Fig. 1.2 (b)

is proportional to Qiklj = VilVkjV
∗
ijV
∗
kl. Interchanging i and k gives a diagram pro-

portional to Qkilj = Q∗iklj, which has an imaginary part of opposite sign. Since only

the imaginary part contributes to de, diagrams with any two quarks of the same type

interchanged contribute with opposite signs. Since the only difference between quarks

of the same type is their mass, the diagrams would cancel if two quarks of the same

type had the same mass. This is the GIM mechanism [8]. Using the heaviest up-type
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Figure 1.2: (a) Three-loop diagram for the eEDM. The sum of all such
diagrams is zero [7]. (b) Four-loop diagram for the eEDM. Diagrams of this
type are expected to give the largest non-zero contribution to the eEDM
in the SM. Here uk denotes an up-type quark of generation k, dj denotes
a down-type quark of generation j, zig-zag lines denote W bosons, and g
denotes a gluon. The virtual gluon should be attached to all possible quark
lines, and the external photon should be attached to all possible charged
lines. The CKM matrix element appearing at each vertex is indicated in red.

and down-type quark masses gives the numerical estimate

de ∼ e
α3 αs J me

(2
√

2 sin θW MW )6 π4
m2
b m

2
t ∼ 10−38 e · cm, (1.12)

where mb is mass of the bottom quark and mt is the mass of the top quark. This

value is many orders of magnitude below the current experimental limit |de| < 1.05×

10−27 e · cm [9].

The above discussion assumed that neutrinos were massless, in which case the

analogue of the CKM matrix in the lepton sector was simply the unit matrix. Since

neutrinos are known to have mass, the lepton mixing matrix - called the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix - is non-trivial and can contain additional T -

violating phases. The number of phases in the PMNS matrix depends on the number
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of neutrino species6, as well as on whether neutrinos are Dirac or Majorana fermions.

For a minimal model with three neutrino species, the PMNS matrix contains one

Dirac phase (analogous to δCKM in the quark sector) and two Majorana phases [10].

These phases produce a non-zero eEDM at the two loop level; however, for realistic

values of the active neutrino masses, the resulting eEDM remains orders of magnitude

below the sensitivity of current or proposed experiments [11].

1.3 Beyond the Standard Model

Although all current experimental data are consistent with the CKM phase as the

only source of T -violation, it is widely believed that additional sources of T -violation

exist. One motivation for this belief is the success of the inflationary scenario in

cosmology, which necessitates a way to dynamically generate the observed baryon

asymmetry of the universe from the baryon-symmetric state that existed at the end

of inflation. Dynamical production of a net baryon number - baryogenesis - requires

three conditions [12]: (1) violation of baryon number, (2) departure from thermal

equilibrium, and (3) C- and CP -violation. Although the SM contains all three ingre-

dients, the baryon asymmetry that can be dynamically generated with δCKM as the

only source of CP -violation is orders of magnitude below the observed value [3].

For this reason and others, the Standard Model is unlikely to provide a complete

description of nature. In particular, it does not include gravity, while any theory

valid up to the Planck scale should incorporate gravitational interactions. The SM
6Besides the known three active neutrino species that participate in the weak interaction, there

may be an unknown number of sterile neutrinos that do not interact weakly.
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Figure 1.3: (a) One-loop diagram for the electron g−2. (b) Similar diagram
for the eEDM.

also fails to provide any viable candidate for dark matter, the non-baryonic particles

that constitute 83% of the matter in the universe. In addition, the SM has several

features that seem unnatural to many authors. Perhaps the best known of these is

the gauge hierarchy problem, the quadratic sensitivity of the Higgs boson mass to the

largest energy scale in the theory. Another is the strong CP problem, the experimental

fact that the CP -violating term in quantum chromodynamics is extremely small, for

which the SM can provide no explanation. Resolving some of these problems has

been the main motivation for most of the proposed extensions of the SM.

Essentially all proposed extensions include additional particles not present in the

SM, allowing additional complex coupling constants that lead to T -violation. In many

such models, non-zero contributions to the eEDM appear at the one- or two-loop level

in perturbation theory, leading to a greatly enhanced effect compared to the SM. In

fact, if the T -violating phases appearing in these new interaction terms are similar

in size to δCKM , many of these theories predict values of the eEDM at or above the

current experimental limit.

Following [5], we can estimate the magnitude of de expected in almost any exten-

sion of the SM. Consider the diagram of Fig. 1.3, which is very similar to the diagram
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that gives the lowest-order correction to the electron g-factor, g − 2 = α/π. From

dimensional analysis, we expect,

de
(g − 2)µB

∼
(
f

e

)2

sinφ

(
me

MX

)2

. (1.13)

The dependence on the squared mass ratio (rather than some other power of me/MX)

occurs because the integral for this diagram has six powers of momentum in the

denominator, and after integrating over the loop momentum d4p, the result will scale

as Λ−2, where Λ is the largest energy scale in the problem, in this case, the mass

MX . Assuming the coupling constants are similar (f ∼ e) and the T -violating phase

is similar to δCKM so sinφ ∼ 1, the eEDM is

de ∼
(
f

e

)2

sinφ

(
me

MX

)2
α

π
µB ∼

(
100 GeV

MX

)2

× 10−24 e · cm. (1.14)

In most theories that attempt to provide a natural solution of the gauge hierarchy

problem, some particles must appear with masses in the range of 100 GeV - 1 TeV7.

Thus, in any such theory, the “natural” range for de is 10−24 − 10−26 e · cm. Each

additional loop typically introduces another factor of f 2/π ∼ α/π ∼ 3× 10−3. Thus,

the current experimental limit |de| < 1.05× 10−27 e · cm [9] already places significant

constraints on theories in which de appears at the one- or two-loop level.

It is not surprising that virtually all extensions of the SM predict significantly

larger values of de since the combination of features that makes de small in the SM - a

single source of T -violation in the quark sector combined with GIM suppression due

to the family structure of quarks - is absent in more general theories. Indeed, in many
7To solve the gauge hierarchy problem, some new physics has to appear at an energy scale not

too far from the scale of the Higgs boson mass, which is experimentally constrained to the range
114 < mH < 186 GeV [13].
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Figure 1.4: Predictions for the eEDM from the SM and some proposed ex-
tensions (see [14] for details). The hatched region is excluded by the current
experimental limit [9]. All models shown in blue are supersymmetric.

proposed extensions, it is difficult to avoid values of de that are already experimentally

excluded unless special assumptions are made about the masses or coupling constants

of the new particles in the theory. As seen in Fig. 1.4, eEDM measurements are

already beginning to impose significant constraints on several classes of new physics

models. An improvement in sensitivity by an order of magnitude or more could

entirely rule out some of these theories or perhaps even detect an eEDM.



Chapter 2

The eEDM in atoms and molecules

The signature of an eEDM is the electric analog of the Zeeman effect, an energy

shift that depends on the orientation of the electron’s spin relative to an applied

electric field. Detecting this effect with free electrons is difficult since the electric

field required to induce the shift would quickly accelerate them out of the region

of observation. Thus, the eEDM is most commonly studied via measurements on

paramagnetic atoms or molecules. In this case, the measured energy shift is ∆Eedm =

−da · Ee, where da is the atomic or molecular EDM and Ee is the applied electric

field. This shift can be written in terms of the eEDM de as ∆Eedm = −de · Eeff ,

where Eeff is the effective electric field experienced by the unpaired electron.

Interpretation of a measured energy shift in terms of a limit on de requires knowl-

edge of the effective electric field Eeff . In this chapter, we describe the basic method of

calculating Eeffusing the simplest example of an atom with a single valence electron.

The resulting expression can also be used to estimate the effective field in a diatomic

molecule like ThO, although detailed molecular calculations are needed for a more

13
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precise determination of Eeff . As we will see, the eEDM energy shift depends on the

degree of polarization of the species in an applied electric field, which can be orders of

magnitude greater for molecules than for atoms. This property is what makes polar

molecules so attractive for eEDM measurements.

2.1 Schiff’s theorem and its violation

Schiff [15] showed that in the limit of non-relativistic quantum mechanics, there is

no first-order shift of the atomic energy levels due to the eEDM, i.e. the atom does not

acquire a permanent EDM even if the electron has one. A relativistic treatment of the

problem does reveal a first-order effect; indeed, as pointed out by Sandars [16, 17], in

heavy atoms the resulting atomic EDM da can be orders of magnitude larger than the

eEDM de. This enhancement of the eEDM in heavy atoms is what makes precision

measurements of this very small quantity possible.

To see how the enhancement arises, we will use perturbation theory to calculate

the effect of the eEDM on the atomic energy levels. We work in the central field

approximation and assume that the atom has only one valence electron. The un-

perturbed Hamiltonian is the Dirac Hamiltonian for an atom in an external electric

field,

HD = cα · p+mc2γ0 − eΦ. (2.1)

Here the total electrostatic potential is Φ = Φint + Φext, where Φint is the atomic

electrostatic potential and Φext is the potential of the applied electric field. To deter-

mine the correct Hamiltonian for the eEDM interaction, we start from the Lagrangian
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density [18]

Ledm = −i de
2
ψσµνγ5ψ Fµν , (2.2)

where ψ is the electron field, ψ = ψ†γ0 is the conjugate field, σµν = (i/2)(γµγν−γνγµ),

γµ are the Dirac matrices, and Fµν = ∂µAν−∂νAµ is the electromagnetic field tensor.

In terms of the electric (E) and magnetic (B) fields experienced by the electron, we

have

Ledm = deψ [Σ · E + iα ·B]ψ, (2.3)

where
Σ =

(
σ 0
0 σ

)
,α =

(
0 σ
σ 0

)
. (2.4)

This gives the single-particle Hamiltonian [19]

Hedm = −de
(
γ0Σ · E + iγ0α ·B

)
. (2.5)

The classical expression −d · (E + v ×B) is the non-relativistic limit of this interac-

tion. Since the electric term is larger than the magnetic term in paramagnetic atoms,

we take

Hedm = −deγ0Σ · E (2.6)

as the perturbation.

Before calculating the energy shift, it is convenient to rewrite Eqn. (2.6) as

Hedm = −deΣ · E − de
(
γ0 − 1

)
Σ · E . (2.7)

The first-order energy shift of the state |ψ0〉 is thus

∆Eedm = 〈ψ0| − deΣ · E|ψ0〉+ 〈ψ0| − de(γ0 − 1)Σ · E|ψ0〉 = ∆E1 + ∆E2. (2.8)
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The second term in Eqn. 2.8 is very small in the non-relativistic limit because the

operator (γ0 − 1)Σ ·E acts only on the small components of the electron’s wavefunc-

tion. We first calculate ∆E1, the dominant term in the non-relativistic limit. We can

write the electric field as

E = −∇Φ =
−i
e~

[p, eΦ] , (2.9)

where the chain rule is used in the last step. Using Eqn. (2.1), we have

Σ · E =
−i
e~

[Σ · p, eΦ] =
−i
e~
[
Σ · p,

(
HD − cα · p+mc2γ0

)]
=
−i
e~

[Σ · p, HD] ,

(2.10)

where the last step follows because [Σ · p,α · p] = 0 and [Σ · p, γ0] = 0. The energy

shift is then

∆E1 = −ide
e
〈ψ0| [Σ · p, HD] |ψ0〉 = 0 (2.11)

because |ψ0〉 is an eigenstate ofHD. What we have just proved is Schiff’s theorem [15].

The derivation given here follows that in [5].

The relativistic shift ∆E2 is not zero, and it is responsible for the enhancement

of the eEDM in heavy atoms. We now calculate this shift, following the discussion

in [20] and [21]. Since

(γ0 − 1)Σ · E =

(
0 0
0 −2σ · E

)
, (2.12)

we can simplify ∆E2 by writing the electron wavefunction in terms of its large (f0)

and small (g0) components as

|ψ0〉 =

(
f0

g0

)
, (2.13)

in which case ∆E2 becomes

∆E2 = −2de〈g0|σ · E|g0〉. (2.14)
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This energy shift depends only on the small components of the electron wavefunc-

tion, which are related to the large components by |g0/f0| ∼ v/c, where v is the

electron’s velocity and c is the speed of light. In the non-relativistic limit, v � c,

these components are indeed small. Very close to the nucleus, however, the ratio of

the small components to the large components can approach unity. In this region, the

electron’s potential energy V (r) = −Ze2/r assumes very large negative values, which

means that its kinetic energy must assume correspondingly large positive values be-

cause its total energy is constant. In particular, this implies that v can becomes close

to c in this region. This argument suggests that the main contribution to the energy

shift comes from the region very close to (and inside) the nucleus, an expectation con-

firmed by more rigorous calculations [5]. An electron with little or no orbital angular

momentum has the highest probability of penetrating into this region, which is why

atoms with valence electrons in s- or p-orbitals are preferable. Since the magnitude

of the small components of the wavefunction scales as Z2α2, an atom with large Z is

necessary.

Due to the odd parity of E , the energy shift vanishes if |g0〉 is a parity eigenstate.

This is why an external electric field is necessary. Since we assumed that |g0〉 is an

eigenstate of HD, which includes an external field, it is indeed a state of mixed parity.

Assuming the valence electron is nominally in an |s1/2〉 state to which the electric

field admixes some amount of |p1/2〉, we write |g0〉 as

|g0〉 = εs|gs1/2
〉+ εp|gp1/2

〉+ . . . (2.15)

For an atom, we expect εs ∼ 1 and εp � 1. We will not, however, assume anything

about εs and εp at this stage. We neglect mixing with the |p3/2〉 and higher states in
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Eqn. (2.15) since the wavefunctions of these states scale as higher powers of r near

the origin and are thus very small.

Very close to the nucleus, the total electric field E seen by the electron can be well

approximated by E ≈ kZer̂/r2, the Coulomb field of the unscreened nucleus, where

k = (4πε0)−1. This gives for the matrix element

∆E2 = −4dekZeεsεp

〈
gs1/2

∣∣∣∣σ · r̂r2

∣∣∣∣gp1/2

〉
(2.16)

The radial integral is ([22], 8.13)

Γrel = a2
0

〈
gs1/2

∣∣∣∣σ · r̂r2

∣∣∣∣gp1/2

〉
=

2(Zα)2

γ(4γ2 − 1)(ν ′ν)3/2
, (2.17)

where a0 is the Bohr radius, γ =
√

(j + 1/2)2 − Z2α2, and ν and ν ′ are the effective

principal quantum numbers for the s1/2 and p1/2 states. Putting everything together,

we find

∆E2 = −
[(

8ke

a2
0

)
Z Γrel εs εp

]
de =

[(
4.1× 1010 V/cm

)
Z Γrel εs εp

]
de (2.18)

The quantity in square brackets can be interpreted as the effective electric field acting

on the eEDM. The size of this field depends on two different properties of the atom:

the relativistic enhancement described by Z Γrel and the mixing of opposite parity

states described by εs and εp.

2.2 Polarization of atoms and molecules

Although we derived Eqn. (2.18) for an atom, it can be used to estimate the

energy shift in a diatomic molecule like ThO, since the relativistic enhancement of

the eEDM is still determined by the enhancement in the heavy atom. However, the
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mixing coefficients εs and εp for a molecule can have quite different values from those

for an atom.

To see this, let’s consider an atom with a valence electron in an |s1/2〉 state in

an applied electric field Ee = Eeẑ. For atoms, perturbation theory is valid for any

practically achievable Ee, so the mixing coefficients are

εs ' 1 (2.19)

εp ' −Ee
〈gp1/2

|e z|gs1/2
〉

Es1/2
− Ep1/2

. (2.20)

If we make the approximations

〈gp1/2
|e z|gs1/2

〉 ∼ e a0

Ep1/2
− Es1/2

∼ 0.1
e2

a0

, (2.21)

we find εp ∼ Ee/(5 × 108 V/cm). Since the largest attainable electric field in a

laboratory vacuum is about 200 kV/cm [22], this gives εp ∼ 4 × 10−4. This small

value of εp enters directly into the Eqn. (2.18), reducing the size of the energy shift.

