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Abstract

In this thesis we present the results of three different projects, two experimental

and one theoretical. First, we report on the demonstration and characterization of

a high-flux beam source for cold, slow atoms or molecules. The desired species is

vaporized using laser ablation, then cooled by thermalization in a cryogenic cell

of buffer gas. The beam is formed by particles exiting a hole in the buffer gas cell.

We characterize the properties of the beam (flux, forward velocity, temperature)

for both an atom (Na) and a molecule (PbO) under varying buffer gas density, and

discuss conditions for optimizing these beam parameters. We construct a magnetic

octupole guide and demonstrate the guiding of ∼ 108 lithium atoms in a several

millisecond long pulse from the source. We expect this beam source to be useful

both in spectroscopic experiments and in atom and molecule trapping exeriments.

Second, we report on the first observation of the effects of spin-orbit induced elec-

tronic anisotropy in cold collisions. We observe fast Zeeman relaxation in two

heavy nominally S-state atoms, rhenium and bismuth, in collisions with 3He. We

measure an upper bound for the elastic to inelastic collision ratio, γ for Zeeman

state changing collisions in Re-He of γ < 3× 105 and in Bi-He of γ < 8× 103. These

results show that these atoms are not good candidates for trapping in high-field

seeking states.

Finally, we develop a proposal for a new quantum computing architecture based

on trapped polar molecules coupled to superconducting microwave stripline res-
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onators. We describe methods to enable the trapping, cooling, coherent manipula-

tion and coupling of isolated polar molecules at sub-micron dimensions near the

surface of microchips with mesoscale electrodes. We show that polar molecules

can exhibit strong confinement using electrical traps and describe the design and

simulation of chip-based electrostatic traps and guides. We also show that this sys-

tem enables fast electrical gate control comparable to solid-state qubit systems. We

also discuss the dominant noise sources and their suppression using preparation

and manipulation of molecular states.
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6.1 a. EZ-trap design. The thin wire-like electrodes biased at±Vtrap gen-
erate the strong local electric field gradients needed for trapping. A
radial quadrupole field is created by the long sides of the electrodes,
in combination with a transverse bias electric field Ebias (created
by the large electrodes with applied voltages ±Vbias). This part is
an electrostatic analog of the magnetic guides developed for “atom
chips”. Axial confinement is achieved by curving each electrode at
the end and bringing it closer to the oppositely charged electrode,
creating an increased electric field. Like its magnetic counterpart,
the trap is of the Ioffe-Pritchard type: there is no field zero, which
avoids dipole flips from the field-aligned to the anti-aligned state
(i.e. a “Majorana hole”, which would enable coupling to the un-
trapped states with mN 6= 0). b. Zoomed-out view of the EZ trap,
integrated with a microwave stripline resonator. The ground planes
of the resonator are biased at the DC voltages ±Vbias + Voffset, giv-
ing rise to the bias field Ebias for the EZ trap. The offset voltage
Voffset is used to bias the central pin and adjust Vfloat. In the region
shown, which is of size much smaller than the wavelength of the
microwave photons carried by the stripline, the width of the central
pin of the stripline resonator is gradually reduced and deformed to
the shape of one of the L-shaped electrodes of the EZ trap. The sec-
ond L-shaped electrode necessary to form the EZ trap is made of a
thin wire like electrode overlaid on one of the conducting ground
planes. This electrode can behave as a continuation of the ground
plane for AC voltages at microwave frequencies, while at DC it can
be independently biased at the voltage Vtrap, thereby completing the
EZ trap. The overall effect of the region where the central pin is
thinner is a slight change in the capacitance per unit length, without
significantly affecting the quality of the resonator. . . . . . . . . . . . 92
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6.2 Resonator-enhanced sideband cooling and quantum state read-
out. a. Sideband cooling using resonator-enhanced spontaneous
emission. The driving field is tuned to the red sideband |1, n〉 →
|2, n−1〉, while the resonator is resonant with the |2, n〉 → |1, n〉 tran-
sition, where n denotes the trap motional level. b. Quantum state
readout via dispersive shift of cavity induced by the qubit. In the
dispersive limit when the rotational transition of the molecule is sig-
nificantly detuned from the cavity frequency (∆r � g), a qubit state-
dependent frequency shift δω = ±g2/∆r allows non-demolition mea-
surement of the molecule’s state by probing the transmission or re-
flection from the cavity. In the limit δω < κ, microwaves transmitted
at the cavity frequency undergo a phase shift of ± tan−1 2g2

κ∆r
when

the qubit is in state |1〉, |2〉 respectively. c. Probe field transmission
versus probe frequency. When g2/∆r > κ, the frequency shift of the
cavity is larger than the resonator linewidth. A probe beam at one
or the other of the new, shifted frequencies will be transmitted or
reflected, again allowing a potentially high-fidelity readout of the
qubit state. In the absence of molecules, no frequency shift occurs,
so the presence or absence of molecules in the trap can also be de-
termined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
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field, showing the trappable states |1〉 ≡ |N = 1,mN = 0〉 and
|2〉 ≡ |N = 2,mN = 0〉 (weak field seekers). The dotted line marks
the field value EDC = Eoff, sweet

DC for which the effective dipole mo-
ments of the weak field seeking states are the same. Splittings due to
electron and nuclear spin are too small to see on this scale. b. Spin-
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DC = 4 kV cm−1. The effects
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6.4 Capacitive coupling of molecules mediated by stripline. a. Polar
molecule qubits are coupled to each other via (off-resonant) vir-
tual exchange of microwave photons through a stripline resonator.
The detuning between the resonator mode and the qubit frequency
is ∆, and the qubits are coupled to the resonator mode with the
same vacuum Rabi frequencies g. The effective dipole-dipole in-
teraction mediated by the resonator is given by the Hamiltonian
Hint = g2

∆

(
σ̂+

1 σ̂
−
2 + σ̂−1 σ̂

+
2

)
. As indicated schematically on the figure,

this interaction corresponds to qubit 1 emitting a virtual photon in
the resonator while changing state from the upper to the lower state,
and qubit 2 absorbing the virtual photon while changing state from
the lower to the upper state. b. Multiple EZ traps can be patterned
along the length of a stripline resonator, enabling coupling of multi-
ple qubits. Here two EZ traps located at the resonator mode antin-
odes are shown, with typical dimensions as indicated on the figure. . 101
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xvi



Citations to previously published work

Parts of this dissertation have been published in the following articles:

S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen,

D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle. High-flux beam source for

cold, slow atoms or molecules. Physical Review Letters, 95(17):173201, 2005.

A. Andre, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J.

Schoelkopf, and P. Zoller. A coherent all-electrical interface between polar molecules

and mesoscopic superconducting resonators. Nature Physics, 2(9):636–642, Septem-

ber 2006.

xvii



Acknowledgments

First, thank you to all the members of the Doyle group. You made this work hap-

pen. Matt deserves an über thanks.

John, thank you for providing me with the opportunity to work on a diverse range

of projects. Your high expectations pushed me to become a better communicator

and physicist.

I would never have made it through the last seven years of grad school without the

support of some wonderful friends and my family. Thank you all for being there

for me through this.

xviii



1

Introduction

In the last twelve years, the field of cold atoms and molecules has made extraor-

dinary progress, including the creation of Bose-Einstein condensates [6–8], fermi-

degenerate gases [9], and observation of the BEC-BCS crossover regime [10–12].

Studies in this field have already improved our understanding of topics as dis-

parate as the structure of neutron stars as well as superconductivity and superflu-

idity. Despite these successes, significant open questions remain.

Laser cooling, which has enabled much of the progress in the field of cold atoms

and molecules, has had success beyond the alkalis (ytterbium, metastable noble

gases, ions, etc.), but many species have complicated level structures which are

resistant to laser cooling. This is particularly true of molecules, where the absence

of strict selection rules for vibrational transitions rules out laser cooling for all but

a few monohydrides and possibly alkaline earth monohalides. This has left us in

need of a more complete toolbox for studying basic properties of most atoms and

molecules at the lowest temperatures.

The collisional properties of most complicated (more than one valence electron)

atoms at low temperatures are only just beginning to be understood [1]. Cold

collisions involving heavy atoms, with the notable exceptions of those involving

cesium, have not been studied in detail.

A similar situation exists for collisions involving molecules. While many predic-
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tions exist for their collisional properties at low temperatures (see [13–16], among

others), collisions between cold or ultracold molecules have yet to be observed.

This is despite the enourmous effort of many groups pursuing a wide array of tech-

niques for cooling and trapping molecules including association of laser cooled al-

kali atoms using photons or magnetic Feshbach resonances, curved guides which

skim the cold tail of thermal distributions, and alternating-gradient decelerators1.

In precision measurement, cold atoms and molecules enable longer interaction

times, reduced doppler widths, and reduced decoherence from less energetic colli-

sions. Thus, improvements in techniques for the production of cold atoms and

molecules can be expected to lead to improved measurements in fundamental

physics. Indeed, work on a cold beam source presented in this thesis has led to

recent developement of an intense molecular beam source which will soon be in-

corporated into an experiment to measure the electron electric dipole moment [18].

In the first part of this thesis, we discuss our contribution to the toolbox of tech-

niques for producing cold atoms and molecules: the development of a novel,

buffer-gas-cooled beam source which can produce high-flux beams of nearly any

atom or molecule at temperatures near 1 Kelvin. The theory behind this beam

source and an experimental characterization of its operation are described in Chap-

ter 2. In order to use the source to produce isolated, trapped atoms, it will be

necessary to separate the species of interest from the helium buffer gas which sur-

rounds it. In Chapter 3, we describe the construction and testing of a magnetic

octupole guide which can guide paramagnetic species out of the buffer gas after it

has emerged from the source.

In Chapter 4, we investigate the cold collisional properties of two of the heaviest

nominally S-state atoms, rhenium and bismuth. We find that these atoms Zeeman

relax quickly and attribute this to the effects of the spin-orbit interaction. Spin-

orbit coupling scales with the fourth power of the nuclear charge, and in these

heavy atoms it is strong enough to distort the electronic cloud. The disortion leads

to an anisotropic interaction with helium, giving rise Zeeman relaxation in cold

1A review of techniques to produce cold molecules can be found in reference [17]
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collisions. This has implications for the general applicability of buffer gas loading

and suggests that evaporative cooling of these species (an essential step in reaching

the coldest temperatures) in a low-field seeking state would be impossible.