For atoms in any practically achievable electric field, atomic EDM da is proportional

to the applied field Ee. Thus, the ratio R = da/de = Eeff/Ee is a constant, which

is usually called the enhancement factor. For heavy atoms, this factor can be much

larger than one since it scales with atomic number as Z3. For thallium, which was

used to set the best atomic limit on the eEDM, for instance, R = −585 [23].

Significantly greater polarization can be achieved with polar diatomic molecules.

In such molecules, the atomic s and p orbitals are strongly polarized along the inter-

nuclear axis n̂ by the intermolecular electric field. This mixing of s and p orbitals

in a the molecule will contribute to an eEDM signal only if it produces a molecular
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orbital of σ symmetry. An electron in a σ orbital has no orbital angular momentum

around the molecular axis, allowing it to penetrate close to the heavy atom’s nucleus,

where the relativistic enhancement occurs. To estimate the mixing coefficients, we

can express the molecular orbital as a linear combination of atomic orbitals centered

on the heavy atom [21]

|σ〉 = εs|s〉+ εp

[
− 2ω√

3
|p1/2〉+

√
2

3
|p3/2〉

]
+ ... (2.22)

Here ω is the spin projection on the molecular axis, ω = ±1/2, and we have neglected

the contributions of d and higher orbitals and of all orbitals centered on the light

atom since these will not contribute to the eEDM signal. In this case, the mixing

coefficients εs and εp are properties of the molecular orbital and do not depend on the

applied electric field.

Applying an electric field is still essential in a molecular eEDM experiment to ori-

ent the molecular axis in the laboratory frame. In the absence of this polarizing field,

energy eigenstates of the molecule are also parity eigenstates. For a heteronuclear

molecule, parity eigenstates are equal linear combinations of states with opposite ori-

entations of the molecular axis and hence of the intermolecular electric field. In such

a state, the eEDM is antiparallel to the molecular electric field as often as it is parallel

to the field, so the net energy shift is zero. When the molecule is polarized by an

applied field, however, the parity states mix to produce new energy eigenstates in

which the molecular axis is either parallel or antiparallel to the applied field, as we

will see in Section 3.0.2.

Since polarization occurs through the mixing of opposite parity states by the

applied electric field, polarizing a molecule requires a much smaller electric field than
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polarizing an atom, as the molecular states of opposite parity are much closer in

energy that atomic states. Every molecule has rotational states whose splitting ∆rot

is related to a typical electronic energy ∆el by ∆rot ∼ (me/Mnuc)∆el ∼ 10−4∆el. Some

molecules have opposite parity states with even smaller splittings due to Ω-doubling,

which we will discuss in Section 3.0.2. The presence of such closely spaced opposite

parity states makes complete polarization achievable for realistic values of the applied

field. For instance, for ThO in theH state, the polarization is 0.999 for Ee = 10 V/cm.

The effective electric field in a fully polarized molecule like ThO is thus about 103

times larger than the largest effective field achievable in an atom because the atomic

field is limited by the achievable degree of polarization. Now that techniques for

producing large numbers of cold molecules are available [24, 25, 26], many molecular

eEDM experiments have been started to take advantage of this feature (see [5] and [27]

for reviews of current molecular eEDM experiments).



Chapter 3

Diatomic molecules for eEDM

measurements

In this chapter, we briefly review some features of diatomic molecules that are

relevant for the ACME experiment. A more detailed introduction to molecules can

be found in [28], while the definitive treatment is [29].

A molecule has more degrees of freedom than an atom due to the vibrational and

rotational motion of the nuclei. Since the Coulomb forces experienced by electrons

and nuclei in a molecule are comparable in strength, but the nuclei are at least three

orders of magnitude heavier, the nuclear motion is much slower than the electronic

motion. This makes it a good approximation to treat these motions independently

and calculate the electronic wavefunction at each value of the internuclear separation

by treating the nuclei as fixed. This is called the Born-Oppenheimer approximation.

The electronic charge distribution is then a function of the internuclear separation

and determines the nuclear motion. This leads to the energy level structure shown

22
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Figure 3.1: Plot of the electronic energy Ek(R) as a function of the internu-
clear separation R. Each electronic state k is described by a curve of this
general shape. For R→ 0, the energy is dominated by the mutual repulsion
of the nuclei, while for R → ∞, it approaches a constant equal to the sum
of the energies of two separated atoms. For a bound state, the energy has
a minimum at some intermediate distance Re. Within each electronic state,
there is a set of vibrational states labeled by the quantum number v, and
within each vibrational state is a series of rotational states labeled by the
quantum number J .

schematically in Fig. 3.1.

In an atom, the total electronic angular momentum J2
e is identical with the total

angular momentum of the atom1. Rotational invariance of the Hamiltonian means

that energy eigenstates can be chosen to be simultaneous eigenstates of J2
e (quantum

number Je) and its projection on an arbitrarily chosen z-axis Jez (quantum number
1We ignore nuclear spin here and throughout this chapter, since it is irrelevant for ThO in which

both nuclei have spin 0.
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Me). In a diatomic molecule, the spherical symmetry of the Hamiltonian is reduced

to axial symmetry around the internuclear axis n̂2, which means that J2
e no longer

commutes with the Hamiltonian and Me is not a good quantum number. However,

the Hamiltonian still commutes with Jez when the z-axis is chosen to coincide with

the internuclear axis. The eigenvalue Ω of the projection of the electronic angular

momentum on the internuclear axis, Je · n̂, thus remains a good quantum number.

The total angular momentum J of the molecule is J = N + Ω n̂, where N is the

rotational angular momentum of the nuclei, which is always perpendicular to n̂.

Due to rotational invariance, the total angular momentum J2 commutes with the

Hamiltonian, and its eigenvalue J is used to label the rotational states of the molecule.

The possible values of J are |Ω|, |Ω|+ 1, |Ω|+ 2, ....

The various angular momenta in the molecule can couple together in different

ways, which give rise to the different Hund’s cases. Each case leads to a set of good

(i.e. well-defined) quantum numbers that can be used to label the molecular states.

The most important ones for our purposes are Hund’s case (a) and Hund’s case (c). In

case (a), the electronic orbital angular momentumL is coupled to the internuclear axis

n̂ by the internal electric field of the molecule and precesses about n̂ with projection

Λ on the axis. Spin-orbit coupling then couples the total electronic spin S to the

axis via its interaction with L, so S also precesses around the internuclear axis with

projection Σ on the axis. In this case, the good quantum numbers are Λ, S, Σ,

and Ω = |Λ + Σ|. The ground state of ThO can be described by Hund’s case (a).

Since thorium is heavy, most excited states of ThO are described by Hund’s case (c),
2The internuclear axis n̂ is usually defined to point in the direction of the molecular electric

dipole moment in the molecule-fixed frame.
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which occurs when the spin-orbit coupling is stronger than the coupling of L to

the internuclear axis. In this case, L and S first couple together to form the total

electronic angular momentum Je = L + S, which precesses around the internuclear

axis n̂ with projection Ω on this axis. Due to the strong spin-orbit coupling in Hund’s

case (c), Λ, Σ, and S are no longer good quantum numbers; the only good quantum

number in this case is Ω.

In analogy with atomic states, molecular states can be described by the notation

2S+1ΛΩ, where S is the total electronic spin (eigenvalue of S2) and Λ is the projection

of L on the internuclear axis. The value of Λ is represented by a capital Greek letter

in analogy with the atomic case: Σ (Λ = 0), Π (Λ = 1), ∆ (Λ = 2), ... For instance,

the ground state of ThO, called X, is essentially a pure 1Σ+ state3.

The 2S+1ΛΩ notation assumes that Λ and S are well-defined, which is not true

in Hund’s case (c). Although states of ThO can generally not be described by a

single term of the form 2S+1ΛΩ, they can be expressed as linear combinations of such

terms with differing values of S and Λ but the same value of Ω. For instance, ab initio

molecular calculations indicate that the eEDM-sensitive H state of ThO is 98.4% 3∆1,

with small admixtures of 3Π1 and 1Π1 states [30].

3.0.1 Calculation of molecular matrix elements

To determine the effect of external fields on a molecule, we need to relate matrix

elements of operators expressed in the laboratory-fixed coordinate system to matrix
3The subscript Ω is omitted in this case since the only possible value is Ω = 0. The + super-

script describes the fact that the wavefunction of this state is even under reflection through a plane
containing the internuclear axis. There are also Σ− states for which the wavefunction is odd under
this reflection.
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elements expressed in the molecule-fixed system. Since the molecule-fixed axes are

obtained by rotation of the space-fixed axes by the Euler angles (φ, θ, χ) = ω, a

spherical tensor operator T (k)
p in the laboratory-fixed system can be expressed in

terms of molecule-fixed components T (k)
n as ([29], 5.143)

T (k)
p =

∑
n

D(k)
pn (ω)∗T (k)

n , (3.1)

where D(k)
pn (ω)∗ is the complex conjugate of the pn element of the k-th rank rotation

matrix D(k)(ω). We use p to label space-fixed coordinates and n for molecule-fixed

coordinates. The rotational part of the wavefunction for a diatomic molecule can be

written as ([29], 5.145)

|J,M,Ω〉 =

√
2J + 1

8π2
D(J)
MΩ(ω)∗ (3.2)

Using Eqns. (3.1) and (3.2), as well as the formula for the integral over a product of

three rotation matrices ([29], 5.100), we find the following relation between matrix

elements in the laboratory-fixed (p) and molecule-fixed (n) frames

〈β′, J ′,M ′,Ω′|T (k)
p |β, J,M,Ω〉 =

∑
n

(−1)M
′−Ω′√

(2J + 1)(2J ′ + 1) J ′ k J

−M ′ p M


 J ′ k J

−Ω′ n Ω

 〈β′,Ω′|T (k)
n |β,Ω〉,

(3.3)

where β represents all additional quantum numbers required to specify the state. We

will need this formula in Section 3.1.

For matrix elements that are diagonal in Ω, we will also need the n = 0 spherical

component of the electric dipole moment operator D in the molecule-fixed frame.

Since the z-axis of the molecular frame is the internuclear axis and the electric dipole
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moment lies along this axis, D0 = Dmol, where Dmol is the magnitude of the electric

dipole moment for the electronic state under consideration. The matrix element is

thus simply 〈Ω|D0|Ω〉 = Dmol.

3.0.2 Omega doubling

The Hamiltonian of a diatomic molecule is invariant under reflection through a

plane passing through the internuclear axis. Such a reflection does not change the

energy of the molecule, but it does change the sign of the angular momentum about

this axis. Thus, for Ω 6= 0, there are two degenerate states with opposite signs of

the angular momentum about the internuclear axis, Ω = ±|Ω|. Since these states

transform under parity as ([29], 6.228)

P |J,M,Ω〉 = (−1)J−Ω|J,M,−Ω〉, (3.4)

simultaneous eigenstates of the molecular Hamiltonian and parity can be constructed

by taking the following linear combinations of states with signed values of Ω

|β, J,M, |Ω|,±〉 =
1√
2

(
|β, J,M,Ω〉 ± (−1)−Ω|β, J,M,−Ω〉

)
. (3.5)

Here β represents all other quantum numbers, for instance those specifying the elec-

tronic and vibrational state. The states |β, J,M, |Ω|,±〉 are conventionally denoted

|β, J,M, |Ω|, e〉 with parity (−1)J and |β, J,M, |Ω|, f〉 with parity (−1)J+1 [29]. These

states are degenerate in the absence of molecular rotation. The degeneracy is lifted

by a coupling between the electronic and rotational motion, and the resulting energy

splitting is called Ω-doubling. Thus, for Ω 6= 0, each rotational level consists of two
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closely spaced states of opposite parity corresponding to the linear combinations in

Eqn. (3.5).

To see how Ω-doubling arises, we write the rotational part of the Hamiltonian as

Hrot = BN 2 = B(J − Je)2 = BJ2 − 2BJ · Je +BJ2
e , (3.6)

where B is the rotational constant. The first term in Eqn. (3.6) is the usual rotational

energy, while the third term is a constant for a given electronic state. The second

term, H ′ = −2BJ ·Je, is responsible for Ω-doubling. The most general matrix element

of this term is

M = 〈β′, J ′,M ′,Ω′|H ′|β, J,M,Ω〉 = −2B
∑
p

(−1)p〈β′, J ′,M ′,Ω′|JpJe,−p|β, J,M,Ω〉,

(3.7)

where in the second part of Eqn. (3.7) we have written out the scalar product J · Je

in terms of spherical components. Inserting the identity as a sum over eigenstates,

we have

M = −2B
∑

p, β′′, J ′′,
M ′′,Ω′′

〈β′, J ′,M ′,Ω′|Jp|β′′, J ′′,M ′′,Ω′′〉〈β′′, J ′′,M ′′,Ω′′|Je,−p|β, J,M,Ω〉.

(3.8)

We evaluate the matrix element of Jp using the Wigner-Eckart theorem and the

formula ([31], 4.148)

〈β′, J ′,Ω′||J ||β′′, J ′′,Ω′′〉 = δβ′β′′δJ ′J ′′δΩ′Ω′′

√
J ′(J ′ + 1)(2J ′ + 1), (3.9)

which leads to

M = −2B
√
J ′(J ′ + 1)(2J ′ + 1)

∑
p,M ′′

(
J ′ 1 J ′

−M ′ p M ′′

)
〈β′, J ′,M ′′,Ω′|Je,−p|β, J,M,Ω〉.

(3.10)
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Using Eqn. (3.3) to express the matrix element of Je in terms of molecule-fixed com-

ponents, we find

M =− 2B
√
J ′(J ′ + 1)(2J ′ + 1)(−1)J

′−M ′−Ω′∑
n

(
J ′ 1 J
−Ω′ n Ω

)
〈β′,Ω′|Je,n|β,Ω〉

∑
p,M ′′

(−1)p+M
′′
(

J ′ 1 J ′

−M ′ p M ′′

)(
J ′ 1 J
−M ′′ −p M

)
.

(3.11)

Performing the sum over p andM ′′ using the orthogonality relation of the 3j symbols

([31], 4.42), we have

M = −2B(−1)J−Ω′√
J(J + 1)(2J + 1)

∑
n

(
J 1 J
−Ω′ n Ω

)
〈β′,Ω′|Je,n|β,Ω〉. (3.12)

Since Je is a vector operator, Eqn. (3.12) tells us that the only non-zero matrix

elements are those where Ω′ = Ω,Ω ± 1. We first consider the diagonal elements,

which would give a first-order energy shift. Since the parity eigenstates in the absence

of external fields are equal linear combinations of |Ω〉 and |−Ω〉 (Eqn. (3.5)), the first

order energy shift vanishes.

There is a second order energy shift due to coupling of states with ∆Ω = ±1.

Note that for coupling to states with Ω = 0, only one of the two parity states of the

Ω-doublet is shifted, the one that has the same parity as the levels of the Ω = 0 state.

This occurs because the operator J ·Je has even parity. For the H state J = 1 level,

the shift arises from coupling to states with Ω = 04. The closest Ω = 0 states to the

H state are the A state and the ground state X, which are both about 5300 cm−1

4The closest state to the H state is the Q state with Ω = 2, which is only about 800 cm−1

away [32]. The Q state does not contribute to Ω-doubling for the J = 1 level in H since it doesn’t
have a J = 1 state but contributes for J = 2 and above. Due to the Ω-doubling in the Q state,
coupling to this state shifts both the e and f levels of the H state in the same direction. If the
matrix elements are similar in magnitude, the shifts of the e and f levels should be similar, so the
contribution of this state to Ω-doubling is expected to be fairly small.
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away [32]. Since A is above H in energy while X is below, they will shift the e levels

of the H state in opposite directions. From Eqn. (3.12), the second-order energy shift

is

∆E = 4B2
H

(
|〈A, 0|Je,−1|H, 1〉|2

EH − EA
+
|〈X, 0|Je,−1|H, 1〉|2

EH − EX

)
J(J + 1). (3.13)

If we assume that the unknown matrix elements |〈A, 0|Je,−1|H, 1〉| and |〈X, 0|Je,−1|H, 1〉|

are both of order one, Eqn. (3.13) predicts a splitting of 29 kHz for J = 1. This sim-

ple estimate is not too far off: existing spectroscopic data on ThO yield a value

of q = 192 kHz for the Ω-doubling constant [33, 34], which gives a splitting of

∆Ω = qJ(J + 1) = 384 kHz for J = 1.