The unprecedented control of atoms and ions enabled cooling and trapping has

led us to begin to think of applications that will be made possible by production

of ultracold molecules. In Chapters 5 and 6 we report on first steps toward the

development of the field of molecule chips and then we discuss the basics of a

new quantum computing architecture which brings together the fields of atom

and molecule trapping with circuit cavity quantum electrodynamics. We report

on the design of a new type of electrostatic trap, the electrostatic-Z trap, as well

as electrostatic guides, a calculation of the Majorana effect for polar molecules,

and reasonable performance parameters of a quantum computer based on polar

molecules coupled to superconducting striplines resonators.

Before we develop applications of cold and ultracold matter we must improve

our understanding of it. In order to study it in all its forms, we must have im-

proved methods of production. While the three topics covered in this thesis are

quite different from one another, they represent progress in these three areas areas

of production, study, and application.
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2

Cold atomic and molecular beam
production

This work has been published in similar form in: S. E. Maxwell, N. Brahms,

R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson,

J. Petricka, D. DeMille, and J. M. Doyle. High-flux beam source for

cold, slow atoms or molecules. Physical Review Letters, 95(17):173201,

2005.

Cold, slow beams of atoms or molecules have wide utility. A common use of such

beams is as a source for loading into traps, where the particles can be further cooled

and manipulated, e.g. to create Bose condensates or Fermi degenerate gases. Be-

cause the number of trapped particles is typically limited by the characteristics

of the initial beam (flux, forward velocity, temperature, etc.), significant effort has

been put into developing improved atomic beam sources [19–25]. Work on de-

veloping cold molecular sources has recently been a particularly active field of re-

search [26–31]. As with atoms, one of the aims is to produce quantum degenerate

gases, including those comprising strongly interacting electric dipoles [32–34].

For the purposes of loading traps, an ideal source would produce a large flux of

any atom or molecule at temperatures below the depth of the trap, Tt. For most

currently used trap technologies, Tt . 1 K. For species amenable to laser cooling,

this temperature is within the capture range of a MOT [35]. For paramagnetic
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atoms and molecules, strong magnetic traps can have depths exceeding 1K [36].

For polar molecules, electric field-based traps can reach similar depths [37, 38].

We describe here a simple, robust source that can operate with nearly any atomic or

molecular species, and which produces a beam at high flux with translational and

rotational temperatures near 1 K. We demonstrate this source for both an atom (Na)

and a polar molecule (PbO), and discuss the different regimes of beam formation.

Our analysis makes it possible to estimate and optimize various characteristics of

the beam source for general use. We believe this provides an attractive alternative

to many beam techniques now in use.

2.1 Basic ideas

A simple outline of the operation of our source is as follows. Atoms or molecules

of the desired species, A, are first vaporized by laser ablation. This produces N

particles of A per pulse, at a high temperature Ti. The ablation takes place inside

a cryogenic cell filled with He buffer gas at low temperature Tb and density nHe.

After a characteristic number of collisions N , the translational temperature T of A

comes arbitrarily close to equilibrium with the buffer gas, such that T ≈ (1 + ε)Tb

when N = −κln(εTb/Ti) [39]. [Here κ ≡ (mA + mHe)
2/(2mAmHe), and mHe (mA)

is the mass of He (A)]. Rotational degrees of freedom are also cooled during these

collisions. By allowing both He and A particles to exit the cell via a small hole,

a beam of A is formed. The beam persists for a duration given by the diffusion

lifetime of A in the cell, which is limited by sticking of A particles upon contact

with the cell walls.

The number of cold particles of A in the beam is determined by both nHe and the

cell geometry. During thermalization, a particle of A typically travels a distance

R ≈ N /(nHeσt), where σt is a thermally-averaged cross section for elastic colli-

sions. Hence, for a cell with distance Rh from the ablation point to the hole, the

particles of A will be efficiently thermalized before exiting the hole only if R < Rh.

In addition, the purely geometric probability for a particle of A to escape in the
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beam is governed by the ratio d/Rh, where d is the diameter of the exit hole.

The forward velocity, vf , of the thermalized beam of A particles also depends on

both nHe and d. Specifically, vf is determined by the ratio d/λ, where λ = 1/(nHeσc)

is the mean free path of A particles in the cell; here σc is the elastic cross-section for

cold A-He collisions. In the effusive limit (λ � d), vf will be given approximately

by the thermal velocity of cold A particles, i.e. vf ≈ vA ≡
√

2kBTb/mA. By contrast,

when λ � d the A particles will become entrained in the outward flow of He, so

that vf ≈ vHe ≡
√

2kBTb/mHe. Since mA � mHe for most species of interest, vf is

much smaller in the effusive limit than for an entrained beam.

Note that the conditions for efficient thermalization and for a slow beam are in

conflict. Thermalization is most efficient for nHe above a threshold value, but effu-

sive flow demands that nHe be less than a typically different threshold. The highest

flux of cold, slow A particles is obtained when Rh and d are chosen so that these

thresholds in buffer-gas density coincide (namely, when Rh/d ≈ Nσc/σt), and nHe

is set at this common threshold value (n−1
He = dσc = Rhσt).

2.2 Experimental details

A schematic of the beam setup is given in Fig. 2.1. The buffer gas cell is a brass

box ∼10 cm on edge. The cell is mounted in vacuum, with the top face attached

to the cold plate of a liquid He cryostat. An 0.8 mm long exit hole with d = 3 mm

is centered on one side face. The bottom and other side faces are covered with

windows for optical access. Several ablation targets are mounted on the top face

at Rh ≈ 6 cm. The ablation light consists of laser pulses of ∼ 5 ns duration, with

energy ∼ 15 mJ, focused to a spot size . 1 mm, at a wavelength of 532 nm. The

ablation laser is typically fired at 10 Hz repetition rate. We produce Na atoms with

sodium metal or NaCl targets, and PbO molecules with a vacuum hot-pressed PbO

target. With our ablation conditions, typically Ti ≈ 1000 K for both species.

Buffer gas continuously flows into the cell through a narrow tube which is ther-
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Figure 2.1: A schematic of the beam apparatus. When detecting fluorescence, a
lens (not shown) collimates a fraction of the fluorescence light and directs it out a
window to a PMT.
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mally anchored to the cold plate. This ensures that the buffer gas is at the temper-

ature of the cold plate upon entry to the cell. The cell walls, and thus the He gas,

are typically at Tb = 5 K. Helium in the cell must be replenished as it flows con-

tinuously through the exit hole. A calibrated metering valve at room temperature

is used to control the flow into the cell, and hence the density, of the buffer gas.

We determine nHe to within a factor of 2. Good vacuum is maintained in the beam

region by means of a coconut charcoal sorption pump with a pumping speed of

∼1000 l s−1.

For a typical elastic cross-section σc ≈ 3 × 1015 cm−3, the crossover between effu-

sive and entrained flow of A—i.e., the condition d = λ—occurs for nHe = nc ≈ 1015

cm−3. This should be compared to the density nHe = nt required for full thermal-

ization of A particles—i.e., such that R ≈ N /(nHeσt) = Rh. Assuming σt ≈ σc,

we find that for Na in our cell, nt ≈ nc. Thus it should be anticipated that our cell

is near the optimal geometry for producing a maximal flux of slow, cold Na. By

contrast, the larger mass of PbO makes N much larger than for Na, implying that

our cell geometry is not optimal for PbO. We characterize the the beam source for

both species within a range of densities around the anticipated optimal condition

for Na, namely nHe ≈ 0.2− 5× 1015 cm−3.

The beam source is monitored using laser spectroscopy. Doppler shifts and widths

of the spectra are used to determine beam velocity profiles. Signal size and tim-

ing yield the column density and particle dynamics. To measure the longitudinal

(transverse) velocity profile, a probe laser beam is sent collinear with (perpendicu-

lar to) the molecular beam. For Na, a third probe beam monitors atoms inside the

cell. Also, a fraction of the beam which does not not enter the cryostat is sent di-

rectly to a photodiode. This is used as a reference beam to remove noise introduced

by laser intensity fluctuations (and intensity variation due to laser tuning).

We monitor Na atoms via absorption of a probe laser tuned to the 3S1/2 → 3P3/2

transition at wavelength λNa = 589 nm. This is the sodium D2 line1. The probe

1For an excellent introduction to alkali atoms, see the “D Line Data” documents assembled by
Daniel Steck, which can be found at http://steck.us/alkalidata/
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laser frequency is continuously scanned over the entire absorption profile (a range

of ∼ 1 GHz), at a rate of 1 kHz, resulting in several complete spectral profiles of

the Na atomic beam for each ablation pulse. The relatively slow scan of the laser

ensures that we are sensitive only to nearly-thermalized Na atoms; hot atoms tra-

verse the detection region before a scan is complete. See figure 2.2 for a schematic

of the sodium detection geometry. Figure 2.3 shows an typical set of scan data for

sodium.

The sodium hyperfine structure, due to a nuclear spin of I = 3/2 complicates

direct inference of temperatures from measured linewidths. The 3S1/2 state has

two hyperfine sublevels, F = 1, 2, and the 3P3/2 state has 4 sublevels, F = 0, 1, 2, 3.

The selection rule ∆F = 0,±1 results in 6 hyperfine lines which appear in two

groups of 3 separated by∼ 1.8 GHz. The 3 lines within the groups are not resolved

at our temperatures. The result is an additional inhomogenious broadening of

the observed spectral lines which adds an apparent 1.1 K to Doppler temeratures.

Thus, to extract the temperature of the sodium from data, we fit a Gaussian to the

data, used the width of the Gaussian to infer a temperature, then subtracted 1.1 K.

Numerical simulations of the spectrum at specific temperatures followed by fits of

Gaussian profiles to the simulated lineshape verified the validity of this procedure.

PbO is monitored via laser-induced fluorescence. This probe laser is tuned to the

X(v′′ = 0)→B(v′ = 5) transition at λPbO,e = 406 nm. Fluorescence is detected using

a photomultiplier tube (PMT), with interference and colored glass filters to selec-

tively observe the B(v′ = 5) → X(v′′ = 4) transition at λPbO,f = 460 nm. A shutter

with an opening time of∼ 7 ms is used to shield the PMT from the initial glow fol-

lowing each ablation pulse. Again, this technique ensures that only slow-moving

molecules are detected. The signal is averaged over several (typically 10) shots

of the ablation laser with the probe laser frequency fixed. A single spectral scan

consists of frequency points separated by 10-30 MHz across a span of up to several

GHz. Fine frequency control of the laser is accomplished by outputting a voltage

to the analog input of the laser. We monitor the laser frequency using a Burleigh

WA-1500 wavemeter and infer the spacing successive scan points by interpolating
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Figure 2.2: A schematic of the sodium detection setup. The beam that passes
through the cell is omitted.
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Figure 2.4: A schematic of the PbO detection setup.

between measured points with large (∼ 1 GHz) spacing. Our quantitative deter-

mination of molecule number from fluorescence counts includes estimates of the

detection efficiency and branching fraction for the detected transition [40], as well

as absorption cross sections measured by the DeMille group [41]. We estimate the

error in our absolute number measurement of PbO to be less than a factor of 2.

See figure 2.2 for a schematic of the PbO detection geometry. Figure 2.2 shows an

typical set of scan data for PbO.

For Na, the in-cell probe beam was used to determine both N and σc. We find

NNa ≈ 1014/pulse for both the Na and NaCl targets. We measure diffusion life-

times of τ [ms] ≈ 4× 10−15× nHe [cm−3]. From this we infer σc ≈ 3× 10−15 cm2. For

PbO, previous work has measured an ablation yield of ≈ 1012/pulse [42], and our

measurements with an in-cell probe indicate a comparable yield.
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In Fig. 2.6 we plot the number, Nh, of thermalized particles of species A exiting the

hole as a function of nHe. We also show the results of a Monte Carlo simulation

of the beam formation process. The condition for full thermalization is apparent

in both the experimental and simulated data for Na, while as expected we do not

appear to reach the condition of full thermalization for PbO.

In the Na data and simulations, we find that Nh increases rapidly (approximately

∝ n3
He) up to a critical value of nHe, above which Nh is roughly constant at its

maximum value Nh,max. The low-density scaling is consistent with a simple pic-

ture in which A particles are distributed uniformly over a volume of characteristic

length Lt ≈ Nλ, when they have thermalized to near Tb. (This broad distribution

arises, in our simulations of the thermalization process, from the spreads both in

the number of collisions required to thermalize and in the free path between colli-

sions.) At high density, the condition Nh ' Nh,max arises in our simulations when

R < Rh for essentially all A particles. In this regime, the fraction of A particles

escaping, fmax = Nh,max/N , is given roughly by the area of the hole to the area of a

hemisphere at radius Rh, i.e., fmax ≈ d2
h/(8R

2
h). In our geometry, fmax ≈ 3× 10−4.

The simulated beam data in Fig. 2.6 is scaled to match the experimental Na data

by adjusting the values of NNa and σt. The resulting value, NNa ≈ 5 × 1013, is

in reasonable agreement with the determination from the in-cell probe. The fitted

thermalization cross-section, σt ∼ 1×10−15 cm2, is somewhat smaller than σc. This

is reasonable, since elastic cross sections are typically smaller at higher collision

energies [43].

Fig. 2.7 shows the average forward velocity, vf , of the beams of A particles as nHe is

varied. For both Na and PbO, the data show a nearly linear increase of vf with nHe,

with the velocity of the lighter species always larger. This behavior is consistent

with the following simple picture. A slowly-moving particle of A takes a time Te
to exit the hole, where Te ∼ d/vA. During this time, it undergoes Ne collisions with

fast, primarily forward-moving He atoms, where Ne ∼ nHeσcvHeTe. Each collision

imparts a momentum transfer ∆pA ∼ mHevHe. This results in a net velocity boost

∆vA, given by ∆vA ∼ vAd/λ ∝ nHe. This picture should be roughly valid for

15



0 1 2 3 4 5
0

20

40

60

80

100

120

140

160

Buffer gas density, n
He

 (1015 cm -3
)

F
or

w
ar

d 
ve

lo
ci

ty
, v
f
 (

m
/s

)

Mean velocity of an 
effusive He beam    

Mean velocity of an 
effusive Na beam    

Mean velocity of an 
effusive PbO beam   

Na
PbO

Figure 2.7: PbO and Na beam mean forward velocities, vf , as a function of nHe.
Extrapolation of the data to zero buffer gas density is illustrated by best-fit lines
(dashed).

16



densities below the regime of full entrainment, where vf ∼ vHe. The velocities we

measure for Na are approximately reproduced by modeling of the beam formation

process with our measured value of σc.

This picture also predicts that the behavior of vf , when extrapolated to nHe = 0,

should yield the velocity of an effusive beam of A particles at temperature Tb. To

make this comparison, it is critical to note that our detection technique is sensitive

to molecules within a roughly cylindrical volume, of diameter Dd and with length

L extending from the exit hole. Under our conditions, where Dd ∼ d < L, it

can be shown that an effusive beam will exhibit a velocity distribution close to

f(v) ∝ v2e−mAv
2/(2kBTb) and a mean velocity v̄eff ≈ 1.13vA. Our extrapolated data

is within ∼25% of this prediction for both species.

Fig. 2.8 shows the temperature of the beams vs. nHe, as measured by the veloc-

ity spreads in the longitudinal and transverse directions, as well as the rotational

population distribution (for PbO). For transverse temperature we fit to a distri-

bution of the form ft(v) ∝ e−mAv
2/(2kBT ). For longitudinal temperature we use

fl(v) ∝ e−mA(v−vl)
2/(2kBT ). Fits of the longitudinal data to the effusive distribution

fl,eff (v) ∝ v2e−msv2/(2kBT ) were poor, consistent with the partial entrainment of A

in the helium flow. For the rotational temperature, we use Clebsch-Gordan and

Hönl-London factors [44] to determine the relationship between fluorescence in-

tensity and initial state population for various rotational lines. The ratio of initial

state populations for 2-3 rotational lines determine the temperature corresponding

to a Boltzmann distribution. Our data indicates complete thermalization of all de-

tected particles. Note that we observe no additional cooling below Tb, as would be

expected for entrainment in a fully supersonic He flow.

2.3 Discussion and conclusions

The beam source described here can be readily adapted to the needs of a wide

range of experiments. For example, it can be used for a wide variety of species with

performance similar to that described here. The total flux depends linearly on the
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ablation yieldN , which for any given target is difficult to predict a priori. However,

for nearly every species we have tried (here and in many related experiments), it

has been possible to achieve large values of N by a suitable choice of precursor

material. For example, under operating conditions similar to those used here, we

have obtained N = 1012−1014 for a variety of metal atoms and N = 1011−1013

for many species of diatomic molecules (including radicals) [45–48]. In addition

– subject to limitations of cooling power or gas load – the source could be run at

lower temperatures, higher repetition rates, or with higher extraction efficiency

(e.g., by using several separated exit holes). Our discussion of the beam formation

mechanism makes it straightforward to determine the effects of such changes.

Of primary interest to people who wish to use a beam source such as this one for

loading traps is the phase space density (number per unit spatial and momentum

volumes, ρΩ = N/(V Vp) [49]) from this source. However, the beam undergoes a

collisionless free expansion in the region beyond the nozzle, thus increasing vol-

ume while not correspondingly decreasing momentum (i.e., the expansion is not

adiabatic). This means that we should pick an arbitrary but reasonable distance

from the source at which one may reasonably install a guide, trap, Stark deceler-

ator, or other unthought of devices. The peak volume density of PbO molecules

emerging from the guide is [flux]peak

Avf
∼ 109s−1

.07cm2×8×103cms−1 ∼ 2 × 107cm−3. At a tem-

perature of 4 K, the phase space density is then, dividing the density by the vol-

ume in momentum space Vp = (3mkBT )3/2, we have the phase space density of

ρΩ = 10−18 ∗ h−3 at the source aperture. At a reasonable distance of 1 cm, this will

have fallen off by a factor of about 10. This is far below the phase space density

achieved using the Stark decelerator (approximately 10−13h−3 in reference [50]). At

least three orders of magnitude in phase space density could be recovered by us-

ing a light molecule and cooling the source with a 3He refrigerator. Still the total

number per pulse produced by our source is a large advantage over other sources.

A key improvement to the source would be the addition of a guide, either mag-

netic (for paramagnetic species) as described in Chapter 3 or electric (for polar

molecules). In both cases, He is unaffected by the guide potential and will exit
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through the sides of the guide, allowing extraction of the A beam into a region of

ultra-high vacuum. Under the conditions described here, we estimated that this

beam source could be used to load a peak flux of up to 2× 1011 s−1 Na atoms into

a simple permanent magnet guide such as the type described in Ref. [25]. An elec-

trostatic guide such as that described in Ref. [30] could be loaded with a peak flux

of ∼ 109 s−1 PbO molecules in the J=1 rotational state, adequate for loading into

a microwave [37] or electrostatic [51] trap. The high fluxes from our source could

result in substantial improvements in atomic and molecular trapping experiments

that depend on large initial numbers.

2.3.1 Further developements

Since the initial publication of the work described above, our group has explored

a completely different regime of operation for this source [52]. We were initially

interested in operating the source in a regime where the macroscopic motion of

atoms and molecules in the cell was dominated by diffusion and where the flow

from the cell was effusive. Our group has since investigated the regime of fully

hydrodynamic entrainment of the atoms or molecules in the flow of the buffer gas.

In this regime, the time it takes for the entire volume of buffer gas to flow out of

the cell is comparable to the time it takes for the atoms or molecules of interest to

diffuse to the walls. The fraction of A particles exiting the cell can then approach

50% of the total introduced into the cell. The price for this more than thousand-

fold improvement in flux is a complete boost of the A particles to the velocity of

the helium. However, many spectroscopic experiments are already performed on

traditional ablation-seeded supersonic beams, and this source is an improvement

upon that technology.

Other highlights of the recent work are the developement of a second buffer gas

cell which functions as a nozzle to suppress the boost, the loading of the buffer

gas cell not by ablation but by a hot capillary with gaseous O2 which allows much

higher numbers to be introduced (continuously!), and the use of the source to load

a guide of a type which we developed and tested together and is described in
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Chapter 3.
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3

Guiding of atomic lithium

To realize the full potential of the beam source described in Chapter 2 we de-

veloped, constructed and tested a permanent magnet octupole guide. We then

demonstrated guiding of a beam of lithium atoms produced by our beam source.