3.1 The H state in electric and magnetic fields

The J = 1 Ω-doublet in the H state of ThO is the heart of the ACME experiment.

In this section, we determine the shifts of levels in this manifold due to applied electric

and magnetic fields.

Ignoring the very small eEDM for now, we start with the much larger effect of an

electric field Ee = Ee ẑ on the Ω-doublet. This field mixes the |e〉 (parity -1) and |f〉

(parity +1) states with the same value of M . Using Eqns. (3.3) and (3.5), the dipole

moment matrix element between the states |J,M, |Ω|, e〉 and |J,M, |Ω|, f〉 is

〈e| − µz, labEe|f〉 =
1

2

(
〈J,M,Ω|µz, lab|J,M,Ω〉 − 〈J,M,−Ω|µz, lab|J,M,−Ω〉

)
=
−DmolEe|Ω|M
J(J + 1)

.

(3.14)
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The Hamiltonian in the |e〉, |f〉 basis for M = ±1 is

H =

 ∆Ω/2
−DmolEe|Ω|M

J(J+1)

−DmolEe|Ω|M
J(J+1)

−∆Ω/2

 , (3.15)

where ∆Ω is the splitting between the Ω-doublet states in the absence of an electric

field. To simplify the notation5, we define x = ∆Ω/2 and y = −DmolEe|Ω|M/[J(J +

1)]. Now let r =
√
x2 + y2 and θ = arctan(y/x), so that the Hamiltonian becomes

H =

r cos θ r sin θ

r sin θ −r cos θ

 . (3.16)

The eigenstates can be written as

|ψH〉 = cos
θ

2
|e〉+ sin

θ

2
|f〉 (3.17)

|ψL〉 = − sin
θ

2
|e〉+ cos

θ

2
|f〉,

where H (L) labels the higher (lower) energy state. TheM = 0 states do not mix and

remain parity eigenstates regardless of the electric field. In the limit of large electric

field, θ → ∓π/2 for the M = ±1 states. In this case, we have

|ψH ,M = +1〉 =
1√
2

(|e〉 − |f〉) (3.18)

|ψH ,M = −1〉 =
1√
2

(|e〉+ |f〉)

|ψL,M = +1〉 =
1√
2

(|e〉+ |f〉)

|ψL,M = −1〉 = − 1√
2

(|e〉 − |f〉) .

In this limit, the parity states are completely mixed and the signed values of Ω are

again good quantum numbers. To confirm this statement, we express the fully mixed
5This section owes a great debt to and appropriates much of the notation of [35].
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states in the |Ω〉, | − Ω〉 basis using Eqn. (3.5). The result is

|ψH ,M = +1〉 = −| − Ω〉

|ψH ,M = −1〉 = |Ω〉

|ψL,M = +1〉 = |Ω〉

|ψL,M = −1〉 = | − Ω〉. (3.19)

The fully mixed states correspond to alignment of the internuclear axis parallel or

antiparallel to the applied field, as we can demonstrate by calculating the expectation

value of the molecular electric dipole moment D in such a state. For a state of fixed

M , only the z-component of D has non-zero expectation value, which is given by

〈J,M,Ω|Dz, lab|J,M,Ω〉 =
MΩ

J(J + 1)
Dmol. (3.20)

Eqn. (3.20) tells us that states MΩ < 0 (i.e. |ψH ,M = ±1〉) correspond to the

molecular electric dipole moment oriented antiparallel to the electric field, while states

withMΩ > 0 (i.e. |ψL,M = ±1〉) correspond to the opposite orientation. This makes

intuitive sense: the energy of the state with its dipole moment parallel to the electric

field decreases, while that of the state polarized antiparallel to the field increases. We

can characterize the fully mixed states by the quantum number N = sign(n̂ · Ee) =

sign(M)sign(Ω). Thus, N = −1 (N = +1) for the higher (lower) energy state.

The energies of the states |ψH ,M = ±1〉 and |ψL,M = ±1〉 in the electric field

are

EN = −N

√(
∆Ω

2

)2

+

(
DmolEe|Ω|M
J(J + 1)

)2

. (3.21)

Using Dmol = 2.13 MHz/V/cm [36] and ∆Ω = 384 kHz [33, 34] for the H state of

ThO, for Ee larger than about 18 V/cm, the Stark shift of the M = ±1 levels relative
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to their unperturbed energies becomes linear in the external field with a slope of

1 MHz/V/cm. In the absence of an eEDM, the energies don’t depend on the sign of

M . This is an example of Kramers degeneracy, which is a consequence of time-reversal

invariance [37].

The effect of a magnetic field B = Bẑ can be described by the effective Hamilto-

nian Heff
Z = gNµBJ ·B, where gN is the g-factor of the state N [38]. This shifts the

levels by an amount δZ = gNµBBM . The g-factors for the N = ±1 states differ by

a few parts per thousand and also depend on the applied electric field [35, 38].

Finally, we consider the additional shift due to the eEDM interaction Hedm =

−de · Eeff . This can be expressed in terms of an effective Hamiltonian is Hedm =

deEeffJe · n̂ [39], so that 〈J,M,Ω|Hedm|J,M,Ω〉 = deEeffΩ. Since the energy shift is

proportional to the expectation value of Ω, it vanishes in the absence of an applied

electric field, when the molecule is in a parity eigenstate. If we define the polarization

by P = 〈Ω〉/|Ω|, the eEDM shift is δde = Pde Eeff . From Eqns. (3.5) and (3.17), the

polarization is

PN = −N
[
cos2

(
θ

2
− π

4

)
− sin2

(
θ

2
− π

4

)]
= −N sin θ

= N
DmolEe|Ω|M
J(J+1)√(

DmolEe|Ω|M
J(J+1)

)2

+
∆2

Ω

4

. (3.22)

For a fully polarized state, PN = N sign(M). The polarization of the J = 1 state is

shown in Fig. 3.2.

Fig. 3.3 shows the energy levels of J = 1 Ω-doublet in the presence of parallel

electric and magnetic fields. The total energy of the |M,N〉 state due to the Stark,

Zeeman, and eEDM interactions is E[M,N ] = EN + gNµBBM +N sign(M) de Eeff .
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Figure 3.2: Polarization P of the J = 1 level of the H state as a function of
the applied electric field.

The energy difference between the M = +1 and M = −1 states is

∆edm[N ] = E[1,N ]− E[−1,N ] = 2 (gNµBB +Nde Eeff ) . (3.23)

Note that the eEDM shift has opposite signs in the upper (N = −1) and lower

(N = +1) pair of states, which is a consequence of the opposite orientation of the

molecular electric field in these states. In effect, switching between the N = +1 and

N = −1 levels allows us to reverse the direction of the electric field acting on the

eEDM without reversing the applied electric field. In the limit that the g-factors are

equal, the difference ∆edm[1] − ∆edm[−1] = 4 de Eeff is independent of the magnetic

field and hence immune to any magnetic field-induced systematic effects. The idea of

using a polarized Ω-doublet as a comagnetometer in this way was first suggested by

D. DeMille [40].
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Figure 3.3: (a) J = 1 level Ω-doublet in the absence of external fields. The
splitting is ∆Ω ≈ 384 kHz. (b) J = 1 Ω-doublet in applied electric and
magnetic fields.
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The ACME experiment

The ACME collaboration aims to exploit the eEDM sensitivity of polar diatomic

molecules by performing an eEDM measurement using thorium monoxide (ThO) [41].

ThO was selected for its high sensitivity to de and experimental simplicity. This

chapter describes the planned experiment.

4.1 Thorium monoxide

In forming ThO, thorium ([Rn]7s26d2) gives two of its electrons to oxygen ([He]2s22p4)

to complete its 2p shell. The ground state of ThO then corresponds to the config-

uration Th2+(7s2)O2−(2p6), while the low-lying excited states arise from excitations

of one of thorium’s 7s electrons to the 6d orbital [30, 42]. The metastable H state

of interest for the eEDM measurement is of (sσdδ) 3∆ symmetry [43]. This means

that there are two unpaired electrons in this state, one in a σ orbital and one in a δ

36
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orbital1. Only the electron in the σ orbital has significant probability of penetrating

close to the thorium nucleus, where the relativistic enhancement of the eEDM arises,

so this is the electron responsible for the eEDM signal.

The energy levels of ThO are well known due to extensive spectroscopic [44, 33, 32,

34, 42] and theoretical [30, 45] studies. The electronic states relevant for the eEDM

measurement are shown in Fig. 4.1. The H state has |Ω| = 1, so each rotational level

consists of a doublet of opposite parity states. For J = 1, the rotational level of inter-

est for the eEDMmeasurement, the Ω-doublet splitting is ∆Ω = 384 kHz [33, 34]. This

makes the molecule easily polarizable in an electric field. The critical field at which

the Stark shift is equal to the Ω-doublet splitting is Ec = ∆Ω/µH , where µH = Dmol/2

is electric dipole moment in the H state. Using Dmol = 2.13(2) MHz/(V/cm) [36], we

find Ec ≈ 0.4 V/cm for J = 1. Thus, for a realistic field of ∼ 100 V/cm, the molecule

will be completely polarized. The calculated effective electric field for fully polarized

ThO in the H state is Eeff = 104 GV/cm [43]. The effective field is the quantity that

determines the eEDM energy shift, ∆Eedm = −de · Eeff .

As pointed out in [43], 3∆1 states like theH state in ThO are particularly advanta-

geous for eEDM experiments because they are relatively insensitive to magnetic fields.

In such a state, Λ = 2 and Σ = −1 (the latter follows because Ω = |Λ + Σ| = 1). The

effective g-factor for the state is geff = gLΛ+gSΣ ∼ 0 since gL = 1 and gS = 2.002 [46].

A small non-zero value of geff arises due to spin-orbit mixing with other electronic

states having different values of Λ and Σ. A measurement of the magnetic moment

of the H state gave µH = (8.5± 0.5) × 10−3µB [36], confirming this prediction. An
1Lowercase Greek letters label molecular orbitals, while lowercase Latin letters label atomic

orbitals. The letter identifies the projection λ of the electron’s orbital angular momentum onto the
internuclear axis, i.e. σ (λ = 0), π (λ = 1), δ (λ = 2), ...
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Figure 4.1: Electronic states of ThO relevant for the ACME experiment.
Expressions in blue are calculated expansions of each state in terms of ΛS
states [30] using the notation 2S+1ΛΩ. Arrows indicate transitions impor-
tant for the experiment, with the wavelength of each transition given by the
number on the arrow.

alternative measurement of the H state magnetic moment will be described in Chap-

ter 6. This small magnetic moment makes the H state significantly less sensitive to

magnetic field noise, an important feature for our experiment since magnetic noise

will lead directly to noise in the measured eEDM.
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4.2 A generic eEDM measurement

Almost every atomic or molecular eEDM experiment can be viewed as an in-

terferometer in which the two arms are states with the electron’s spin parallel and

antiparallel to the electric field. To understand the basic idea, let’s consider a model

“atom” with spin 1/2 with enhancement factor R containing a single unpaired elec-

tron. At t = 0, the spin is prepared to lie along x̂:

|ψ(0)〉 =
1√
2

1

1

 . (4.1)

This state is then left to evolve in electric E and magnetic B fields, both of which

are along the z-axis. Due to their different Zeeman and eEDM shifts, the two states

in the superposition acquire different phases, so that after a time τ the state is

|ψ(τ)〉 =
1√
2

 eiφ/2

e−iφ/2

 , (4.2)

where φ = 2(−gµBB/2 + deRE)τ/~. To measure the phase difference, we rotate the

spin by π/2 around ŷ using the rotation matrix

A =
1√
2

1 −1

1 1

 , (4.3)

so that the resulting state is

|ψ′〉 =

i sinφ/2

cosφ/2

 . (4.4)

If we now measure the population in the spin-up state, the signal from N0 atoms is

S = N0 sin2 φ/2. Writing the phase as φ/2 = φB + φE, where φB = −gµBBτ/2~
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and φE = deR Eτ/~, we isolate φE by performing the experiment with E and B both

parallel and antiparallel. Reversing either E or B changes the relative sign of φE with

respect to φB. The maximal change in S for a given φE occurs when φB = ±π/4.

Adjusting the magnetic field to give φB = π/4 and using the fact that φE � 1, we

find

S± =
N0

2
(1± sin 2φE) =

N0

2
(1± 2φE) , (4.5)

where the + (−) sign applies for E ·B > 0 (E ·B < 0).

For N0 molecules measured in a pulse, the uncertainty in the precession angle φ

due to shot noise is δφshot =
√

1/N0. The resulting uncertainty in the eEDM is

δde =
~

2Eeff τ
√
N0

. (4.6)

Magnetic field noise also introduces an uncertainty in the phase δφmag = GD, where

G = gµB/~ and D =
(∫ t

0
Bz(t

′)dt′
)
rms

is the root-mean-square fluctuation of the

magnetic field [5]. The total uncertainty in the phase is obtained by adding the δφshot

and δφmag in quadrature:

δde =

√
1

N0

+ (GD)2
~

2Eeffτ
. (4.7)

Eqn. (4.7) shows that increasing the molecule number N0 only improves the exper-

imental precision until the point where magnetic noise becomes the dominant noise

source. Thus, we would like to have D ≤ 1/G
√
N0. For the second generation ACME

experiment, we expect to detect about 1.4 × 109 molecules per pulse [47], which re-

quires D ≤ 38 fT·s. The estimated magnetic field noise in our experiment is about 10

times below this limit [47], which means that magnetic field noise will not be a limit

even for the second generation of ACME.
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4.3 ACME measurement scheme

The ACME experiment uses the J = 1 level of the H state. We summarize the

experimental procedure, going from left to right in Fig. 4.2. A cold beam of ThO

molecules is produced in the beam source via laser ablation [48] or thermochemical

production [49] and buffer gas cooling. The optimized ablation source using neon

buffer gas produces a beam of 3× 1011 molecules/steradian/pulse in the J = 0 rota-

tional level of the ground state X [48]. This corresponds to 2.36× 1011 molecules in

a single Zeeman sublevel of the J = 1 state in X, which is the starting point of the

eEDM experiment. Higher yields are possible with the thermochemical source, which

is still under development.

The EDM measurement takes place in the interaction region, which consists of a

room temperature vacuum chamber surrounded by five layers of magnetic shielding.

Parallel electric E and magnetic B fields are applied along the z-axis. The magnetic

field is produced by coils mounted around the vacuum chamber inside the magnetic

shields. The electric field is produced by glass plates with an indium tin oxide (ITO)

coating that are mounted inside the vacuum chamber. All laser beams used in the

experiment are sent through the field plates and propagate parallel to the electric field.

Sending the laser beams through the electric field plates may not be necessary in the

final experiment if we implement the measurement scheme described in Section 7.2.

The molecules produced by the source are in a thermal distribution of rotational

states in the electronic ground state X. On entering the interaction region, the

molecules see the optical pumping laser, which is tuned to the |X, J = 1〉 → |A, J = 0〉

transition. Spontaneous decay from A to H then incoherently populates the J = 1
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level of theH state. The applied electric field is large enough that the Ω-doublet levels

are completely mixed, and the energy eigenstates can be labeled byM and N = n̂ ·E .

To produce the coherent superposition of M = ±1 states that is the starting point of

the eEDM measurement, a second laser is used. This state preparation laser is tuned

to the |H, J = 1〉 → |C, J = 1〉 transition and linearly polarized in the x − y plane.