Magnetic multipoles in 2 dimensions are a good introduction to guides. An infinite

length guide has a 2-D field configuration. Complex techniques are ideal for a

discussion of 2-D magnetic fields. In this formalism, we make the mapping B =

(Bx, By, 0) 7→ B = Bx− iBy. Maxwell’s equations for the magnetic field in a source

free region ∇ · B = 0 and ∇ × B = 0 ensure that the function B is analytic and

that it is harmonic. [53] By definition, an analytic function can be represented by a

power series

B =
∞∑
m=0

Cm(x+ iy)m (3.1)

=
∞∑
m=0

Cmr
meimφ, (3.2)

where the first line is in cartesian coordinates and the second is in polar coordinates

and the coefficients Cm are chosen to fit boundary conditions. For m=1, the field

components change sign under a rotation of 2π
4

, for m=2 they change sign under

a rotation of 2π
6

, for m=3 they change sign und a rotation of 2π
8

. These terms (m =

1, 2, 3) are the 2-D quadrupole, hexapole, and octupole fields. In general, the term

m corresponds to the 2m-pole field. Notice that a quadrupole field has a linear
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dependance on r, a hexapole has a quadratic dependance, and an octupole has a

cubic dependance, and so on. For a nice and more general discussion of a complex

formalism for analyzing 2-D trapping potentials, see reference [54].

The potential seen by an atom with magnetic moment µ in a magnetic field is

U = −µ · B = −µ|B| ∝ B when the magnetic moment is anti-aligned with the

field. So, the potential seen by an atom in a 2m-pole field is ∝ r2m. We wished to

construct a guide with a relatively flat field profile across the center. This was both

because a rapidly varying field limits spectroscopic detection sensitivity due to

spatial line broadening and because a flat guide can be loaded more efficiently than

one whose potential increases rapidly from the center. This lead us to construct a

guide whose field was as high order as was reasonably practicable, an octupole.

A variety of designs exist for producing pure multi-pole fields, but for our pur-

poses, a pure multi-pole field was not necessary. As other groups have done [55],

we chose to construct a guide from square profile permanent magnets.

3.1 Details of the guide

The guide is constructed from NdFeB magnets with a nominal peak field at the

surface of ∼ 0.6 T. It is probable, however, given the finite size of the magnets

we chose that the actual field at the surface is smaller than this. We modeled the

guide structure using the package Radia [56] within Mathematica. For the proof

of principal guide, we wanted a guide that could capture the bulk of the atoms

leaving the beam source while being far enough away to allow easy optical access

to the source exit and allowing for the beam enter the guide well beyond the point

where collisions have “turned off.” This led us to aim in our design for a guide

diameter of∼ 1 cm. NdFeB magnets 1”×1
8
”× 1

8
” were cheaply available in quantity,

so we chose to design our guide as a series of segments made of these magnets. The

design of the guide then became a question of at what radius to place the magnets.

We chose this radius to maximize the guide depth by modeling the field due to the

magnets and varying the radius until the saddle points between the magnets had
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Figure 3.1: Schematic of the end view of the permanent magnet octupole guide.
Contours of the simulated magnetic field |B| are shown. The spacing between
opposing faces is 10.2 mm. This spacing is calculated to provide a maximum field
depth for square profile magnets 3.18 mm wide. For a remanent flux of 1.2 T in the
magnets, depth in the guide saddles and in the center of each magnet face is 0.53 T.
This corresponds to a guide depth of 360 mK for a one Bohr magneton atom.

a value equal to the minimum field along the face of the magnet. Figure 3.1 shows

the magnetic field of the guide.

We also built a numerical model of the curved guide and simulated the trajectories

of atoms through the guide in the presence of background gas. Figure 3.2 shows

the model of the guide and trajectories of 250 simulated atoms through the guide.

The initial point of the model was to better understand the effect that gaps and

“kinks” would have on the function of the guide (the answer to this question is

“very little”). However, this model allows the inclusion of loss due to background

gas and can be used as a tool in understanding the full dynamics of the loss of slow

atoms discussed in section 3.3.1.
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3.2 Hyperfine spectrum of lithium

Detection of guided lithium is discussed in the next section. Here we discuss

the hyperfine structure necessary for understanding the guided spectrum. The

spectral line of lithium we used to monitor transmission through the guide was

the D2 line, which is the label for the ground 2S1/2 to excited 2P3/2 transition at

670.1 nm [57]. The dominant (Bosonic) isotope of lithium is 7Li with 92.5% abun-

dance and a nuclear spin of I = 3/2. The ground state then has two hyperfine lev-

els Fg = 1, 2 with a splitting of ∆Ehfs/h = 2A = 2× 401.572 MHz = 803.144 MHz.

The excited state has Fe = 3, 2, 1, 0, but with hyperfine constants (A = −3.055 MHz

and B = −0.221 MHz), which are smaller than the natural linewidth of 5.92 MHz

and the doppler width (FWHM) at 4 K of 240 MHz. Thus, in a field-free spectrum

of the D2 line of 7Li at low temperatures, we expect to see two resolved peaks

coreesponding to the Fg = 2 and Fg = 1 states, with a broadening dominated by

the doppler shift and a small contribution due to the natural linewidth and the

differing frequencies of transitions to the various excited hyperfine levels.

In a magnetic field, the Zeeman interaction ∆E = −~µ · ~B splits the magnetic sub-

levels mF in a rather nice way: all mF states from the Fg = 1 state are high-field

seeking and are thus unguided. Of the five Fg = 2 sublevels, one is high-field seek-

ing and unguided while four are low-field seeking and thus guided. It should be

noted that this is in the high field (B > 0.06 Tesla) regime, which is easily attained

by our permanent magnets. In the low field limit, the mF = −1 state of the Fg = 1

manifold is low-field seeking and the mF = −1 state of the Fg = 2 manifold is

high-field seeking. The Zeeman shifts of 7Li are shown in Figure 3.3.

3.3 Guided signal

In order to demostrate guiding, we directed one laser beam past the beam orifice

and another past the end of the guide as shown in a photo of our apparatus in

Figure 3.4. We were able to measure absorption of the laser beams in both of these
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positions. These positions had magnetic fields which are low compared to those in

the guide and thus the spectrum is essentially the field-free spectrum. This means

that we expect for the spectrum at the cell orifice to contain both the Fg = 1 and

Fg = 2 hyperfine lines with minimal disruption due to fields. At the end of the

guide, however, we expect to see only a single peak due to the guided sublevels of

the Fg = 2 state. In fact, this is exactly what we see, as illustrated in figure 3.5. We

estimate, based on observed linewidths and the duration of signals that we guide

a maximum of approximately 1.6 × 108 atoms per pulse, which is 3 ± 2% of the

atoms emerging from the cell orifice when the cell is held at 3.2 K.

3.3.1 Guide poisoning and slow atom loss

Within the regime where the number of atoms emerging from the cell continues

to increase with increasing buffer gas density, we find that the number of guided

atoms reaches a maximum and then rapidly decreases. We attribute this to a local

bad vacuum due to increased flow of helium from the cell. For future studies in

loading a guide with the buffer gas beam source, it will be important to understand

where the loss of atoms is occurring. Does it occur at the guide entrance due to a

locally high concentration of helium or does it occur in the volume of the guide?

Is the buffer gas density in the guide excessively high due to its line of sight to the

cell, or is the vacuum in the entire apparatus “bad?” In an attempt to sort this out,

we added a second source of helium gas to the vacuum chamber separate from

the beam source and found that this source did not, in fact, cause as much loss in

the guide. Though the effect was on the same order of magnitude, it does suggest

that an optimal guide design for loading with our beam source will be as open as

possible.

Another issue we uncovered in our guide data is evidence of missing slow atoms.

We discovered this by modeling the expected time profile at the output of the guide

based on the signal at the cell exit. What we found was that the signal diminished

too quickly (see Figure 3.6). There are two primary candidates to explain the loss

of these atoms. First, slow atoms spend more time in the guide and thus have
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a higher probability of being knocked out by a background gas atom. Differential

pumping on the guide region could be expected to help this. The second candidate

is the Zacharias effect. This effect is due to the longer time that slow atoms spend

in the nozzle region of the beam source. These atoms are preferentially boosted

to higher forward velocity by faster moving helium atoms [58, 59]. This effect is

fundamental to the operation of the source and cannot be expected to be altered

substantially. It should be noted that in these experiments, we were operating the

guide with a larger nozzle (two times the diameter) and a 25% transparent mesh

with ∼ 100 µm holes with near unit aspect ratio. The intent of this mesh was to

suppress the overal boost of the beam forward velocity, and it appears to have been

effective at this task.

3.4 Summary and conclusion

We have demonstrated the guiding of 1.6× 108 atoms in a several millisecond du-

ration pulse. The full dynamics of loading a guide with the buffer gas beam source

requires further investigation. Particular focus on understanding sources of loss

may allow us to remedy these losses. We have also implemented computer codes

that will aid in the understanding of these dynamics. Future investigations should

include detailed analysis of the output from this code under varying background

gas conditions to differentiate between the alternative possible sources of loss.
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Figure 3.2: The geometry of the simulated guide (left), the magnetic field ampli-
tude in the midplane of the guide (center), and a set of 250 simulated trajectories
of atoms through the guide.
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Figure 3.4: A photograph our the guide and beam source on the cold plate of our
liquid helium cryostat. The solenoid is not essential to the function of the guide
but was installed for diagnostic reasons.

30



2 4 6 8 10

guide end signal
cell exit signal
laser frequency 
(1 GHz p-p)

ab
so

rp
ti

o
n

 (a
rb

)

time (ms)

Figure 3.5: Evidence of guiding of 7Li. The observed spectrum at the cell exit
contains two peaks due to the two hyperfine states F = 1, 2. The signal at the
end of the guide, however, contains only signal due to the four guided F = 2
sublevels. The relative heights of the signals have been scaled to ease comparison
of their structure.
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Figure 3.6: Evidence of missing slow atoms in the beam of guided 7Li. The signal
drops much faster than would be expected if the source produced an ideal effusive
distribution.
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4

Zeeman relaxation and the effects of
spin-orbit coupling on the collisions
of rhenium and bismuth with
structureless targets

4.1 Introduction

Interest in inelastic collisions between paramagnetic atoms and noble gases dates

back at least to early experiments in optical pumping in the 1950s [60] due to the

utilty of buffer gases in limiting depolarizing collisions with cell walls. Interest in

these collisions has remained strong due to their importance in setting linewidths

in precision measurement and precision magnetometry experiments [61,62] as well

as in their role in enabling the polarization of nuclear spins [63, 64] for use as po-

larized targets in nuclear physics experiments and for hyperpolarized gas mag-

netic resonance imaging [65]. In connection with these topics, inelastic collisions

between alkali metals and noble gases at elevated temperatures have been stud-

ied in detail and are well understood (see, e.g., references [64, 66–70]). In recent

years, two primary motivators have brought attention to collisions between para-

magetic atoms and noble gases (specifically helium, due to its appreciable vapor

pressure) at cryogenic temperatures. The first of these reasons is to increase the

coherence times for precision measurement [71, 72]. The second reason motivates
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this work: the use of cold (. 1 K) helium buffer gas for the loading of magnetic

traps. The rate of Zeeman state changing inelastic collisions between a particu-

lar paramagnetic species and the helium buffer gas in a magnetic field determines

whether it is possible to buffer gas load that species into a magnetic trap. In our

group’s magnetic trapping pursuits, we have observed and studied cold inelas-

tic collisions between helium and a large number of different transition metal and

rare earth atoms [1, 2, 73–75]. As will be explained below, some of these atoms ex-

hibited an inelastic rate that would make buffer gas loading impossible (e.g., Sc),

while others (e.g., Cr) show an inelastic rate so low that only an upper bound can

be estimated. In this work, we present first studies of cold collisions of helium

with rhenium (the heaviest stable element with a half-filled d-shell) and bismuth

(which not only is the heaviest stable element with a half-filled p-shell, but also is

the heaviest of all stable elements).

Our initial interest in bismuth and rhenium was both attempting to trap them and

to understand what collisional effects might be unique to heavy atoms, especially

when considering the high Zeeman relaxation rate seen in Cs-Cs collisions [76].

With their half-filled valence shells, their ground state terms are classified as S

states, a characteristic which naı̈vely makes them attractive candidates for success-

ful buffer gas loading. Bismuth has two more properties which drew our attention.

First, it has a (relatively) simple electron configuration that gives it a reputation as

a favorable system for testing of ab initio calculations [77]. Second, it has been

used by no fewer than four different research groups for the study of parity non-

conservation (see reference [78] and references therein) – giving our experimental

results the possibility of being useful to a broader community.

Collisions between paramagnetic atoms and helium can change the spin orienta-

tion through three mechanisms. The first mechanism, spin-exchange, occurs only

in collisions with 3He. In a spin-exchange collision, the hyperfine interaction be-

tween the unpaired valence electrons with spin S of the paramagnetic atom and

the 3He nucleus with spin I = 1/2 causes an energy splitting between states of

different total angular momentum F = S ± I . Because the angular momentum
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state before the collision is a superposition of the two F states, the energy splitting

and resulting differing phase evolution during the collision can result in a change

in the orientation of both spins. This effect is small, and we are not sensitive to it

in our studies.

The second mechanism, a spin-orbit-induced spin-rotation interaction of the form

γ(R)N·S, where N is the rotational angular momentum of the paramagnetic atom-

helium complex and γ(R) is a constant whose size determines the strength of the

interaction. In an S-state atom such as an alkali, γ(R) is determined primarily

by the strength of the spin-orbit interaction in the P state and by the degree of

mixing of that state by the electric field of the helium atom [68, 69]. This effect is

small even at elevated temperatures, and is expected to scale with the square of the

temperature [71] such that it is too small for us to observe in this work given the

lifetime of our samples and helium density in our experimental cell. This scaling

with temperature is among the reasons that working in a cryogenic buffer gas cell

is attractive for precision measurement. It should be noted that to date there has

been no published fully-quantum calculation of this effect at low temperatures or

otherwise.

The third collisional mechanism for changing the Zeeman state of a paramagnetic

atom is due to anisotropy in the atom’s electron cloud. The classical picture of

this effect is that a spherical, non-magnetic, helium atom can apply a torque to

a paramagnetic atom during a collision only if that paramagnetic atom is non-

spherical (otherwise, the helium atom can only apply radially directed forces). For

an atom to be non-spherical, it must have non-zero orbital angular momentum.

This leads us to the second picture for this effect: different orientations of the or-

bital angular momentum relative to the collision axis are shifted in energy by dif-

ferent amounts. This energy difference results in precession of the orbital angular

momentum, which causes a change in the Zeeman state. The full quantum the-

ory of Zeeman state-changing collisions due to electronic anisotropy is given in

reference [79].

Calculations and measurements of this effect in cold collisions with helium have
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been done for a number of different atoms [1,2,75,80–82] including the rare-earth

and transition metal atoms with open shells and non-zero angular momentum.

For atomic oxygen, whose ground state has configuration, 3P2, as well as in other

non-S state atoms, the ratio of elastic to inelastic collisions is of order 1. In most of

the rare-earth atoms, the presence of a closed s-shell existing at larger radius than

the valence electrons, suppresses the anisotropy. This leads to a ratios between

elastic and inelastic collisions on the order of 104-5×105 and greater, despite orbital

angular momenta as high as L = 7.

In a pure S-state atom, however, there is no electronic interaction anisotropy. Thus,

inelastic collisions between an S-state atom and helium at low temperatures in

strong magnetic fields may be predicted to be extremely small. This brings us to

why Bi-He and Re-He collisions are interesting. As mentioned above, both bis-

muth (valence configuration p3) and rhenium (d5) have half filled valence shells.

Thus, their ground state configurations are both nominally L=0 with no paired

spins. From this, one might expect that both of these atoms would exhibit very

low relaxation rates with no contribution from electronic anisotropy. However,

they are both high-Z atoms (though the nuclear charge is the important character-

isticy, these are referred to as “heavy atoms”). For bismuth Z = 83 and for rhenium

Z = 75. As discussed in Appendix B, the general strength of the spin-orbit interac-

tion scales as Z4 and for heavy atoms it becomes as important in atomic structure

as the electron-electron electrostatic interactions that lead to the coupling of orbital

angular momenta independant of spin. The result is that the LS-coupling picture

used when assigning term labels (for the bismuth ground state 4S3/2) is insufficient

for characterizing the properties of the state. In fact, calculations have shown that

for bismuth, the S- character of the ground state is only ∼ 57% and for rhenium

it is ∼ 87% [87, 144]. The remainder of the state comprises terms with nonzero

angular momentum which are subject to a strong electronic interaction anisotropy

with helium. Thus, measurements of collisions mediated by electronic interaction

anisotropy is a novel probe of the spin-orbit interaction and a unique way of visu-

alizing its effect on the electronic structure.

36



4.2 Experimental apparatus

Our measurements are performed in a cryogenic buffer gas cell maintained at

∼ 0.5 K through a thermal link to a dilution refrigerator. The cell is situated in

the bore of a split-coil superconducting magnet. Detailed descriptions of the cryo-

stat, sample mounting procedures, and thermal management are given in refer-

ences [1,83]. Our cell is slightly different than cells previously used in this appara-

tus. A photo of the cell is given in figure 4.1. The magnet is designed to be oper-

ated with the current in each coil circulating in opposite directions (anti-Helmholtz

configuration) so that a field zero is produced in the center, and the magnitude in-

creases linearly in all directions to a maximum of ∼ 3.5 Tesla. The magnet can also

be run with the current in both coils circulating in the same direction. The field

produced is approximately that produced by Helmholtz coils, so we refer to this

as “Helmholtz” configuration. The magnet can generate fields exceeding 2 T in

this configuration. In this study, we used the magnet in Helmholtz configuration

with fields of ∼ 1.5 T.

Atomic rhenium and bismuth are produced via laser ablation of a solid elemental

target. The ablation laser is a nanosecond pulsed Nd:YAG with output frequency

doubled to 532 nm. Typical pulse energies used are 10-20 mJ. The hot atoms pro-

duced by the laser are cooled after a characteristic number of collisions with a 3He

buffer gas to temperatures of < 1 K. For a detailed description of this buffer gas

cooling process see references [73, 84] and section 2.1. The atoms are detected and

their density probed using laser absorption spectroscopy. A simplified schematic

of the optical setup is given in figure 4.2.

The cell used in this apparatus was designed to allow for rapid removal of the

buffer gas to thermally disconnect a trapped atomic sample from the walls of the

cell. In order to remove the buffer gas, we incorporated a large aperture, rapidly

actuating valve similar to that in reference [85], although ours differs in that it is

held shut by a spring near the cell and is connected to room temperature via a steel

cable. The valve is also only ∼ 1.5 cm in diameter. We use a “waiting room” for
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Figure 4.1: A photo of the cell used in our experiment. The cell is a double-walled
design that allows for a thermal link to the dilution refrigerator via a jacket of
superfluid helium. Helium is introduced into the cell from the “waiting room” by
heating activated charcoal which has been saturated with helium. A valve which
has been designed to allow removal of the buffer gas on a time scale of several
hundred milliseconds sits on top of the pump-out port. It is actuated from room
temperature by a pneumatic cylinder which connects to a steel wire rope via a
welded bellows.
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Figure 4.2: Optics used for production and detection of atomic rhenium and bis-
muth. In measurements with bismuth, the short wavelength (307 nm) light was
substantially absorbed by the BK7 cell window, resulting in low transmitted power
and a subsequent poor signal-to-noise ratio. Figure adapted from reference [1]
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introducing buffer gas, which our group has found to be quite effective in exper-

iments that trap atoms [85]. The waiting room consists of a small chamber with

activated charcoal nearly saturated with condensed 3He. Applying current to a re-

sistor attached to the waiting room introduces sufficient heat to vaporize a fraction

of the helium. The vaporized helium leaks into the cell via a 0.6 mm diameter by

8 mm long channel. The buffer gas in the cell decreases in density (over a ∼ 15

minute timescale) as it leaks back through the pinhole and is reabsorbed again by

the cold charcoal. If the atoms were to be trapped, the buffer gas would be pumped

from the cell as the valve is opened. While this design is excellent for trapping ex-

periments, it does not allow for the precise control of buffer gas density that a fully

sealed cell allows. As such, all buffer gas densities quoted in this paper are inferred

from a combination of a series of measurements we took with an atom of known

elastic cross section (Nd) and the time after buffer gas introduction. The uncer-

tainty in the measured cross section of Nd and an unexplained effect in which the

measured diffusion lifetime of atoms in the cell does not increase despite contin-

ued heating of the waiting room leads us to conclude that the buffer gas density

we quote is only an estimate to within a factor of ∼ 2.