Depending on the polarization, this laser depletes a particular superposition of the

M = ±1 states, leaving behind a dark state. If the laser is polarized along x̂, for

instance, the dark state is

|ψN (0)〉 =
|1,N〉 − | − 1,N〉√

2
, (4.8)

where we use the state labels |M,N〉. Since the Stark shift for the M = ±1 levels

is ∼ 1 MHz/V/cm, for E ≈ 100 V/cm, the states with N = ±1 are separated by

200 MHz and can be easily resolved spectroscopically. For the eEDM measurement,

we select either N = 1 or N = −1 simply by tuning the frequency of the state

preparation laser.

After state preparation, the molecular state evolves in the E and B fields while

the beam flies through a distance L = 22 cm. For our beam velocity vf ∼ 200 m/s,

this corresponds to an evolution time τ ≈ 1 ms. The state after time evolution is

|ψN (τ)〉 =
eiφ|1,N〉 − | − 1,N〉√

2
. (4.9)

For a molecule with forward velocity vf , the accumulated phase is

φ =
1

~

∫ x=L

x=0

2 (deEeff + µHB)
dx

vf
= φE + φB. (4.10)

At the end of the interaction region, the molecules encounter the detection laser, also

tuned to the |H, J = 1〉 → |C, J = 1〉 transition. Molecules are detected by observing
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C, J=1

22 cm

Figure 4.2: Schematic of the ACME experiment. The boxes depict the transi-
tions occurring at each step in the measurement sequence. Full lines indicate
transitions driven by a laser, while wavy lines indicate spontaneous decay.

the 690 nm fluorescence photons emitted as they decay from C back to the ground

state X. We measure the phase φ by measuring the population in two quadrature

components |XN 〉 and |YN 〉 of the final state, where we define

|XN 〉 =
|1,N〉+ | − 1,N〉√

2

|YN 〉 =
|1,N〉 − | − 1,N〉√

2
. (4.11)

The quadrature state |XN 〉 (|YN 〉) can be detected by excitation with a laser whose



Chapter 4: The ACME experiment 44

polarization is εd = x̂ (εd = ŷ). The populations in the quadrature states are

PX = N0|〈XN |ψN (τ)〉|2 = N0

(
1 + cosφ

2

)
PY = N0|〈YN |ψN (τ)〉|2 = N0

(
1− cosφ

2

)
, (4.12)

where N0 is the total number of molecules in the beam pulse.

To remove the dependence of the signal on the total number of molecules, which

for our source is different for each beam pulse, we will measure the population in both

quadratures |XN 〉 and |YN 〉 for each pulse of molecules. The sum of the populations

PY +PX = N0 is independent of the precession phase φ and is a measure of the total

number of molecules in the pulse. The difference PY − PX = N0 cosφ, depends on

both the precession phase and N0. To extract only the phase information, we form

the asymmetry

A =
PY − PX
PY + PX

= cosφ. (4.13)

This asymmetry is the desired eEDM signal.

With the magnetic field adjusted to provide a bias phase φB = ±π/2, the asym-

metry is A = sign(B) sinφE = sign(B)φE since φE � 1. From Eqn. 4.10,

A = 2 de Eeff
L

vf
sign(B) sign(E) sign(N ). (4.14)

In the above we assume that the beam source has a narrow forward velocity distribu-

tion so that the offset phase φB is the same for all the molecules. Since A is odd in

B, E , and N , it can be isolated by reversing the magnetic field and the electric field

and by switching between the states with N = 1 and N = −1.

To measure both quadratures |XN 〉 and |YN 〉 for each pulse of molecules from the

beam source, we can switch the polarization of the detection laser rapidly between
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x̂ and ŷ using an electro-optic modulator. For proper normalization, the switching

frequency should be much faster than the timescale on which the flux of molecules

varies significantly, which leads to a frequency of several hundred kHz for our beam

source. This normalization is a crucial component of the eEDM experiment; without

it, we cannot combine measurements made on different beam pulses. An alternative

technique to normalize the signal for the ACME experiment is described in Section 7.2.

From Eqn. (4.6), the eEDM uncertainty is δde = ~ vf/(2Eeff L
√
N0), where we

have used the fact that for a beam experiment, τ = L/vf . For the ACME experiment,

τ = 1.1 ms2, which gives a shot noise eEDM uncertainty of about 2.9 × 10−24 e ·

cm/
√
N0. For our expected experimental parameters [41], this leads to a sensitivity

of 2.6 × 10−26 e · cm per molecule pulse using the ablation source assuming the

conservative yield of 1010 molecules per pulse. With a repetition rate of 10 Hz for the

ablation laser, the eEDM uncertainty for a measurement over D days at 50% duty

cycle is 3.9× 10−29 e · cm/
√
D.

2For the ACME experiment, τ is limited by the lifetime of the H state, τH ≥ 1.8 ms [41].
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Lasers and locks

Manipulating the state of ThO molecules during the ACME experiment requires

lasers at several different wavelengths. Conveniently, all the necessary transitions

in ThO are accessible with commercially available laser diodes. We use external

cavity diode lasers in the Littrow configuration. The first generation of lasers were

home-made, using a design taken from the Greiner group [50] that is similar the

one described in [51]. Practical details of the laser construction are discussed in

Appendix A. The second generation of lasers were purchased from Toptica and are

of the DL Pro design.

The experiment also requires a method of keeping the laser frequencies stable to

about 1 MHz over long periods of time and controllably tuning the lasers, for instance

to scan over a Doppler profile1. Since several lasers are required to prepare and

detect the H state, the stabilization system should be able to handle multiple lasers

simultaneously. Also, the system must be sufficiently broadband to handle lasers
1The width of a Doppler profile for our apparatus can range from about 3 MHz at the end of the

interaction region to several hundred MHz a few millimeters from the cell aperture for a 15 K cell.

46
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with wavelengths ranging from 690 nm to 1090 nm. To satisfy these requirements,

we stabilize our lasers to a Fabry-Pérot cavity constructed with broadband mirrors

and use a LabVIEW program to control the laser frequencies.

5.1 Apparatus

We use a confocal Fabry-Pérot cavity with a free spectral range of 750 MHz. The

mirrors (Layertec 102965) have a high reflectivity over a broad wavelength range:

R > 99.8% for 630 - 1100 nm 2. The cavity design is based on [52]. In this design, the

cavity length is variable to allow selection of points of transverse mode degeneracy

different from the confocal condition. By adjusting the cavity length appropriately, it

is possible to generate transmission peaks separated by c/2LN , where c is the speed

of light, L is the cavity length, and N > 1 is an integer (N = 2 for the confocal

condition). In practice, we have not found it necessary to reduce the free spectral

range using this technique, and we only use the variability of the length to adjust

the cavity to the confocal condition. We have successfully used cavities made from

Invar. We have also used cavities made from 1018 steel spaced apart with a quartz

tube, according to a design from the DeMille group [53]. The latter design is based

on cancelation of the thermal expansion of the steel and the quartz, which occurs

for a specific choice of the quartz tube length. One of the mirrors in each cavity is

mounted on a piezoelectric element (Noliac CMAR03), which allows modulation of
2Using mirrors of higher reflectivity is unnecessary, as the finesse achieved in practice (F ∼ 330)

is far below the theoretical finesse based on mirror reflectivity (F = 1569). We initially used mirrors
with R > 99.9% for 620 - 1120 nm (Layertec 104330). These mirrors have significantly lower
transmission (T ∼ 7× 10−5), necessitating the use of an avalanche photodiode to detect the cavity
transmission signal. Since the finesse achieved in practice is limited by effects other than mirror
reflectivity, there is no advantage to using the higher reflectivity mirrors.
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Figure 5.1: Diagram of the setup for laser stabilization.

the cavity length by applying a voltage to the PZT.

Our laser stabilization method is similar to those described in [54, 55, 56]. As

shown in Fig. 5.1, we send all the lasers to be stabilized and the stable reference laser

into the cavity simultaneously using dichroic beam splitters. We use beam splitters

or interference filters to separate the beams at the output for detection. We contin-

uously modulate the length of the cavity by applying a triangle wave to the PZT,

while monitoring the transmission of each laser with a separate amplified photodiode

(Thorlabs PDA36A). The ramp is provided by a function generator (Stanford Re-

search Systems DS345) and amplified with a high-voltage amplifier before being sent

to the PZT. Each time the cavity length is an integer number of half-wavelengths for

one of the lasers, there is a peak in the transmission. We simultaneously monitor the

voltage ramp applied to the PZT and the cavity transmission signals using a data ac-
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quisition board from National Instruments (PCIe-6259). We only collect data during

the upward-sloping half of the ramp waveform. During the downward sloping part of

the waveform, the computer processes the data and outputs the correction voltages.

After each upward-sloping half-cycle of the ramp waveform, a LabVIEW program

finds the position of each transmission peak and determines the corresponding value

of the PZT ramp voltage. For each of the controlled lasers, the computer then outputs

a correction voltage designed to keep that laser’s peak at the same value of the PZT

ramp voltage. This correction signal is applied to the laser’s piezo element. Correction

signals for some lasers are provided by the data acquisition board used to sample the

transmission, while outputs for additional lasers are provided by a separate analog

output board (National Instruments PCI-6733). The outputs of the two DAQ boards

are triggered by a TTL pulse synchronized to the cavity ramp.

To stabilize the average length of the cavity, the LabVIEW program also finds

the voltage corresponding to the transmission peak of the stable reference laser. It

then outputs a correction voltage that is added to the ramp waveform before it is

sent to the cavity PZT. This correction voltage keeps the transmission peak from

the stable laser at the same position on the PZT ramp waveform. Any laser with a

wavelength within the spectral range of the cavity mirrors can be used as a reference.

We have had success using both a commercial stabilized helium-neon laser (Melles

Griot 05-STP-901) and a home-made a molecular iodine frequency reference [57].

The beams from all the lasers on the experiment are sent into the cavity using

single-mode optical fibers. This ensures that the beams that enter the cavity are

Gaussian, regardless of any possible alignment changes of the optics around the laser.
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Such changes result in a decrease in power coming out of the fiber, but do not change

the shape or direction of the output beam. Although the system is relatively insen-

sitive to changes in the amplitude of the transmission peaks, we use angle-polished

(APC) fibers to avoid output power fluctuations that we found to be significant when

using physical contact (PC) fibers with flat ends. Alignment of each laser beam into

the cavity is done with two mirrors located after the fiber output coupler. This ar-

rangement decouples the lasers and the cavity, allowing us to substitute another laser

at the same wavelength by simply switching a fiber, without requiring any change in

the optics that couple the beam into the cavity.

5.1.1 LabVIEW program

The program has two operating modes: scope and lock. In scope mode, the

program simply displays the cavity spectra for all the lasers, allowing the user to

verify that the lasers are single-mode3 and ensure that none of the laser peaks are

located too close to the edge of the cavity ramp waveform by adjusting the offset and

amplitude of the ramp produced by the function generator. In lock mode, the program

keeps track of the center of each laser’s transmission peak. It does not attempt to lock

any laser until the user presses the ‘Lock’ button for that particular laser. When the

lock is turned on for a given laser, the program outputs a correction voltage to keep

that laser’s transmission peak fixed at a constant value of the cavity ramp voltage.

The proportional (P), integral (I), and derivative (D) gains for each laser and for the

cavity feedback are independently adjustable. In practice, we find it unnecessary to
3Single-mode operation is characterized by the presence of a single peak in the cavity transmission

spectrum. The presence of multiple peaks or an absence of peaks indicates multi-mode operation.
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Figure 5.2: Front panel of the LabVIEW program used for laser stabilization.

use the derivative gain. The locks for the different lasers are completely independent.

This allows the user to tune one laser, lock it, then tune the next laser, lock it, etc.

In lock mode, the laser frequency can be adjusted by changing the lock point.

For ease of use, the user enters the desired frequency change in megahertz and the

program converts that to the necessary change in the lock point, which is set in terms

of cavity ramp voltage. This conversion is done using measured voltage to frequency

conversions for each laser and each cavity. To measure a voltage to frequency con-

version for a particular laser, we modulate the laser current to imprint sidebands

with a known frequency separation (typically 100 MHz) on the laser output. This

frequency modulation can also be done using an electro-optic modulator. We send

the frequency-modulated laser through the cavity and simultaneously record cavity

transmission and ramp voltage. We then fit the peaks and determine the voltage
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interval between the centers of the sidebands, which gives the voltage to frequency

conversion since the frequency separation of the sidebands is known. Due to PZT

nonlinearity, the voltage to frequency conversion depends on the cavity offset volt-

age. This dependence can be measured and taken into account if greater accuracy in

adjusting the frequency is necessary.

5.2 Performance

The cavity ramp frequency and hence the lock loop bandwidth is typically 211 Hz.

The sample rate on the DAQ board is about 300-400 kHz. The sampling rate must

be fast enough that there are five or more sample points on each transmission peak

to allow an accurate determination of the peak center4. To minimize electronic noise

from the data acquisition boards, the correction signals are low-pass filtered at 1 kHz.

This laser locking system has been used for all the ThO experiments done at

Harvard to date. We use two such systems with two different cavities, one located in

the room where the experiment takes place (LISE G14) and one located in a different

building (Jefferson 162). Light from lasers located in Jefferson 162 is transported

to the experiment via 100 meter long optical fibers. Each locking system has 12

outputs, making it possible in principle for 11 lasers to be locked to each cavity5. The

largest number of lasers we have simultaneously locked to one cavity is four. There

is nothing fundamental about this number either; it is simply the largest number of
4Since we scan over the entire 750 MHz free spectral range in half of the period of the ramp

waveform, and the typical width of a peak is ∼ 5 MHz, requiring five or more points on the peak
leads to a sample rate Rsample ≥ 317 kHz.

5There is nothing fundamental about this number. More outputs can be added if necessary by
installing an additional analog output board.
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lasers we have ever needed to use simultaneously in an experiment. The lasers can

stay locked for days at a time. Some typical error data from the laser lock is shown

in Fig. 5.3. Converting the error signal from the laser lock to frequency using the

measured voltage to frequency conversion yields a root-mean-square stability of about

1.4 MHz. This is in agreement with measurements of the long-term (∼ 10 seconds)

linewidth obtained by beating together two lasers at the same frequency using the

method described in [57].

5.3 Limitations

The main disadvantage of the laser stabilization scheme discussed here is that it

is too slow to eliminate acoustic noise. The locking bandwidth cannot exceed the

frequency of the cavity PZT ramp, which is limited by the frequency response of the

PZT. For most piezoelectric elements, this limits the ramp frequency to less than a

few kilohertz. Thus, a system fast enough to eliminate acoustic noise will need to

eliminate the cavity modulation. This is possible by modulating the laser frequency

to derive an error signal, for instance using the Pound-Drever-Hall method [58, 59].
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(a)

(b) (c)

Figure 5.3: (a) Typical error signal from the laser lock, which has been
converted to frequency using the measured voltage to frequency conversion.
The root-mean-square of the above data is ∼ 1.4 MHz, which is consistent
with the laser linewidth over long times (∼ 10 seconds) measured by beating
together two separate lasers locked to separate cavities. (b) Zoomed in plot of
the signal from part (a). (c) A Gaussian fit to a histogram of the error signal
yields a center consistent with zero and a FWHM of 0.43 MHz. This indicates
that the lock successfully removes long-term drift of the laser frequency.
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An alternative g-factor measurement

Recently our collaboration obtained a value for the g-factor of the H state by

measuring the Zeeman splitting of theH → E transition in a large magnetic field [36].

Since that experiment used permanent magnets, the magnetic field could not be varied

to investigate possible systematic errors in the measurement. Thus, we wanted to

confirm this important result using a complementary measurement technique that is

susceptible to different systematic errors. This chapter describes a measurement of

the H state g-factor made by observing angular momentum precession in a magnetic

field.