After the ablation, we can either fix the frequency of the laser or we can sweep

it over a portion of the spectrum repeatedly. Fixing the frequency allows greater

sensitivity to signals which last a short time and gives a better picture of the time

behavior of the signal. However, because the laser frequency does not necessarily

coincide with the peak of the absorption line, comparison of the intensity of ab-

sorption from one ablation pulse to the next is not necessarily meaningful. Also, it

is possible that if the detuning of the laser from resonance is sufficiently large, the

time profile will be dominated by doppler narrowing as the ablated atoms cool.

This issue is somewhat avoided by only looking at the time profiles data where

the absorption is most intense, so that we can be sure we are not on the wings

of the absorption peak. Sweeping the laser allows us to be sure that we see the

peak of the absorption and captures a series of snapshots of the spectrum. How-

ever, for short time signals, the signal may be gone before the laser has swept into

resonance, thus making this technique unsuitable for measuring rapid decay of a
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Zeeman level.

4.3 Measurements of Zeeman relaxation

4.3.1 Zeeman spectra of bismuth and rhenium

Both bismuth and rhenium low-field seeking states were found to decay on a time

scale too fast to allow for magnetic trapping. As such, we operated the magnet

in Helmholtz configuration. For all measurements, we operate the magnet at suf-

ficiently high fields that the nuclear spin is uncoupled from the electronic spin,

and can effectively be ignored in studies of collision dynamics. A simulation of the

laser absorption spectrum in the Helmholtz field is performed and for both species

we take absorption measurements across a wide range of frequencies to identify

lines corresponding to different mJ states.

Measurements of the absorption spectrum are made by first ablating a solid ele-

mental precursor and then sweeping the frequency of the probe laser across & 1GHz

at a rate sufficient to see several sweeps across a spectral line during the > 100 ms

during which a signal persists. From these spectra, we are able to identify spec-

tral lines due to the different Zeeman sublevels mJ . The high field seeking state

mJ = −J is easy to detect for both Bi and Re and the hyperfine sublevels (10 such

levels for Bi and 6 for Re) of this state dominate the measured spectra. Atoms in

this state persist for a time approximately equal to the field-free diffusion time,

τdiff = 30 − 450 ms. Atoms in most other states, which are subject to inelastic

losses, do not persist long enough to see on a course scan. In fact, for both atoms,

we were unable to find any low field seeking states, mJ > 0 by scanning the probe

laser. However, the measured spectrum of high field seeking states along with our

simulated spectrum allowed us to locate and measure the duration after ablation

of spectral lines not seen on a course scan. The Zeeman levels of bismuth and

rhenium for the ground and relevant excited states are detailed in figures 4.3 and

4.4. Measured and simulated spectra for both bismuth and rhenium are given in
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figures 4.5 and 4.4.
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Figure 4.3: The zeeman levels of bismuth. Upper axes show the excited 4P1/2 state
and the lower axes show the ground 4S3/2 state. The nuclear spin is 9/2. Stretched
states with maximal mJ +mI are indicated by thick black lines.

4.3.2 Bismuth results

The inelastic collision rate in bismuth is found from the following measurement.

We identified a spectral line due to a high field seeking state (mJ = −J = −3/2,

mI = −I = −9/2) and a line due to a low field seeking state, (mJ = J = 3/2,

mI = I = 9/2) at a magnetic field of 1.5 T. After a single insertion of buffer gas into

the cell, we alternately measured the decay lifetime of each of these two states,
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Figure 4.5: Spectrum of bismuth (in 1.5 T magnetic field) . Data shown is from a
series ablation pulses. Due to non-repeatability in the tuning of the probe laser,
spectral lines seen in one scan of a spectral region does not typically overlap the
same line seen in a subseuqent scan. Hence, single spectral lines appear multiple
times in “bunches” on these plots. Only spectral lines corresponding to high field
seeking states are visible.Dashed lines indicate observed spectral lines.
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Figure 4.6: Spectrum of rhenium (in 1.7 T magnetic field. Data shown is from a
series ablation pulses. Due to non-repeatability in the tuning of the probe laser,
spectral lines seen in one scan of a spectral region does not typically overlap the
same line seen in a subseuqent scan. Hence, single spectral lines appear multiple
times in “bunches” on these plots. Only spectral lines corresponding to high field
seeking states are visible. There are two stable isotopes of rhenium, 185Re (37.4%
abundance) and 187Re (62.6% abundance), both with nuclear spin 5/2. Because
of the similarity of the isotopes, every Zeeman line appears as a doublet. Dashed
lines indicate most of the spectral lines we observed.4
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leaving several minutes between measurements to prevent heating of the cell due

to repeated ablation pulses. The purpose of monitoring both states is to be able to

measure the difference in time evolution of these two states, which should isolate

the effects of inelastic collisions. We tuned the laser to a fixed frequency as close

as feasible to the peak of each line and were able to measure the loss rate τ−1 of

each state in a narrow (factor of two) range of buffer gas densities. We will refer

to this data as “parked data.” Because of the short lifetime of the low field seeking

states, we were unable to identify spectral features due to any of these states when

operating the laser in a scanning mode, where the frequency is swept across a GHz

scale range at a frequency of up to ∼ 20 Hz.

There are some complications in reporting a “loss rate” for bismuth atoms in a

given state. This rate refers to a one body loss rate in a decay of the form ṅmJ
=

−τ−1nmJ
. At short times after the ablation pulse, the rate of change of the mea-

sured signal is not exponential. This is due in part to the diffusion of atoms from

a localized cloud near the ablation target into a diffuse cloud which fills the cell

(“decay of high order diffusion modes”), to the rapid changes in temperature of

the ablated atoms and the buffer gas, and to possible other uninvestigated effects.

Nonetheless, the long-time tail of the measured data always has a near-exponential

form.

The quantity we wish to measure is the inelastic loss rate Γin. For the parked data,

we model the data as

ṅ3/2 = −(ΓinnHe + τ−1
0 ) n3/2, (4.1)

ṅ−3/2 = −τ−1
0 n−3/2, (4.2)

where τ0 accounts for all loss processes to which the ground state is subject. One

expects τ0 to be equal to the diffusion lifetime, but in our measurements with bis-

muth, we observe an additional loss process (or processes?) which we attribute

to the “messyness” of the ablation process (possibly the production of clusters to

which free atoms can stick) is present. In our laboratory vernacular, this is reffered
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to as the “dust problem.” Appendix C discusses the dust problem in bismuth.

We do not have reason to believe that the the additional loss will affect the mea-

surement of the inelastic loss rate. The validity of this model rests on the assump-

tion that the unexplained loss process does not depend on mJ .

The data used to extract a measurement of the Zeeman relaxation rate are shown

in figure 4.7. The data have some interesting, and puzzling, features. First, notice

that the all of the HFS (mJ = −3/2) absorption data has a maximum optical depth

of ∼ 0.2 and has a plateau lasting up to ∼ 100 ms. This almost appears to be a

saturation phenomenon, wherein all light that can possibly be absorbed in the cell

is, in fact absorbed. One possible phenomenon that would produce this would be

if the laser is outputting multiple modes. But this is not a tenable option, as the

laser is a single-frequency stabilized dye laser whose output is doubled through

a locked cavity. The doubling cavity would not remain locked if the laser output

contained multiple modes. Another explanation offered for a similar looking tem-

poral profile in the absorption of dysprosium in reference [1] is that the ablated gas

has optical gain and produces extra light that suppresses the apparent absorption.

In the case of dysprosium, the evidence makes this a plausible conclusion. How-

ever, for ablated bismuth, we see no evidence of optical gain in any of our data,

while in dysprosium the evidence of optical gain is clear. Another possibility is

that the decay of the metastable Zeeman levels into the HFS state replenishes the

population of the HFS state due to diffusion and anomolous loss. While this is

assuredly happening, we can find no set of parameters (decay rates and tempera-

ture change) that produces such a long plateau in a simple numerical model of the

decay process, although no particular fine tuning is required to create a plateau

lasting a few tens of milliseconds. Finally, a set of data showing multiple scans

across the HFS line after an ablation in figure 4.9 shows maximum peak heights

consistent with the “parked” data and shows no signs of “clipping,” which would

be a telltale sign of a saturation effect. While the temporal profile of the data is puz-

zling, we can think of no effect which would lead to the conclusion that the signal

is anything other than an accurate reflection of the time evolution of the amount of
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HFS bismuth in the path of the probe laser.

Like the HFS data, the LFS data contains some hard to explain features. The LFS

states were, despite our accurate spectral model, quite difficult to locate. It was

only after prolonged searching for the spectral lines at a variety of buffer gas densi-

ties (our buffer gas density was always decreasing after each insertion, so changing

the buffer gas density during a search for a spectral line was natural) that we found

the lines. They could only be found with the laser parked, and showed up initally

as sub-millisecond spikes visible on the real-time oscilloscope traces we observed

while recording data. Their appearance initially was that of an artifact. But taking

parked data at varying laser frequency showed that these spikes showed a narrow

spectral response and the location of one of these features could be used to predict

the location of one due to a neighboring hyperfine line. On our primary set of data

(the series of HFS and LFS scans), we found that at certain buffer gas densities,

absorption signals from LFS lines lasting tens of milliseconds would rise to levels

comparable to the absorption of the HFS lines. Now, there is no structural differ-

ence between the HFS and LFS states – one is the mirror image (or time reverse) of

the other, so one would expect that (when the laser is properly tuned) a difference

in absorption between the HFS and LFS states would reflect a difference in pop-

ulations. This interpretation leads one to conclude that the Zeeman temperature

remains too high after tens of milliseconds to be representative of anything other

than slow relaxation of the LFS state. To take this view, requires that one disre-

gard the amplitude of the short time spike. This not an unprecedented position in

this lab. And given that our knowledge of the true motional and thermal dynam-

ics in the cell during the first milliseconds1, despite our simple collisional model

described in Chapter 2 and in reference [86], is essentially zero, it is an inviting

position. Moreover, for various species in various experiments in our lab, we have

seen short time spikes followed by comparable amplitude slow evolution, and at

the highest buffer gas densities we investigated in this work (> 5× 1016 cm−3), the

HFS data shows a short time spike. But, at lower buffer gas densities in this case

1Atoms travelling ballistically across the cell without thermalizing after ablation will traverse it
in several hundred microseconds
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the slow evolution is not of comparable amplitude to the spike – it is nearly an or-

der of magnitude smaller. And when the buffer gas density is sufficiently low that

no spike is seen when observing the HFS state, the spike remains the prominent

feature of the LFS data. However, the duration of spike does not substantially in-

crease with decreasing buffer gas density, although the magnitude of the of change

of the buffer gas density is not well known. Figure 4.8 shows the first tens of mil-

liseconds of a series of LFS and HFS data at varying buffer gas density. Note that

both states show a spike at the highest buffer gas densities,indicating that the spike

is likely an artifact of the macroscopic (cell traversing) motion of the ablated atoms.

But at the lower buffer gas densities, the HFS data shows only slow variation while

the LFS data shows an exponential decay. The LFS traces corresponding to these

lower buffer gas densities can be taken to be either representative of Zeeman re-

laxation or, if the Zeeman relaxation is sufficiently rapid such that the Zeeman

temperature is thermalized with the translational temperature at all times, of the

temperature of the gas. If the latter, is the case, then our measurement can only be

taken to be a lower bound on the Zeeman relaxation rate as for the measurement

of the relaxation rate in scandium in reference [1].

To extract the inelastic loss rate coefficient Γin from the measurements of the life-

time of the bismuth high-field and low-field seeking states, we first restrict our

analysis to LFS traces for which the corresponding traces of the HFS state popula-

tion evolves on a long time scale compared to the evolution of the LFS state, so that

any effect (diffusion, “dust”) which contributes to the measured loss rate of the LFS

state is negligible. We would like to fit the function [Zeeman Relaxation Rate] =

ΓinnHe to the inelastic rate measurements to extract the inelastic rate coefficient

Γin. However, a fit of this form is terrible. In fact, the inelastic rate decreases with

increasing buffer gas density. Figure 4.11 shows the dependance of the appar-

ent inelastic rate coefficient on the buffer gas density. If this was a measurement

of the actual Zeeman relaxation rate, the plot would show a horizontal line. In-

stead, what we see is a curve which decreases rapidly with buffer gas density (as

n−1.5±0.2
He ), which is what we may expect to see if what we are witnessing is a ther-

malization of the gas: increased buffer gas density means that it takes longer for
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Figure 4.7: A series of comparisons of LFS and HFS measurements at varying
buffer gas densities. The HFS data is actually an average of traces at two different
buffer gas densities bracketing the density of the LFS measurement. In all cases,
the trace which decreases more quickly (green) is the LFS data and the more slowly
evolving trace (blue) is the HFS data.
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Figure 4.8: A comparison of all data taken during a series in which we injected
buffer gas once and then repeatedly ablated the sample while alternating between
looking at absorption due to the LFS and HFS states. Note that both states show
rapid time evolution for the first (bottom) several traces, but for lower buffer gas
densities, the time evolution of the HFS state is slow, while it remains fast for the
LFS state. To extract a Zeeman relaxation rate, we look only at the LFS traces taken
at buffer gas densities where the HFS state signal evolves slowly.
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Figure 4.9: A typical trace of the absorption of the HFS state mJ = −3/2 while
scanning the laser across 1 GHz. Note the absence of any features suggesting satu-
ration. Also note that a nearby mJ = −1/2 line is evident on the first sweep across
the line.

the buffer gas to cool. Naı̈ve expectations would suggest that the cooling time of

the buffer gas be linear, following from the diffusion equation. However, the heat

diffusion equation is nonlinear and the dynamics of the deposition of heat in the

buffer gas by the ablation plume are quite complicated. Because our observation

is then only of the cooling of the buffer gas during extremely short time scales, we

believe that we can only take our measurement to be a lower bound. This means

that we take the apparent inelastic rate coefficient observed at the lowest buffer gas

density, so that we find Γin,apparent = 3.8± .25× 10−14 cm3s−1, where the quoted er-

ror is a 95% statistical error bound. Then taking into account the systematic uncer-

tainty of ∼ 2 in the buffer gas density, we conclude Γin > 1.8× 10−14 cm3s−1. This

corresponds to an elastic to inelastic collision ratio, assuming an elastic collision

cross section of 2× 10−14 cm2 of γ < 8× 103. For comparison, the elastic to inelastic
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Figure 4.10: Zeeman and translational temperature comparison for Ti,Sc, and Bi.
The ablation laser fires at t=0. The solid lines represent the value of the Zeeman
temperatures found from averaging many measurements of the high- and low-
field seeking populations for Ti and Sc. The shaded regions indicate the error bars
of the Zeeman temperature measurements, mostly due to systematic errors. The
dashed line is a result of a single measurement of the bismuth zeeman temperature.
The Ti and Sc data are taken in the same experimental apparatus at a buffer gas
density of 1.6× 1016 cm−3. The Bi data was taken during the current experimental
run using a different experimental cell. The buffer gas density for Bi is the same to
within a factor of two. It has been assumed in this figure that the populations of the
LFS and HFS states are equal at the time of ablation. There is no signal (due to the
ablation flash) from bismuth at t=0, so the observed ratio of LFS to HFS signal is
extrapolated back to t=0 from a time after the signal becomes visible. The bismuth
data is noisier than the data for the other two atoms in part because the amount
of light transmitted through our cell was exceedingly low and photon shot noise
dominated. Figure and caption adapted from reference [2].
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Figure 4.11: The apparent inelastic rate coefficient Γin at different buffer gas densi-
ties. If we were observing the true inelastic collision rate, rather than cooling of the
buffer gas with a Zeeman temperature thermalized with the translational motion
at all times, we would expect this plot to be a flat line. This results in our measure-
ment of the inelastic rate coefficient being meaningful only as a lower bound.

collision ratio of titanium was measured in references [1, 2] to be 1.3 ± 0.5 × 104.

As a visual comparison, a plot of the decay of HFS and LFS states of both bismuth

and titanium at a buffer gas density of nHe = 1.6×1016 cm−3 is given in figure 4.12.

Also for comparison is a plot of the Zeeman temperatures of Bi, Sc, and Ti and the

translational temperature of Sc in figure 4.10.

4.3.3 Rhenium results

A careful search of the predicted Zeeman spectrum of rhenium in a 1.7 Tesla mag-

netic field failed to find any significant evidence of low-field-seeking (mJ > 0)

states. We take this to mean that population in the low-field-seeking states has

decayed before it can be observed. The signal is significantly different than that of

Bismuth. We did not even observe short-time spikes in an LFS signal showing a

rapidly cooling buffer gas after ablation. This is perhaps due to the higher buffer

gas densities required to observe any rhenium signal at all. As an element pro-

duced by ablation, rhenium is somewhat of an oddity. We have found in our lab
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Figure 4.12: A comparison of the decay of HFS and LFS states of both bismuth and
titanium. The traces have been scaled to have the same amplitude at early times.
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Figure 4.13: A comparison of the signals due to the mJ = −3/2 and mJ =
−5/2 states in rhenium at 1.7 Tesla and a buffer gas density of approximately
9×1016 cm−3. The lower axes show the expected form of the signal if themJ = −5/2
state decays exponentially and the mJ = −3/2 is populated via thermal equilib-
rium with the mJ = −5/2 state. The initial temperature on the simulated data is
2 K and it decays exponentially to 0.5 K with a time constant of 100 ms. A small
amount of noise has been added to the simulated data to aid in visual comparison
(so that the decays lose some of their scale invariance).
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that the boiling point of an element correlates well with its behavior in production

by ablation. Rhenium has the highest boiling point of any element. In room tem-

perature ablation experiments, we observed (with begoggled eyes) glowing flecks

of rhenium streaming across the cell during the creation of the ablation plume.

This is an effect we had not seen before. We also found that in order to produce any

significant signal, we had to use the highest tolerable ablation energies (∼ 25 mJ)

and the buffer gas density was required to be at least 3 to 4 times as high as was

required for bismuth. A final effect that limited the quality of our measurement,

is that the ablation plume blinded the signal detection photomultiplier tube for a

rather long time: 10 ms. While we were not able to find signal due to LFS states,

we were able to observe strong signal due to multiple HFS states (mJ = −3/2 and

mJ = −J = −5/2). A comparison of fixed frequency traces for each of these states

at comparable buffer gas densities is given in figure 4.13.

The presence of the mJ = −3/2 signal can be explained easily by temperature of

the buffer gas. The lower axes on figure 4.13 shows the results of a simple nu-

merical model simulating the signal of both states. The model assumes that the

populations of mJ = −3/2 and mJ = −5/2 are in thermal equilibrium at all times.

Input parameters to the model are the lifetime τ of the mJ = −5/2 state and the

temperature, which is assumed to have a functional form T (t) = T0 + ∆T e−t/τT .

The exponentially term represents the cooling of the cell immediately following

the heating due to ablation. The appropriate Clebsch-Gordan coefficients relat-

ing the absorption intensity in the two states are included. To approximately re-

produce the observed signal, the following values for the parameters work well:

τ = 400 ms,T0 = 0.5 K, ∆T = 1.5 K, and τT = 100 ms.

At a buffer gas density of nHe = 9 × 1016 cm−3 cm−3, the rhenium signal has

emerged from blindness due to flash from the YAG and has reached significant

enough intensity by a time of ∼ 10 ms that if the mJ = −3/2 state had a popula-

tion higher than that predicted by thermal equilibrium, we would have observed

it. This suggests that the time for complete Zeeman relaxation τin is less than this.

The time between elastic collisions is τel = 1
nHevrelσel

∼ 0.3 µs., where vrel ∼m s−1 is

57



the relative velocity of rhenium and helium and we have taken σel = 5× 10−14 cm2

and nHe = 9× 1016 cm−3. Note that the cross section is the value we infer from the

lifetime of rhenium at our believed buffer gas density. The product nHeσel then is

independant of the believed buffer gas density. The resulting upper bound for the

elastic to inelastic collision ratio is γ = τel

τin
< 3× 105.

While measured constraint on γ is a bit weak, we have learned something about

the limits of using buffer gas cooling for loading magnetic traps. For an atoms

whose ablation dynamics are so extreme, with a high mass and a high boiling

point, buffer gas cooling is ill-suited for the production and observation of trap-

pable atoms in this simple setup. Perhaps if it had proven possible to buffer gas

cool a sizable fraction of atoms using an order of magnitude less helium, we would

have been able to observe atoms in the LFS state remaining for a few tens of mil-

liseconds. Instead, we were not able to detect any evidence of trappable atoms.