6.1 Apparatus

This measurement was done using the beam source and interaction region de-

scribed in Chapter 4. For this experiment, the ThO molecules were not produced by

laser ablation but through a thermochemical process [49]. Thermochemical produc-

55
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Figure 6.1: Inside of the interaction region vacuum chamber. The ThO beam
propagates from left to right. The windows in the electric field plates are for
state preparation (small window on the left) and detection (large window on
the right).

tion is possible because the reaction Th(s) + ThO2(s)→ 2ThO(g) is strongly favored

at high temperatures (around 2000 K). ThO is produced by locally heating a pressed

target of mixed ThO2 (75%) and Th (25%) powder using the focused beam from

a 50 W fiber laser (IPG Photonics YLR-50). Thermochemical production typically

results in peak signals about three times as large as the peak signals from ablation.

The real advantage of this technique, however, is the much longer duration of the

molecule pulses. While a molecule pulse from ablation lasts a few milliseconds in the

detection region, pulses produced by the thermochemical process can be hundreds of
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milliseconds long. The molecule pulse duration is controlled by varying the duration

of the fiber laser pulse. For the data discussed below, the fiber laser pulses were 2.5 ms

long, with a repetition rate of about 7 Hz. The repetition rate and pulse duration

are adjusted to keep the temperature of the buffer gas cell at around 15 K. Neon was

used as the buffer gas for all the data described here, with a typical buffer gas flow

rate of 20 - 30 sccm [48].

Fig. 6.1 shows the inside of the interaction region vacuum chamber. The electric

field plates currently in place are made of copper with pieces of ITO-coated float

glass (Delta Technologies CH-50IN-1509) attached to allow laser access in the state

preparation and detection regions. The field plate spacing is 2 cm. Applying an

electric field reduces the detected fluorescence signal by a factor of two due to parity

mixing of the H state levels. Since the pulsed excitation technique we use also reduces

the signal due to not sampling all the molecules in the beam, we do not apply an

electric field during the g-factor measurement in order to keep the signal as large as

possible.

The magnetic field is produced by the coil that will be used for the final experi-

ment. To achieve good field uniformity, we use both the main coil and the two side

coils located at each end of the cylindrical main coil (see Fig. 6.2). The side coils

prevent the field from decreasing near the edges of the main coil. The current in both

side coils should be 4.4 times the current in the main coil. With this arrangement, the

magnetic field in milligauss is given by B = 1.37 × Imain, where Imain is the current

in the main coil in milliamps. The current for the main coils is provided by precision

current supplies (Krohn-Hite Model 521 and 522). The side coil current is provided
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Figure 6.2: Magnetic field coils. The side coils on each end, labeled +1
and −1, maintain field uniformity at the edges of the cylindrical main coil.
The endcaps of the magnetic shields can be seen on either side of the appa-
ratus.

by an Agilent 6654A supply. For this data, the interaction region is surrounded by

three layers of magnetic shields.

The H state is populated by exciting molecules to the A state with a 943 nm laser,

which leads to incoherent population of all Zeeman sublevels of the J = 1 level in

the H state. The 943 nm light is derived from a diode laser amplified with a tapered

amplifier (Toptica BoosTA), so that the power incident on the apparatus is about 120

- 150 mW. The 943 nm laser is followed by a horizontally polarized 1090 nm laser,

which excites molecules out of the M = ±1 sublevels of the H state, leaving a dark
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state as described in Chapter 7.

The state is read out in the detection region, separated from the state prepara-

tion region by 22 cm. The detection light is derived from the same 1090 nm diode

laser as the state preparation light. The light is split and fed to two separate polar-

ization maintaining fiber amplifiers (Keopsys KPS-BT2-YFA-1083-SLM-PM-05-FA).

The polarization of the detection beam is parallel to that of the state preparation

beam. The power of the state preparation beam is about 300 mW, while that of

the detection beam is about 70-80 mW. It is helpful to have as much power in the

state preparation beam as possible to ensure that all the molecules in the beam are

prepared in the appropriate state.

Detection of the fluorescence is accomplished with collection lenses located on ei-

ther side of the electric field plates, as shown in Fig. 6.1. The light is collimated by a

large (3” diameter) lens and focused by a second lens onto the input of a multi-mode

fiber bundle. The output of the fiber bundle is optically contacted to a quartz light-

pipe that takes the light out of the vacuum chamber. Fluorescence is detected using a

photomultiplier tube (Hamamatsu R8900U-20) amplified with a current preamplifier

(Stanford Research Systems SR570). Although there will be eight collection lenses

surrounding the detection region in the final experiment, the data presented here was

taken using only one collection lens.

Since the state preparation beam is not sufficiently powerful to pump out molecules

in all velocity classes, a high degree of parallelism between the state preparation and

detection beams is crucial to ensure that they address the same velocity class of

molecules. This alignment is accomplished by monitoring the depletion of the signal
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in zero magnetic field. Since the state preparation and detection polarizations are

parallel, the signal in the detection region should disappear when the state preparation

beam is turned on since that beam pumps out the same superposition of M = ±1

that is addressed by the detection laser. We achieve parallelism of the beams by

monitoring the depletion and adjusting the angle of the state preparation beam in

small increments. Maximal depletion will occur when the beams are parallel. In

practice, the best we have observed is a reduction of the signal by factor of 2 - 3

as result of turning on the state preparation beam. An alternative to changing the

beam alignment is to controllably detune one of the beams relative to the other, for

instance using an acousto-optic modulator (AOM).

6.2 Measurement technique

The procedure for measuring the g-factor is as follows. We first populate the

H state and prepare the coherent superposition of M = ±1. This superposition

corresponds to a state with its angular momentum in the x−y plane. For concreteness,

let’s assume that it is initially prepared to lie along x̂ (i.e. the state preparation laser is

polarized along ŷ). An applied magnetic field B = B ẑ causes the angular momentum

to precess. After a precession time τ , which corresponds to the time a molecule takes

to fly between the state preparation and detection regions, we read out the precession

angle φ by probing the molecules with a laser identical to the state preparation laser.

The resulting signal is proportional to the component of the angular momentum along

ŷ, which will be zero in the absence of precession (B = 0) and maximal when B is large

enough to make the angular momentum precess by π/2. The population transferred
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to the excited state (and hence the observed fluorescence intensity) is proportional to

sin(µHBτ), where µH = gµB is the magnetic moment of the H state. This sinusoidal

pattern of signal as a function of magnetic field is called a Ramsey fringe.

We can measure the H state g-factor by observing a Ramsey fringe and fitting

it to sin(gµBBτ). However, the precision of this measurement will be limited by

the velocity spread of the ThO beam. For a molecule with forward velocity vf , the

time τ appearing in the expression for the precession angle φ is τ = L/vf , where

L = 22.25 cm is the distance between the state preparation and detection beams.

The molecular beam with neon buffer gas has a forward velocity spread of around

30 m/s [48], which would result in a fractional uncertainty δg/g = 16% for an average

velocity of 180 m/s. Making a measurement with smaller uncertainty requires select-

ing a particular velocity group of molecules, which we do using a pulsed excitation

technique.

The 943 nm beam that populates the H state is sent through an AOM (Isomet

1205-C) and the diffracted beam is sent into the apparatus. To switch the 943 nm

beam rapidly on and off, the RF signal that drives the AOM is sent through a switch

(Mini-Circuits ZYSWA-2-50DRB). A pulse generator (Stanford Research Systems

DG645) triggered off the TTL pulse that fires the fiber laser generates a burst of

100 µs wide pulses with a variable delay and spacing. These pulses control the

switching of the RF signal, such that the 943 nm beam is only on during each 100 µs

pulse. The delay of the burst is adjusted to maximize the signal amplitude, while

the spacing between the pulses is adjusted to ensure that the successive pulses do not

overlap in the detected signal. A typical signal with pulsed excitation is shown in
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Figure 6.3: Typical fluorescence signal seen with pulsed 943 nm excitation.
Each fluorescence peak corresponds to one of the 943 nm excitation pulses;
in this case, there were four excitation pulses in total. The fiber laser that
produces the ThO molecules turns on at t = 0 and remains on for 2.5 ms.
The pink dashed line indicates the molecule pulse envelope. This trace is an
average of 64 fiber laser shots.

Fig. 6.3. The state preparation and detection lasers are on continuously.

To determine the g-factor, we measure a Ramsey fringe using the pulsed excitation

technique. Since each pulse in the detected fluorescence corresponds to one of the ex-

citation pulses, which occur at known times, the time interval between the excitation

pulse and the detected pulse is the precession time τ for that group of molecules1.

We can obtain better velocity resolution by dividing each detected pulse into several
1Since the beam that is pulsed is the optical pumping beam but spin precession begins only after

the molecules have passed through the state preparation beam, this is not exactly true. The real
value of τ is the value τ ′ determined by the above method corrected to account for the time it takes
the molecules to fly between the optical pumping and state preparation beams. Since the distance
between these beams is dps = 2 mm, while the distance between the optical pumping and detection
beams is L = 22.45 cm, the real value of τ is τ = (1− dps/L) = 0.99 τ ′. In practice, this correction
is negligible given our uncertainty.
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time bins, so that the uncertainty in τ is just half the width of a time bin.

Due to large variations in the molecular beam yield from one fiber laser shot to

the next, the signal must be normalized. We obtain a measure of the beam yield by

monitoring the absorption of a 690 nm laser sent through the molecular beam about

1 mm in front of the aperture of the buffer gas cell. To normalize the signal, we divide

the integral of the detected fluorescence signal by the peak fractional absorption of

the 690 nm laser. We find that using the peak fractional absorption as opposed to the

absorption integrated over the entire molecule pulse provides a better normalization,

probably because the pulsed technique only samples a small fraction of the beam,

which is adjusted to coincide closely with the peak to maximize the signal. Although

normalizing to the 690 nm absorption reduces the scatter in the data, this technique

is imperfect since it involves measuring the number of molecules in the ground state

about 1.6 m before the detection region. A better normalization technique would

involve measuring the population in the H state directly in the detection region.

This can be done using one of the methods under development for the main eEDM

experiment - polarization switching or switching between the C state Ω-doublet levels.

6.3 Results

Fig. 6.4 shows an example of a measured Ramsey fringe. We fit this data to the

form s(x) = s0 + A sin(β x + θ), where the fit parameter β is related to the g-factor

by g = ~ β/µB. The scatter in the data is almost certainly due to the imperfect

normalization provided by the 690 nm absorption signal, which is corroborated by

the observation that the scatter increases for data taken using longer fiber laser pulses.
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Figure 6.4: Measured Ramsey fringe. Each point is an integral over one of
the detected pulses like those shown in Fig. 6.3. The solid line is a fit to the
form s(x) = s0 + A sin(β x + θ), where x = B τ . This data was taken on
08/15/11.

Obtaining an accurate g-factor measurement requires knowledge of the magnetic

field over the path of the ThO beam. The field produced by both the main coil

and the side coils as a function of distance from the center of the coils has been

measured directly in this apparatus. The measurements were done using a fluxgate

magnetometer (Bartington Instruments Mag-03MS100) which has an uncertainty of

δB/B = 5× 10−3. The magnetic field was measured for two different current config-

urations: one with the main coil at 10 mA and the side coils at 44 mA and one with

the main coil at 10 mA and the side coils off. The field from just the side coils is then

simply the difference between these two measurements. Fig. 6.5 shows the measured

magnetic field values.
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(b)

(a)

Figure 6.5: Measured magnetic field as a function of distance from the center
of the coils. Displacements from the center are positive if they are in the
downstream direction. (a) Main coil at 10 mA and side coils at 44 mA. (b)
Main coil at 10 mA and side coils off.
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To calculate the magnetic field at a particular value Imain of the main coil current

in mA, we use the formula

B(Imain) =
Imain

10
Bmain +

a

44
Bside, (6.1)

where Bmain is the measured field from the main coil at 10 mA and Bside is the mea-

sured field from the side coils at 44 mA. This equation assumes that the relationship

between magnetic field and current is linear. We have verified that this relationship

remains linear up to the highest currents used in our experiment2. For maximum

field uniformity, the current in the side coils should be 4.4 times the current in the

main coil. Due to an incorrectly set voltage limit, the current in the side coils could

not go above 48 mA during this experiment. This is accounted for by the parameter

a above, which takes the following values: a = 22 for Imain = 5 mA, a = 44 for

Imain = 10 mA, and a = 48 for all other values of Imain.

For a field that is not constant over the precession time, the expression for the

precession angle φ is

φ =
gµB
~

∫ τ

0

B(t)dt =
gµB
~

∫ L

0

B(x)

vf
dx =

gµB
~

τ

L

∫ L

0

B(x)dx, (6.2)

since vf = L/τ is the forward velocity of the ThO beam. To measure the g-factor,

we need to calculate the integral B =
∫ L

0
B(x)dx. We do this by first calculating the

integrals Bmain =
∫ L

0
Bmain(x)dx and Bside =

∫ L
0
Bside(x)dx and then using Eqn. (6.1)

to find B for each value of the main coil current.

Since the magnetic field was not uniform throughout the region, the integrals

depend on the exact locations of the state preparation and detection beams relative
2This indicates that no magnetization of the mu-metal shields occurs as a result of applying the

magnetic field.
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Figure 6.6: Comparison of current g-factor measurement with the previous
measurement by our collaboration.

to the center of the coils. We determine these locations as follows. The beams are

sent through 2.4 cm wide holes in the mu-metal shields, and each beam was centered

by eye on the corresponding hole. For the detection beam, which was never moved,

we estimate the uncertainty in its position as ±3 mm. The state preparation beam

location is not known as precisely. As discussed above, this is the beam that was

tweaked to maximize the depletion. We thus conservatively estimate the uncertainty

as one quarter of the width of the hole or ±6.35 mm. The uncertainty in the location

of the precession region due to uncertainties in both beam positions is thus ±7 mm.

We calculate the central value of B by assuming that the state preparation and

detection beams are sent through the centers of the holes in the mu-metal shields, so

the precession region extends from -11 cm to +11 cm. We find Bmain = 270.18± 0.28

and Bside = 29.865±0.031. The error bars quoted above are due to the magnetometer

uncertainty. There is another source of error due to the uncertainty in the locations

of the state preparation and detection beams. We estimate this as half the difference
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in the values of B obtained by displacing the precession region by ±7 mm3. This gives

δBmain = 0.054 and δBside = 0.032. Combining these uncertainties gives δBmain =

0.29 and δBside = 0.045. Estimating the uncertainty in the length L = 22 cm of the

precession region as 3 mm, we find δL/L = 0.014. The total uncertainty in φ due to

uncertainties in B and L is then δ(B/L)/(B/L) = 0.0274.

Uncertainties in the fit parameter β and the precession time τ also contribute to

the uncertainty of the measured g-factor. The signal from each excitation pulse lasts

Tpulse ms at the detection region5. Dividing each detected fluorescence pulse into n

time bins reduces the uncertainty in τ , but increases the scatter of the points since

fewer data points are integrated for each point on the Ramsey fringe. We take the

uncertainty to be half the width of a time bin, so for n time bins δτ = Tpulse/(2n) ms.

As the number of bins increases, the uncertainty in τ decreases, while the uncertainty

in β either stays the same or increases due to the increased scatter in the data. The

optimum number of bins is taken to be the one where the fractional uncertainty in

τ becomes smaller than the uncertainty in β. The g-factor values obtained from the

fit do not depend on the number of bins. For comparison, Table 6.1 lists the results

from the 08/15/11 data as a function of the number of bins. The error in the g-value

is determined by combining the errors in τ , β, and the magnetic field in quadrature

δg

g
=

√(
δβ

β

)2

+

(
δτ

τ

)2

+ 0.0272. (6.3)

3The two values of B are calculated by having the precession region extend from -11.7 cm to
+10.3 cm and from -10.3 cm to +11.7 cm.

4The fractional uncertainty δB/B differs slightly for different values of B. It ranges from 0.0236
to 0.0247. We use the larger value in the above calculation.

5Tpulse differs slightly from one data run to the next and is also longer for the thermochemical
source than the ablation source. To account for this, we determine Tpulse individually for each data
set. See Table 6.2 for the Tpulse values.
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# of bins g-factor (×103) δτ/τ δβ/β

1 7.4± 1.4 0.180 0.044
2 7.3± 0.8 0.090 0.053
3 7.5± 0.6 0.060 0.049
4 7.4± 0.5 0.045 0.046
5 7.6± 0.5 0.036 0.043

Table 6.1: Best-fit values of the g-factor obtained from the data set taken on
08/15/11 by dividing the data into the indicated number of bins. The error
is calculated using Eqn. (6.3) using the listed fractional errors in τ and β.

Four data sets were used for the measurement, which were taken on 08/06/11 (ab-

lation source), 08/15/11 (thermochemical source with 2.5 ms long fiber laser pulses),

08/16/11 (ablation source), and 08/20/11 (thermochemical source with 10 ms long

fiber laser pulses). As expected, the best-fit phase for all data except the set from

08/06/11 is such that the fringe has a minimum at zero magnetic field. Due to the

phase offset, the 08/06/11 data is not used for the final g-factor determination6.

Combining all data except that from 08/06/11 gives g = (7.6± 0.4)× 10−3. This

result is in agreement with the previous determination, g = (8.5 ± 0.5) × 10−3 [36].

A comparison of the two values is shown in Fig. 6.6. The agreement between two

results obtained using measurement techniques that are susceptible to very different

systematic errors gives us confidence in our determination of theH state g-factor. The

small g-factor is one of the main advantages of ThO over other molecules currently

being used for eEDM measurements. For instance, our experiment is about 90 times
6There is something strange about this data because the phase of the Ramsey fringe is different

for the points taken while increasing the coil current in increments and those taken while turning the
current back down. This could be explained by magnetization of the mu-metal shields. However,
the linearity of the measured magnetic field with current in the coils suggests that there is no
magnetization of the shields even at the highest magnetic fields used in this experiment. To avoid
any possible magnetization, the shields were degaussed after application of the highest magnetic
field value for all data sets except 08/06/11. Including the 08/06/11 data, which gives a value of
the g-factor in agreement with all the other data, does not change the final result.
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Date g-factor (×103) Tpulse (ms) Optimal # of bins
08/06/11 7.1± 0.8 0.236 2
08/15/11 7.6± 0.5 0.397 5
08/16/11 6.7± 1.2 0.210 1
08/20/11 8.0± 0.7 0.463 4

Table 6.2: Best-fit values of the g-factor obtained from all data sets.

less sensitive to magnetic fields than the PbO eEDM experiment, since the a(1) state

of PbO has a g-factor of about 0.9 [60].
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State preparation

The most straightforward way to prepare the initial state for the ACME exper-

iment, a coherent superposition of the M = +1 and M = −1 sublevels within the

J = 1 level of the H state, takes two steps. The first step is incoherent population

of the H state by means of optical pumping via the A state. The second step -

termed state preparation - produces the coherent superposition and is the focus of

this chapter.

State preparation is done using a laser that excites molecules out of the H state.

The coherent superposition of M = ±1 that remains after the molecules have passed

through the state preparation laser is the one that does not couple to the laser, i.e. it

is a dark state. In order to have a dark state, the state preparation laser must couple

both the M = +1 and M = −1 sublevels of the H state to a single Zeeman sublevel

of the upper state but with excitation amplitudes that cancel. For instance, if the

state preparation laser is polarized along x̂, the dark state is

|dX〉 =
|M = +1〉 − |M = −1〉√

2
. (7.1)
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Figure 7.1: Electronic states of ThO relevant for the state preparation
schemes discussed here. All states in a given column have the Ω value indi-
cated at the bottom.

Since the initial H state has J ′′ = 1 and we are using an E1 transition, the final

state of the state preparation transition can have J ′ = 0, 1, or 21. For J ′ = 0 or 1, a

linearly polarized state preparation laser with its polarization vector in the x−y plane

couples the M = ±1 sublevels of the H state only to the M = 0 sublevel of the upper

state. In this case, there is always a dark state. For J ′ = 2, however, the laser also

couples the M = ±1 sublevels to the M = ±2 sublevels of the upper state. In this

case, there is no longer a dark state. A systematic discussion of the conditions under

which dark states exist for a particular transition can be found in [61].

The Ω-doublet structure in the H state and possibly also in the upper state of the
1We use the standard notation in which primes refer to the upper state and double primes refer

to the lower state in the transition.
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transition complicates this picture. Recall that an Ω-doublet consists of two states

with the same J and M but opposite parity, with the e levels having parity (−1)J

and the f levels having parity (−1)J+1. In the absence of external fields, the H state

Ω-doublet is unresolved in our experiment, which means that the state preparation

laser always addresses both the e and f levels of the H state. E1 selection rules then

determine which levels interact with the laser, as we will see below.

We consider three cases. If there is no Ω-doubling in the upper state, only the f

levels of the H state will participate in a transition with J ′ = J ′′, whereas only the

e levels will participate in a transition with J ′ = J ′′ ± 1. This situation occurs if we

use the H → E transition since the E state has Ω = 0. In this case, the criteria

for the existence of a dark state are the same as they would be without Ω-doubling.

By appropriate choice of J ′, it is possible to prepare a dark state in either the e or f

levels of the H state.

If the Ω-doubling in the upper state is spectroscopically resolvable, the situation

is similar to the case with no Ω-doubling. In this case, it is possible to address either

the e or f levels of the H state by tuning the laser to the appropriate component of

the upper state Ω-doublet without needing to tune to a different rotational transition.

This is the case when using theH → C transition for state preparation. The splitting

of the J = 1 Ω-doublet in C measured by our group is 51 MHz, which agrees well

with the value of 50.4 MHz derived from the data of [44].

If the Ω-doubling in the upper state is not spectroscopically resolvable, the laser

always excites transitions to both the e and the f levels of the upper state. Since E1

radiation only couples the e and f level of the lower state to the one upper state level
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that has opposite parity2, there is still a dark state for the e levels and a dark state

for the f levels.

The above discussion applies in the absence of external fields. An external electric

field mixes the e and f levels and dramatically alters the situation, as we will see in

the next section. For a sufficiently large field, the Stark splitting between sublevels

of different |M | is large enough that they can be spectroscopically resolved. In this

situation, it is possible to use a transition having a J ′ = 2 state as the upper state for

state preparation, since the undesired transitions to the M ′ = ±2 sublevels will no

longer be resonant at the same laser frequency as transitions to the desired M ′ = 0

state.

7.1 The G state

In deciding which transition to use for state preparation in the ACME experiment,

we have three choices: H → E at 908 nm, H → C at 1090 nm, and H → G

at 787 nm. Both the H → E and H → C transitions are weak, requiring over

1.75 W/cm2 for saturation3. In contrast, the H → G transition is quite strong,

requiring less than ∼ 1 mW/cm2 to saturate. The E state has Ω = 0 and the C state

has Ω = 1, so for these transitions the lowest available rotational level is J = 0 and

J = 1, respectively. Either of these transitions can be used for state preparation with

or without an applied electric field.
2For the e level of the lower state, for instance, this will be the f level for a J ′ = J ′′ transition

and the e level for J ′ = J ′′ ± 1.
3We define the saturation intensity as the laser intensity past which the observed fluorescence no

longer increases with increasing laser intensity. Obviously, this definition depends on the collimation
properties of the molecular beam. The quoted value is for a beam similar to the one we anticipate
in the ACME experiment.
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Although we have demonstrated state preparation using the H → C transition, it

is worth considering the H → G transition for this purpose because it would require

much less laser power. Investigating this option was one focus of this thesis work.

Since the G state has Ω = 2, the lowest rotational level is J = 2. This means that

the H → G transition can only be used for state preparation in an electric field that

is sufficiently large that transitions to the M ′ = ±2 levels can be spectroscopically

separated from transitions to the desired M ′ = 0 level. Since the electric dipole

moment in the G state is about half as large as it is in H state, this requirement is

easily met with an applied field of around 40 V/cm. The requirement of an electric

field would not have been a problem by itself, since state preparation will take place

in the electric field in the ACME experiment.

However, the G state has another drawback that makes it impossible to use for

state preparation: the Ω-doublet splitting is very small. Fitting splittings between

the two lines of the Q branch4 of the H → G transition for J = 106− 150 measured

by [33] to ∆Q = qJ(J + 1) + pJ2(J + 1)2 and subtracting out the known value of q

for the H state, we estimate that q ∼ 32 kHz for the G state. The splitting in J = 2

is thus qJ(J + 1) ∼ 192 kHz, which is smaller than both the Doppler width of the

transition with our beam collimation and our laser linewidth5.

To see what happens as a result of the unresolved Ω-doublet, recall Eqn. (3.18),

which gives the eigenstates of the J = 1 level in the H state in the limit that the Stark

splitting is much larger than the Ω-doublet splitting. Considering only the upper pair
4In molecular spectroscopy, transitions with J ′ = J ′′ are called Q, those with J ′ = J ′′ + 1 are

called R, and those with J ′ = J ′′ − 1 are called P .
5The linewidth of our diode lasers is typically ≥ 200 kHz.
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of |M | = 1 states, these are

|ψH ,M = +1〉 =
1√
2

(|1, 1, e〉 − |1, 1, f〉)

|ψH ,M = −1〉 =
1√
2

(|1,−1, e〉+ |1,−1, f〉) , (7.2)

where the state label is |J,M, e/f〉. Now we find the dark state for the transition to

|2, 0, e/f〉 in the G state. Expressing the desired dark state as a linear combination

of the two lower states with undetermined coefficients α and β and using Eqn. (7.2),

we find

|d〉 = α|ψH ,M = +1〉+ β|ψH ,M = −1〉

=
α√
2
|1, 1, e〉 − α√

2
|1, 1, f〉+

β√
2
|1,−1, e〉+

β√
2
|1,−1, f〉. (7.3)

The state |d〉 will be dark if the matrix element 〈d|−er ·E|2, 0, e/f〉 vanishes, where E

is the electric field of the laser. For an unresolved Ω-doublet, the matrix elements for

transitions to both the e and f states must vanish. For a laser linearly polarized in the

x− y plane, the polarization vector ε in the spherical basis has only two components,

E+1 = (εx + i εy) /
√

2 and E−1 = (εx − i εy) /
√

2, where εx = ε · x̂ and εy = ε · ŷ. The

matrix element for transitions induced by this laser is

〈d| − er · E|2, 0, e/f〉 = − 1√
60

(β E+1 ∓ α E−1) , (7.4)

where the upper sign holds for the e state and the lower sign for the f state. Setting

the matrix element in Eqn. (7.4) to zero, the solution for the dark state is

β = ±E−1

E+1

α, (7.5)

where again the upper sign holds for transitions to the e state in G and the lower sign

for transitions to the f state. The sign difference for the e and f states in Eqn. 7.5
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occurs because the fully mixed states in the electric field for M = +1 and M = −1

are different linear combinations of e and f , as can be seen from Eqn. (7.2). For

x-polarized light, E−1 = E+1, while for y-polarized light E−1 = −E+1. For x-polarized

light, Eqn. (7.5) tells us that the state with β = −α is dark for transitions to the e

state. Unfortunately, because of the different signs in Eqn. (7.5), this state is bright

for transitions to the f state. Similarly, the state with β = α is dark for transitions

to the f state and bright for transitions to the e state.

The above discussion demonstrates that it is impossible to use E1 transitions to

the G state for preparing the initial state for the eEDM measurement; thus, one of

the alternative transitions (H → E at 908 nm or H → C at 1090 nm) must be

used instead. Since both transitions are weak, an amplifier after the diode laser is

needed to provide enough power to saturate the transition. The availability of fiber

amplifiers at 1090 nm makes it possible to obtain significantly more power (up to

20 W) at this wavelength than is available at 908 nm, where the highest power option

is a 1.5 W tapered amplifier. Thus, we are currently using the H → C transition

for both state preparation and detection. The reason there is no dark state for the

H → G transition even in an electric field was only recognized after we were unable

to experimentally prepare a dark state using this transition.

7.2 A new normalization scheme

The unsuccessful attempt to prepare a dark state using the H → G transition

resulted in a more careful consideration of transitions between Ω-doublet states in an

electric field, which led to a promising new technique for normalizing the signal in
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the eEDM experiment. As discussed in Chapter 4, the large fluctuations in molecule

yield from one beam pulse to the next make it essential to normalize the signal to the

total number of molecules in each pulse.

To see how we might do so, let’s reconsider the |H, J = 1〉 → |C, J = 1〉 tran-

sition. As before, we are interested in transitions from the M = ±1 levels in H

to the M = 0 level in C. Since the Ω-doublet splitting in the C state is spec-

troscopically resolvable, we can choose to excite transitions either to the e state or

the f state in C simply by tuning the laser. To start, let’s consider transitions

only to the e state. In this case, the dark state for excitation with x-polarized

light is |dX〉 = (|M = +1〉 − |M = −1〉) /
√

2, so the opposite linear combination,

|dY 〉 = (|M = +1〉+ |M = −1〉) /
√

2, is the state that interacts with the laser. For

y-polarized light, the dark state is |dY 〉, while the state that interacts with the laser

is |dX〉. The effect of switching from x to y polarization is to change the relative

sign of the |M = +1〉 and |M = −1〉 states in the linear combination that interacts

with the laser. As Eqn. 7.5 shows, the same sign change occurs if we keep the laser

polarization fixed, but switch from using the e state as the upper state to using the

f state. Thus, we can access the two quadratures |dX〉 and |dY 〉 either by switching

the laser polarization from x̂ to ŷ or by switching the upper state of the transition

from e to f . The latter switch is easily accomplished by shifting the laser frequency

using an acousto-optic modulator (AOM).

The ACME experiment initially proposed to measure both quadratures |dX〉 and

|dY 〉 of the signal many times within each molecule pulse by rapidly switching the

polarization of the detection laser between x̂ and ŷ using an electro-optic modulator
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Figure 7.2: Geometry of electric field plates and laser beams for the polar-
ization switching and frequency switching normalization schemes.

(EOM) [41]. Ideally, we would like to switch the polarization sufficiently fast that each

molecule has a chance to interact with both polarizations during the time it spends

in the laser beam. For a 2 mm wide beam, this time is about 10 µs, necessitating a

switching frequency of 200 kHz. How fast the polarization can be switched with our

EOM while maintaining a high contrast remains to be investigated. Regardless of

the achievable switching speed, a significant drawback of the polarization switching

scheme is that it necessitates sending the laser beams through the electric field plates

since there must be two polarization axes to switch between, both orthogonal to the

electric field direction. Since at least some of the laser beams will have several watts of

power, reflections from the field plates could create standing waves between the plates

and distort the electric field. Moreover, the necessity of keeping the detection laser

beam path clear precludes placing the fluorescence collection lenses at the locations

where collection efficiency is maximal, resulting in lower detection efficiency.

The alternative normalization scheme discussed here would keep the polarization
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fixed and rapidly switch the frequency of the detection laser such that it excites

transitions either to the |1, 0, e〉 or the |1, 0, f〉 state in C. This can be done using

an AOM since the frequency difference between the two Ω-doublet components is

51 MHz. This method only requires one available polarization direction orthogonal

to the electric field, which makes it possible to send the lasers between the electric

field plates instead of through them, as shown in Fig. 7.2.

Such an arrangement has many advantages. It would eliminate problems associ-

ated with scattering of the laser light by the field plates. It would allow placement

of the fluorescence collection optics in the optimal locations, resulting in enhanced

detection efficiency. Finally, it would dramatically simplify the implementation of a

more efficient method of state preparation via stimulated Raman adiabatic passage

(STIRAP). STIRAP offers much higher excitation efficiency than optical pumping

via the A state and would immediately produce the desired coherent superposition

of M = ±1, eliminating the need for an additional state preparation step. However,

it requires a laser polarized parallel to the electric field, which is impossible in the

current geometry since the laser beams propagate along the electric field direction. A

challenge of the new normalization scheme that remains to be investigated is that the

two levels of the C state Ω-doublet decay via different channels6, resulting in differ-

ent spatial distributions of the emitted fluorescence, which means that the detection

efficiencies differ for the two transitions.

Fig. 7.3 illustrates the principle of this normalization scheme. This data was taken
6Using the notation |J,M,P〉, where P = ±1 is the parity, the two states of the Ω-doublet are

|1, 0,+1〉 and |1, 0,−1〉. The |1, 0,+1〉 state must decay to J = 1 in the X state and this transition
has ∆M = ±1. The |1, 0,−1〉 state can decay to J = 0 or J = 2 (but mostly decays to J = 0) and
this transition has ∆M = 0.
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Figure 7.3: Data taken with the frequency of the detection laser switched
rapidly between resonance with the e level and the f level of the C state
Ω-doublet. Data is shown for B = 0 (red) and for B = 42 mG (blue). The
colored dots on the inset indicate the position on the Ramsey fringe where the
corresponding data was taken. The signals from the minimum and maximum
points on the fringe are out of phase because the transitions to the e and f
states address opposite quadratures |dX〉 and |dY 〉 of the molecular state.
The switching speed for this data was 1.5 kHz.

using the main beam apparatus, described in detail in Section 6.1. The frequency

of the detection beam was rapidly switched between the two Ω-doublet levels of the

C state using two AOMs with a frequency difference of 51 MHz. The diffracted

beams from both AOMs were combined using a 50/50 beamsplitter and sent to the

input of the fiber amplifier that produces the detection beam. To enable frequency

switching, the RF signal driving each AOM was sent through a switch (Mini-Circuits

ZYSWA-2-50DRB), with the two switches arranged so that one RF signal is on while

the other is off. The switching frequency used here was much slower than what is
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needed for the eEDM experiment. The choice of such a low frequency was dictated by

signal to noise requirements; increasing the switching frequency requires increasing

the detection bandwidth, which leads to larger noise levels. This data was taken

using one-eighth of the fluorescence collection optics that will be used for the final

experiment. Installing all the collection lenses, which will be done shortly, should

significantly improve the signal to noise, allowing demonstration of faster frequency

switching.
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Conclusion

We describe work towards the ultimate goal of the ACME collaboration - making

an eEDM measurement using a cryogenic beam of ThO. All the lasers necessary for

this experiment have been built, along with a versatile system to stabilize and con-

trollably tune the laser frequencies. This system can stabilize the laser frequencies to

about 1 MHz and has been used for all the ThO beam measurements done at Harvard

thus far. The laser locking system discussed here has the advantages of simplicity,

scalability, and ease of use, while its main disadvantage is the low achievable band-

width. In the future, a higher bandwidth stabilization system will be necessary to

eliminate acoustic noise and provide better frequency stability.

A new measurement of the H state magnetic moment is reported that uses a

very different technique from the one employed for the previous determination of

this quantity. The current measurement relies on observing precession of the angular

momentum in a magnetic field, combined with a pulsed excitation technique that

allows selection of molecules by velocity, thus reducing the error due to the longitu-
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dinal velocity spread of the ThO beam. We find g = (7.6 ± 0.4) × 10−3, which is in

agreement with the previous measurement of g = (8.5± 0.5)× 10−3. The consistency

of these results provides important confirmation of the low sensitivity of the H state

to magnetic fields, which is a key advantage of ACME compared to other molecular

eEDM experiments.

Our unsuccessful attempts to prepare a dark state using the H → G transition

resulted in a more careful consideration of matrix elements for transitions between

Ω-doublet states in an electric field. This led to the realization that transitions to

the e and f Ω-doublet levels sample different quadratures of the molecular state,

so switching between them is equivalent to switching the laser polarization from x̂

to ŷ. This makes it possible to normalize the eEDM signal by rapidly switching

the detection laser frequency from one of the C state Ω-doublet levels to the other.

Initial results using this method are promising, but more work remains to be done to

demonstrate switching at the high frequencies needed for the eEDM measurement.

The C state switching normalization scheme promises to allow a more efficient

geometry of the interaction region in which lasers are sent between the electric field

plates rather than through them, as is currently done. This has the advantages

of eliminating scattering of laser light by the field plates, allowing more optimal

placement of the fluorescence collection lenses, and simplifying the addition of more

efficient state preparation (e.g. using stimulated Raman transitions) in the future.
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Diode laser assembly instructions

This appendix provides instructions for assembling external cavity diode lasers

like the ones used on the ACME experiment. No previous experience with diode

lasers is assumed. Those new to diode lasers may want to read [62] for background

information.

A.1 Precautions

Follow these guidelines to avoid damaging your laser diode.

1. Laser diodes are easily damaged by static discharge. To avoid this, wear a

grounding strap whenever you handle a laser diode or touch anything inside the

laser enclosure (i.e. while adjusting the collimation lens, turning the precision

screws, etc.).

2. Laser diodes can also be damaged by sudden changes in current. Laser current

controllers are designed to ramp the current up and down slowly when you turn

85



Appendix A: Diode laser assembly instructions 86

the laser on and off. When connecting the laser to the current controller, use a

cable that has jackscrews which secure the connector to the plug at each end.

This prevents the cable from being accidentally pulled out while the current is

on, an event which could easily kill the laser diode.

3. The sensitivity of laser diodes to optical feedback is exploited in the external

cavity setup. To avoid undesired feedback due to reflections from optics in the

beam path that go back into the laser diode, place an optical isolator after the

output of the laser. The isolation should be at least 30 dB, although 60 dB is

recommended if you are planning to couple a significant fraction of the laser

light into an optical fiber. If there is insufficient isolation, feedback from optics

in the beam path will affect the laser’s behavior. Since the amount of feedback

depends sensitively on the alignment of the optical element(s) providing it, you

can test for feedback from a particular optic by monitoring the laser’s spectrum

on a Fabry-Pérot cavity while changing the alignment of that optic.

A.2 Selecting the grating

The choice of grating depends on the wavelength of the laser diode and the amount

of feedback desired. In the Littrow configuration, the first-order diffracted beam from

the grating returns along the same path as the input beam from the laser diode; this

beam provides the feedback that controls the lasing wavelength. In this configuration,

the following relationship holds between the diffraction angle α, the number of lines
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per millimeter N` on the grating, and the wavelength λ of the light

α = arcsin

(
λN`10−6

2

)
. (A.1)

In Eqn. (A.1), α is in radians, λ is in nanometers, and N` is in lines/mm. The number

of lines per millimeter should be chosen such that α is approximately π/4. Since the

zeroth-order beam reflected from the grating is the output beam, choosing α in this

way will make the output beam exit approximately perpendicular to the input beam.

This choice is determined by convenience rather than necessity, so it doesn’t have to

be exact. Gratings are commonly available only with certain values of N` so choose

from the available options the one that gives α closest to π/4.

The diffraction efficiency at the laser wavelength tells you what fraction of the light

incident on the grating is diffracted into the first order1. This determines the amount

of feedback your laser will have, with higher diffraction efficiency giving stronger

feedback but reducing the output power of the laser since more light is diffracted

back into the diode. Typical values of the grating efficiency for a Littrow laser are

around 10 - 20%. Less feedback can be used if a high output power is desired; however,

a laser with less feedback will generally have a smaller tuning range than one with

stronger feedback.

A.3 Circuit board assembly

Assemble the circuit board before starting to assemble the laser. The design of

this board was taken from the Greiner group [50]. We have our boards made by
1In reading grating efficiency curves, look at the values for polarization parallel to the grating

grooves since the laser diode will be oriented so that its output is vertically polarized.
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Figure A.1: Layout of components on the circuit board: (a) top and (b)
bottom. Numbers without units denote resistances in Ohms. Orientation of
the diodes (BAT41 and 1N4148) is indicated by the lines (the line denotes
the cathode). Orientation of the polarized 470 µF capacitors is indicated
by the “-” sign on the capacitor symbol. The resistance R on the bottom
of the board should be 0 Ω for Thorlabs controllers and 680 Ω for Toptica
controllers.

Alberta Printed Circuits. Table A.1 lists the parts needed for assembling the circuit

board.

Fig. A.1 shows the placement of components on the board. Strip headers (see
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jumper to center pins for ANODE GND
jumper to center pins for CATHODE GND

center pins: laser diode connects here

laser diode connection

strip headers

Figure A.2: The laser diode should always be connected to the pins labeled
“laser diode connection” in the orientation indicated by the diode symbol.
The jumpers in the upper left corner should be set according to whether the
laser diode is cathode ground or anode ground.

Fig. A.2 for a picture) are used for connecting the thermistor, TEC, and laser diode

to the circuit board. Cut them to lengths of four pins, pull out the two middle

pins, and solder the end pins into the holes indicated in Fig. A.1. The laser diode

is always connected in the orientation indicated by the diode symbol printed on the

circuit board directly above the pins where the diode connects (see Fig A.2). Also

solder 3-pin lengths of strip header into the two sets of three holes between the SMA

connector and the 470 µF capacitors. These connections define the direction of the

current. The center pin of each set of three pins is connected to the laser diode via

traces on the circuit board. Depending on whether your laser diode is cathode ground

or anode ground, you need to jumper either the left or the right pin in both sets of

three to the center pin (see Fig A.2).

The hole pattern in the upper right corner of the circuit board next to the 1N4148



Appendix A: Diode laser assembly instructions 90

Table A.1: Circuit board components.

Part # # per board Vendor Description
RNCS32T91K0.1%ICT-ND 3 Digi-Key Resistor, 0.25 W, 1 kΩ, 1206 pack-

age
RNCS32T9100.1%ICT-ND 1 Digi-Key Resistor, 0.25 W, 10 Ω, 1206 package
490-1767-1-ND 2 Digi-Key Ceramic capacitor, 0.1 µF, 25 V,

C0G, 1206 package
445-1375-1-ND 1 Digi-Key Ceramic capacitor, 10000 pF, 50 V,

C0G, 1206 package
P5168-ND 2 Digi-Key Capacitor, 470 µF, 35 V, aluminum

electrolytic, radial leads
497-2493-1-ND 3 Digi-Key BAT41 Schottky diode, 100 V, 100

mA
ED7250-ND 1 Digi-Key Strip header
ED6350-ND 1 Digi-Key Strip header socket
A26242-ND 2 Digi-Key Strip header jumper
44K0365 1 Newark 1N4148 Small signal diode, 100 V,

150 mA
27C8063 1 Newark PCB mount SMA connector
93F8882 1 Newark PCB mount 9-pin D-sub connector,

female1

93F8883 1 Newark PCB mount 9-pin D-sub connector,
male1

ED5003-ND 2 Digi Key Pin receptacle, we use these to con-
nect the laser diode

1008CS-222XGLB 1 CoilCraft 2.2 µH chip inductor, 1008 package
PWB-4-BLB 1 CoilCraft RF transformer, 0.140 − 700 MHz

bandwidth
1 These connectors do not come with jackscrews, which are needed to allow the cable to be
screwed to the plug to prevent it being accidentally pulled out. Jackscrews can be purchased
separately from Newark or L-Com.



Appendix A: Diode laser assembly instructions 91

diode is designed to accommodate an Omron G5V-1-2 relay, which would short-circuit

the laser diode whenever the current is disabled. This protects the laser diode from

static discharge. The relay requires 12 V to open and allow current to flow through

the laser diode. Since the Thorlabs controllers don’t have an appropriate output, we

do not install this relay on our lasers.

The circuit board is attached to Side1 (see Fig. A.3) with 2-56 screws. Put some

plastic washers or standoffs between the board and Side1 to prevent shorting. To

connect the laser diode to the circuit board, you can use a commercial socket (i.e.

Thorlabs S7060R for 5.6 mm diodes or S8060 for 9 mm diodes). We use pin receptacles

(Digi-Key ED5003-ND) covered with heat shrink to prevent them from shorting to

each other. Whatever connector you use, make sure it does not come loose when you

rotate the laser diode, as you will be doing this later to align the beam polarization.

A.3.1 Current, temperature, and PZT controllers

Table A.2: Pin assignments for laser connector on circuit board.

Pin # Connection
1 Interlock
2 Photodiode cathode
3 Laser diode ground
4 Photodiode anode
5 Ground for Pin 1
6 Not used
7 Laser diode cathode (with polarity anode ground)
8 Laser diode anode (with polarity cathode ground)
9 Not used

We use Thorlabs current and temperature controllers for all our home-made lasers.
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Figure A.3: Laser parts that need to be machined.

The pinouts for the 9-pin D-sub connectors on the circuit board are given in Tables A.2

and A.3. Toptica controllers have the same pinouts, so using them only requires

changing one resistor on the circuit board. This is the only resistor on the back of the

board, which should be a short (0 Ω) for Thorlabs controllers and 680 Ω for Toptica



Appendix A: Diode laser assembly instructions 93

Table A.3: Pin assignments for TEC connector on circuit board.

Pin # Connection
1 Status LED + (for TEC on/off indication)
2 Thermistor -
3 Thermistor +
4 TEC +
5 TEC -, Status LED -
6 Not used
7 AD 590 -, LM335 +
8 AD 590 +, LM335 +
9 AGND LM335

controllers.

For PZT adjustment, we use a stable voltage source based on a ADR445 voltage

reference, which provides an adjustable output ranging from -10 V to +10 V2. Since we

use a low-voltage PZT3, this voltage range is sufficient for our needs. For modulating

the frequency, a function generator can be used to drive the PZT.

A.4 Laser assembly instructions

Fig. A.3 shows the parts that need to be machined, while Table A.4 lists additional

parts needed for the laser and where to purchase them. The first step in laser assembly

is to check that the 10 kΩ thermistor you have will fit into the small hole in the

side of the laser diode mount. If the thermistor doesn’t fit, drill out the hole using

the smallest size drill large enough to accommodate your thermistor. At the same

time, make sure the laser diode collimation tube fits in the large hole in the laser
2This circuit was designed by Jim MacArthur of the Harvard Electronic Instrument Design Lab.
3The voltage range of the piezo is −30 V to +150 V.
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Table A.4: Laser parts that need to be purchased.

Part # Vendor Description
TH10K Thorlabs 10 kΩ thermistor
TE-71-1.4-1.5 TE Technology TEC module1

93939A199 McMaster-Carr 1" long nylon screw for attaching laser mount to base-
plate

LT230P-B Thorlabs collimation tube for laser diode2

PSt 150/4/5 Piezomechanik PZT for laser wavelength tuning3

AJS8-100-02H Newport precision adjustment screw (need two per laser)
NT45-567 Edmund Optics sapphire window to put under ball of vertical screw
CSXX-0096-05 Small Parts springs to provide resistance for vertical adjustment
CU-234 Newark or DigiKey Bud box for laser base
1 Buy the module potted
2 “B” specifies the AR-coating; choose the appropriate coating for your laser wavelength.
3 This part number is not in the catalog; you need to email Piezomechanik and ask for it. This
cylindrical PZT comes either with two flat ends or with one flat end and one hemispherical
end. Either type will work, but those with one hemispherical end are better.

diode holder. This hole should be a tight fit for the collimation tube4, but it must be

physically possible to get the collimation tube in there and rotate it. If the collimation

tube doesn’t fit, lightly sand the inside of the hole until it does. Before beginning the

assembly, make sure all the parts are thoroughly cleaned and degreased.

Now attach the thermistor. Dip it in thermal grease before placing it in the hole.

Locate it as close as possible to the inner edge of the hole where the collimation tube

will go, but make sure it doesn’t protrude into the hole. Since the temperature of the

laser diode is the crucial parameter, the thermistor should be as close as possible to

the collimation tube that holds the diode. The thermistor is held in place by putting

five-minute epoxy around the leads on the outside of the hole.
4This is necessary to ensure good thermal contact between the laser diode mount, which is

temperature controlled, and the collimation tube, which holds the laser diode whose temperature
you want to stabilize.
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Next, attach the laser diode holder to the baseplate, with the TEC sandwiched

between the two. It is crucial that the TEC is oriented correctly so that the cold side

is touching the laser diode holder and the hot side is touching the baseplate. The cold

side is the side whose temperature is controlled, whereas the hot side is where excess

heat is rejected. To figure out which side is which, place the TEC module in front of

you with the wires pointing toward you. If the red wire is on the right, the hot side of

the module is facing downward. Before attaching the TEC, sand the bottom of the

laser diode holder and the top of the baseplate with fine sandpaper. This removes

surface imperfections so that the parts make good thermal contact to the TEC.

Put a thin layer of thermal grease on the hot side of the TEC and set it on top

of the baseplate in approximately its final position. You want the TEC as close as

possible to the end of the laser diode holder where the collimation tube will go. Put

another thin layer of thermal grease on the cold side of the TEC and place the laser

diode holder on top. Use the 1 inch long plastic screws to attach the laser diode holder

to the baseplate. These screws must be plastic in order to keep the baseplate and laser

diode holder thermally isolated from each other. Tighten the screws sequentially in

small increments, making sure throughout the process that you are tightening all four

screws evenly. Try not to overtighten since you can break the screws. Some thermal

grease will squeeze out during this process. Carefully wipe off it off to prevent it from

making a thermal connection between the laser diode holder and the baseplate. Wait

an hour or so for the thermal grease to settle and then tighten the screws a little

more.

Next attach the base, which for our lasers consists of a Bud box filled with lead
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Figure A.4: CCD camera image of a beam with the laser diode off center
with respect to the collimation lens, so that the beam is clipped on the right
side.

shot5. Drill a 1/4-20 through hole roughly in the middle of the bottom of this box. A

screw through this hole into the tapped hole on the bottom of the baseplate attaches

the baseplate to the box. The lead shot makes the base heavy to reduce vibrations.

It is useful to glue a layer of Sorbothane6 on the lid of the box, which is the bottom

of the laser, to further isolate the laser from vibrations.

Now mount the laser diode in the collimation tube. Mount the collimation tube

in the laser diode holder, but don’t tighten the 4-40 screw that secures it yet. Turn

on the laser and rotate the collimation tube until the long axis of the output beam

is horizontal. If you cannot tell which axis is the long one, rotate the collimation

tube until the output polarization is vertical. If possible, look at the beam on a beam

profiler to make sure that the laser diode is aligned properly. It is possible for the

laser diode to be sufficiently off center in the collimation tube that the output beam is

clipped by the edge of the collimation lens. Fig. A.4 shows how this might look. Since

there is no controllable way to adjust the centering of the diode, the only solution is
5This can be bought from McMaster-Carr.
6Sorbothane is a rubber-like material designed for reducing vibration. It can be purchased from

McMaster-Carr.
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to unscrew the diode, wiggle it around and/or rotate it, and screw it back in. Once

the laser beam is oriented correctly, tighten the 4-40 screw to secure the collimation

tube in the laser diode holder.

To adjust the collimating lens, look at the beam several meters away from the

laser. You want to adjust the lens such that the length of the long (horizontal)

dimension of the beam does not change much between a location several inches from

the laser to several meters away. The small (vertical) dimension of the beam will

increase significantly. The beam far away from the laser will probably look quite

bad (i.e. brighter on one side than on the other, made up of several vertical stripes

of varying brightness, etc.); in our experience, this doesn’t matter. Ensure that the

beam is not obviously diverging or converging and that it does not come to a focus

anywhere along the path from the laser to several meters away. When you are done

adjusting the collimation lens, put a few drops of five-minute epoxy around the edges

of the lens to hold it in place.

Quite often you will find that the height of the beam changes significantly over a

distance of several meters. This occurs because the laser diode output is not centered

on the collimation lens, so the lens deflects the beam. This is only a problem if the

inclination is severe enough that you cannot direct the first-order diffracted beam

from the grating back into the laser diode using the vertical adjustment screw on the

edge of the laser diode mount. If you are concerned about this, it is a good idea to

attach the grating mount and grating and try to obtain feedback (see Section A.4.2 for

how to do this). If you succeed, don’t worry about the beam inclination, as it can be

easily corrected once the beam exists the laser. If you cannot obtain feedback within
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Figure A.5: Wavelength as a function of temperature for a 940 nm diode.
The line segments correspond to temperature tuning of a single mode due to
change in the length of the emission region, while the discontinuous jumps
are mode hops.

the available range of vertical adjustment, loosen the laser diode in the collimation

tube, rotate it about ninety degrees, and screw it back in. Make sure you are satisfied

with the inclination of the beam before moving on, as it will be difficult to change it

later.

At this point, get a sense of what temperature to operate the laser diode by

measuring its free-running wavelength as a function of temperature. Measure this at

a current close to the intended operating current. It is helpful to put on the sides and

top of the laser enclosure while doing this measurement to isolate the diode from air

currents. Fig. A.5 shows a typical curve of wavelength versus temperature. Increasing
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the temperature makes the emission wavelength longer. Ideally, you want to operate

the diode at a temperature where its the free-running wavelength is close to the

desired wavelength. However, running a laser diode at elevated temperature has the

effect of reducing its output power for a given current and decreasing its lifetime. The

specifications should list a maximum operating temperature for the laser diode, so be

sure not to exceed this value. The proper choice of operating temperature reduces

the amount you have to tune the wavelength using the grating. This is advantageous

since changing the grating angle reduces the feedback, which imposes a limit to how

far it is possible to tune using the grating.

At this point, assemble all remaining parts of the laser. Put a small sapphire

window under the ball of the vertical precision adjustment screw in the laser diode

mount. This prevents the ball from digging into the aluminum underneath, which

could cause the vertical adjustment to drift over time. The two holes on either side of

the vertical adjustment screw are for 3-48 screws with springs placed between the cap

of the screw and the laser diode mount, as shown in the Fig. A.6. Tighten the screws

until there is enough tension in the springs to provide noticeable resistance when you

turn the precision adjustment screw. The springs help keep the vertical adjustment

stable by opposing upward motion of the lip of the laser diode mount, which is not

constrained by the adjustment screw.

A.4.1 Tuning the temperature control loop

When the laser is completely assembled, tune the control loop parameters of the

temperature controller. Especially for high-power lasers, you should do this with the
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Figure A.6: View of assembled laser. The screws with springs provide resis-
tance for vertical adjustment using the precision adjustment screw.

laser running close to the intended operating current. The instructions below assume

you are using a Thorlabs temperature controller, although the same basic technique

applies to any controller with adjustable proportional (P), integral (I), and derivative

(D) gains. To start, set all gains to zero. If possible, disable the integral gain.

It is much more convenient to tune the gains while monitoring the output voltage

from the controller, which is proportional to the temperature. We use a National

Instruments data acquisition card to read the voltage into the computer and plot it

using LabVIEW.

Begin by setting the P gain to some value, say half a turn of the knob on the



Appendix A: Diode laser assembly instructions 101

optimized proportional gain

Figure A.7: Example of the sort of responses you will see while tuning the
temperature control loop.

Thorlabs controller. Next change the setpoint by 0.3 kΩ7. The output voltage from

the controller will change suddenly and then oscillate for a while before eventually

settling to its new value. Keep increasing the P gain until the oscillations after the

step in setpoint are only slightly damped (see Fig. A.7). If you increase P beyond this

value, the oscillations will not damp out at all. Leaving P at its current value, set

the D gain to some value, say half a turn on the Thorlabs controller. Again make a

sudden change in setpoint and monitor the output. The oscillations should now damp

out more quickly. Keep increasing D until the response shows no overshoot8. Once

P and D are optimized, you can try turning on the integral gain. In my experience,

it is best to leave it off on the Thorlabs controllers. The effect of the integral gain is

to make the temperature settle to the setpoint; without integral gain, there will be
7We quote the change in resistance of the 10 kΩ thermistor since this is what the Thorlabs

controllers read out. This corresponds to about 0.7◦C near room temperature.
8This may not be possible with some controllers (for instance, the older Thorlabs TEC2000), but

do the best you can.
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an offset between the setpoint and the actual temperature. Turning on the integral

gain tends to also increase the overshoot and oscillations before the temperature

settles to its final value. For this reason, we leave it disabled for all our lasers. It is

easy to compensate for the resulting offset by adjusting the setpoint until the actual

temperature is at the desired value. After tuning the temperature loops for about ten

lasers of different power levels, we find that the best settings for Thorlabs controllers

are always in the following range:

• P: about 62.5% of maximum value

• D: maximum

• I: disabled

A.4.2 Obtaining feedback

To obtain feedback, you need to direct the first-order diffracted beam from the

grating back into the laser diode. Start by carefully gluing the grating to the grating

holder. The grating should be flush with the lip on the bottom of the holder (see

Fig. A.3); this lip helps ensure that the grating is straight. The grooves should be

vertical. Most gratings have an arrow on the side to indicate the blaze direction; the

grating grooves are vertical when the arrow is horizontal9. To figure out where the

grating should be glued, first attach it to the grating holder with double-stick tape,

adjust it to the angle that gives feedback, and make sure that the output beam of the

laser diode is centered on the grating at this angle. This is important since the beam

position will change as you rotate the grating to tune the laser, and you don’t want
9If you are using a holographic grating, it doesn’t matter which direction the arrow points as

long as it is horizontal.
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the beam to be clipped. Once the correct position is found, glue the grating on with

five-minute epoxy (a couple of drops on each side is sufficient and makes it easier to

remove if you make a mistake). Leaving the grating attached with double-stick tape

is not recommended for long-term stability, since the tape becomes less sticky over

time.

After the epoxy is dry, assemble the remaining pieces of the grating mount. Drop

the PZT in the hole with its hemispherical end (if it has one) facing the grating and

its leads coming out through the slot in the side10. Screw in the precision adjustment

screw with its ball against the flat end of the PZT. Adjust the screw to give yourself

some range to change the grating angle in both directions. Don’t bend the front of

the grating mount out too far, as the thin part at the hinge may crack.

Adjust the feedback with the temperature set to the desired operating temper-

ature. Your previous measurements of wavelength vs. temperature will allow you

to make a good estimate of the best temperature to operate the laser. To obtain

feedback, you need to direct the first-order diffracted beam back into the laser diode.

It is possible to see the diffracted beam directly by turning the current well above

threshold and rotating the grating mount while holding a small sliver of card by the

side of the collimation tube, making sure you are not blocking the output beam from

the diode. As you rotate the grating mount, the diffracted beam should move. At this

point, it is useful to turn the vertical adjustment screw until the output and diffracted

beams are at the same height. Now set the current close to the lasing threshold and

look at the output beam on a card; as you rotate the grating mount, you should see
10The longer of the two PZT wires is the positive voltage lead. This is important since the PZT

voltage range is asymmetric: -30 V to +150 V.
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Figure A.8: Laser output power as a function of current. Note the sharp
increase in power at threshold with the onset of lasing. The tuned laser has
a slightly higher threshold current since rotating the grating from the optimal
angle reduces the feedback.

it become noticeably brighter at some angle. This occurs when feedback from the

grating pushes the diode over the lasing threshold. If you do not see this, the vertical

adjustment is probably wrong. Check it again by comparing the heights of the out-

put and diffracted beams, as described above. Alternatively, you can sometimes see a

second beam near the main output beam that also moves when you turn the grating.

Turning the grating to merge these two beams will give feedback. For visible lasers,

looking at the beam on a white card works well. For IR lasers, it is much easier to

use a white card and look at the beam through an IR viewer or camera than to use
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an IR card for this step11. Before screwing down the grating mount at the angle that

gives feedback, measure the threshold current of the free-running diode. Comparing

this value with the threshold current after feedback has been optimized gives a good

indication of how well the feedback is aligned.

If you keep turning down the current, the range of grating angles for which there

is observable feedback decreases. Turn the current down far enough that feedback

occurs only over a small angular range and screw down the grating mount at an angle

within this range. You can make small corrections with the precision adjustment

screw. This angle does not have to be extremely precise since you will change it later

when tuning the laser. Once the angle is correct, it is time to fine-tune the vertical

adjustment. Put a power meter in front of the laser and watch it while carefully

adjusting the vertical screw. Optimize the power, then turn down the current and

optimize it again. Repeat this step until you can no longer make significant changes in

the output power. Once you’ve done as well as you can, measure the threshold current

again and make sure it has decreased by about 10%. If the decrease is significantly

less than this, either the grating angle or (more likely) the vertical adjustment is

wrong. Try looking over a larger range of vertical adjustments to see if you can find

a better optimum point. Fig. A.8 shows typical threshold behavior before and after

feedback adjustment.

If you are going to use a metal side plate with an AR-coated window for the laser

beam to exit, you can now figure out where the window should be located and glue

it into the plate. The alternative is to make the side of the laser enclosure where
11The brightness of the spot on an IR card depends not only on the brightness of the beam

illuminating it but also on how long the beam has been hitting that particular spot on the card,
which makes IR cards essentially useless for something like this.
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the beam exits out of clear Plexiglas. We use metal side plates with windows on our

lasers, although the Greiner lab has had success using Plexiglas side plates.

Once the feedback is optimized, it is time to tune the laser to the desired wave-

length. Measure the wavelength while slowly turning the adjustment screw in the

grating mount. The wavelength will tune continuously over some regions and occa-

sionally jump when the laser switches from one mode to another. Leave the laser in

the mode closest to your desired wavelength. Depending on how close you are, you

may need to adjust the temperature (higher temperature corresponds to longer wave-

length). At this point, you need to look at the output on a Fabry-Pérot cavity to see

whether the laser is operating in a single mode. Single mode operation is indicated

by a single peak in the Fabry-Pérot cavity spectrum. Several peaks or the absence

of any peaks indicates that the laser is multi-mode. If the laser is not single mode,

tweak the current slightly. Changing the current is basically a fast way to change the

temperature of the emission region, so increasing the current makes the wavelength

longer just like increasing the temperature does. Once you are close to the desired

wavelength, try tuning over it using the PZT. Watch the spectrum to make sure the

laser remains single-mode. If you reach the end of the tuning range, you can push

it further in the same direction by slightly changing the current in such a way that

it pushes the wavelength in the same direction as the PZT adjustment (i.e. if you

were tuning to longer wavelengths with the PZT, increase the current slightly). The

theoretical basis for this simultaneous tuning with current and PZT is given in [63].

If you can’t reach the desired wavelength, change the temperature in the appropriate

direction and try again. Keep adjusting the parameters in this way until the laser
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remains single-mode while tuning over some region around your desired wavelength

with the PZT. If you changed the grating angle significantly to tune the laser, it is a

good idea to re-optimize the vertical adjustment at the new grating angle. It is nor-

mal for the threshold to increase after tuning, since you have reduced the feedback

by changing the grating angle (see Fig. A.8).

A.5 Some notes on laser operation

To maximize their lifetime, it is best to turn the lasers off when not in use.

Always leave the temperature control enabled to avoid small alignment changes due

to thermal cycling.

For high power lasers, dirt sometimes collects on the output window at the location

where the beam exits. If the power output of the laser suddenly drops, check the

window and clean it with methanol if it is dirty.

A.6 Limitations and possible improvements

All the parts for our lasers are made out of aluminum 6061. It is probably better to

make them out of brass, which is heavier and thus better at damping out vibrations.

The design described here provides no ability to adjust the x and y position of the

collimation lens relative to the laser diode. This makes it difficult to correct undesired

effects such as vertical deflection of the beam by the lens. See [51] for a similar design

that does provide x and y adjustment of the collimation lens.

Using the Omron G5V-1-2 relay to short-circuit the laser diode when the current
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is disabled is probably a good idea. We have not used these relays because Thorlabs

controllers lack an appropriate output to open the relay. It is possible that the hole

pattern on the circuit board is not correct for this relay.
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