4.4 Conclusion

Both bismuth and rhenium show strong evidence of Zeeman relaxation in cold

collisions with helium. This is the first evidence of cold inelastic collisions due to

electronic anisotropy induced by the spin-orbit interaction. While both results pro-

duce only a bound, theoretical calculations by Krems and Buchachenko to be pub-

lished with this work show an elastic to inelastic collision ratio of approximately

300 for cold Bi-He collisions.

The rhenium result is a bit more of a mystery. The 5d electrons in this atom should

be shielded somewhat by the two 6s electrons and one might expect from the re-

sults with titanium that γ is not significantly smaller than the upper bound we

infer from our measurements. It is also the case that the idea that rhenium is well

characterized as having the configuration 5d56s2 is innacurate. In such a large

and complicated atom the configuration interaction is strong, meaning that sev-

eral different configurations will contribute to the electronic structure [87]. This

will result in less shielding of the electrons in open shells, leading to a larger effect
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of the anisotropy in collisions. We believe that a tighter bound on, or better, a true

measurement of, the inelastic to elastic collision ratio in rhenium is a worthwhile

experimental endeavor. An improved measurement could be achieved by finding

a way to decrease the time the detection is blinded, by reducing the buffer gas den-

sity, by improving the signal-to-noise (thus allowing loading at lower buffer gas

density and/or reduced ablation power), and by improving the loading method

such that the gas is heated less.

Theoretical investigation of the rhenium-helium cross-section would also be wel-

come. However, the large number of valence electrons and the requirement that

multiple configurations need to be included in the interaction matrix make this a

significantly more difficult problem than bismuth-helium collisions.
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5

Design of microchip-based
electrostatic guides and traps for polar
molecules

In the past seven years, the development and use of “atom chips,” structures of

planar guides and traps for cold neutral atoms, has become a large and diverse

field. Several excellent reviews on the topic have been written [88–90]. These re-

views describe applications of the technology as well as providing an overview of

the complete toolbox of planar guides and traps which now exists.

Atom chips show promise as magnetic field microscopes, probing local disorder

near the surface of solids. They have been used to probe the retarded regime of

the van der Waals interaction [91, 92]. They are often discussed as being the only

tool available for engineering microscopic, non-periodic potentials for use in stud-

ies of quantum dynamics. Proposals exist for their use in studies of the interaction

of ultracold atoms, either single atoms or degenerate gases, with nanomechanical

resonators [93] and with superconducting stripline resonators [94]. Both of these

proposals provide a route for the study of hybrid quantum systems and for reach-

ing the strong coupling regime of cavity quantum electrodynamics and will be

of interest in the ongoing quest to create a quantum computer. Atom chips hold

promise for the miniturization of atom interferometers [95] and atomic clocks [96].

The tight confinement of atoms, with trap frequencies up to the megahertz regime,
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on atom chips allows more rapid production of degenerate gases which could hold

promise for production of atom lasers. For more complete overview of the exciting

developments in this field, the reader is referred to the review articles cited above.

Following on the successes and promises of atom chips, we undertook work in

the new field of “molecule chips.” The stronger interaction of polar molecules

with electric fields enables fundamental studies and applications which comple-

ment those enabled by atom chips. Electric traps can allow rapid switching (at

microwave frequencies and above) of potentials, as well as integration with struc-

tures whose performance can be degraded by magnetic fields (such as supercon-

ducting resonators). While there is much speculation on the potential uses of such

chips (broadband, tunable, single-photon detectors and hybrid quantum comput-

ers as discussed in chapter 6). We now dive into the nitty-gritty of designing the

required structures for molecule chips.

5.1 Brief review of planar magnetic guides and traps

Guides and traps can produce strong magnetic fields by either running a current

through wires or using permanent magnets. Here we present a brief review of

wire-based, planar trap and guide technology. The dominant technology for pla-

nar magnetic guides and traps is based on current-carrying wires patterned onto

an insulating substrate. There are two primary features of such wires which allow

the creation of strong magnetic fields: First, the wires can be quite small (typi-

cally micrometer scale), so that trap and guide minima can be quite close to the

substrate. Second, the strong thermal contact between the wires and the substrate

enables high currents to be run through the wire without overheating. A summary

of parameters for these guides can be found in reference [3].

A primary building block of wire-based planar guides and traps is the so-called

side guide (although variations do exist). The guide is ingeniously simple. It con-

sists of a single wire carrying current I in the ẑ direction along with a transverse

bias field ~Bbias = Bbiasx̂ (which can be produced on-chip or can be generated by
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coils separate from the chip). The bias field is oriented to directly oppose the trans-

verse component of the field from the wire above the substrate. Working in a

coordinate system centered on the wire, with the ŷ direction being normal to the

plane of the wire, the complete magnetic field is given by P(dE
dr
r)2

~B =

(
Bbias −

Iµ0

2π

y

x2 + y2

)
x̂+

I

2πµ0

x

x2 + y2
ŷ. (5.1)

From this equation, it can be seen that there exists a line in the x-z plane with

| ~B| = 0 at a height y0 = µ0I
2πBbias

. Making the substitutions y 7→ δy + y0, x 7→ δx,

where δy
y0
, δx
y0
� 1 and r =

√
δx2 + δy2, it can be shown that

| ~B| ≈ µ0I

2π

r

y2
0

, (5.2)

which is a linear quadrupole field as described in Chapter 3. This quadrupole field

forms a guide for atoms in a low-field seeking state.

The side-guide guide can be turned into a trap without additional wiring by the

addition of two 90◦ bends. Two bends in the same direction, making a U-shape,

create a 3D, linear quadrupole trap, known as a U-trap. Two bends of opposite ori-

entation, making a Z-shape, create an Ioffe-Pritchard type trap known as a Z-trap.

That these are traps can be seen in the following way: First,the central segment

of the trap is still a side-guide, creating transverse confinement. Second, the seg-

ments of guide perpendicular to the central section create axial magnetic fields

which increase towards the ends of the central section. In the U-trap, the axial

fields from each end cancel in the center, creating a field zero. In the Z-trap, there

is a non-zero axial field throughout the entire trap, but there is a minimum in this

field in the center. In addition, the axial field adds in quadrature to the transverse

field, so that the transverse confinement becomes quadratic. Figure 5.1 shows the

geometry and field magnitudes of the U- and Z-traps.

A second type of wire guide uses two parallel wires with counter-propagating

currents and a vertical bias field. The principle of this so-called “two-wire guide”

is similar to that of the side guide in that the bias field cancels the fields of the wires
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Figure 5.1: Creating wire traps: The upper row shows the geometry of trapping
wires, currents I, and the bias fields Bbias. The lower row shows the corresponding
transverse and axial trapping potentials. (a) A U-shaped wire creates a field con-
figuration similar to a 3-dimensional quadrupole field with a zero in the trapping
center. (b) For a Z-shaped wire a Ioffe - Pritchard type trap is obtained. Figure and
caption adapted from reference [3].
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at a certain height above the plane of the wires. The advantage of this guide over

the side-guide is that the orientation of the guide relative to the bias field does not

change when the guide is bent, so that arbitrary curves are easier to create.

More planar guide and trap configurations exist than described here, but this

should serve as a sufficient introduction to discuss the the electrostatic analogs.

5.2 How to electrostatically guide or trap a molecule

Before diving straight into the design of electrostatic guide and traps, we first

present a description of the energy levels which allow trapping and a derivation

of the Majorana effect in simple diatomic molecules. Such considerations will de-

termine the freedom a molecule chip designer has in choosing field geometries.

5.2.1 Derivation of the trapping potential

The Hamiltonian for the interaction between a neutral atom or molecule and a

static electric field is HStark = −~d · ~E , where ~E = E ẑ and ~d =
∑

i qi~ri, where the ~ri’s

are coordinates of the ith charge qi and the sum runs over all charges. Within the

Born-Oppenheimer approximation (see any introdutory text on diatomic molecules

of physical chemistry), the wavefunction is taken to be a productψ = ψeψrot(r̂)ψvib(r),

where ψe is the electronic wavefunction which describes the positions of all of the

electrons for a given fixed set of nuclear positions1, ψrot(r̂) is the rotational wave-

function which describes the orientation of the internuclear axis in free space, and

ψvib(r) is the vibrational wavefunction which describes motion of the nuclei about

their equilibrium separation. The use of a rotational wavefunction can also be gen-

eralized as an angular wavefunction. This function depends on rotations along

the internuclear axis, which allows the inclusion of orbital angular momentum.

1For a bound state, the electronic wavefunction is solved for all internuclear separations r and
the separation which minimizes the energy is the equilibrium separation and the electronic wave-
function is taken to be the wavefunction at this separation
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A complete wavefunction also can include products with spinors describing elec-

tronic and nuclear spins.

Integrating the positions of all of the particles over the electronic and vibrational

wavefunctions can yield a net dipole moment ~P = P r̂, where r̂ represents the

orientation of the internuclear axis, which is described by the rotational wavefunc-

tion. It is this dipole moment ~P which is referred to as the “permanent” dipole

moment, though it should be noted that its expectation value is zero in a rotational

eigenstate and it is no more permanent than the dipole moment of a hydrogen

atom2.

For reasonable static laboratory electric fields, electronic eigenstates are not sub-

stantially mixed (they are mixed to a similar extent as in atoms, since matrix el-

ements of the dipole operator between electronic states are comparable to those

in atoms and the energy splittings are comparable), so the Stark interaction for a

molecule in an electronic eigenstate reduces to

Hstark = − ~P · ~E = −PE cos θ (5.3)

In this thesis, we only deal with Σ state molecules, which do not have so-called Λ-

or Ω-doubling. In this section, we will describe the calculation of the Stark Hamil-

tonian matrix elements for rigid-rotor type (Σ state) molecules. For a discussion of

the Stark effect in a Π state, see, for example, references [4, 97]

The Hamiltonian of a rigid-rotor is

Hrot =
J2

2µr2
, (5.4)

where µ is the reduced mass of the two point masses forming the rotor, r is their

separation, and J is the total angular momentum, which is orthogonal to the axis

between the masses. The eigenstates of this Hamiltonian are the spherical har-

monics Y m
l and the eigenvalues are E(J) = BJ(J + 1), where the energy is given

in cm−1

2The evolution of the dipole moment of the hydrogen atom does take place on a time scale
orders of magnitude shorter than the time evolution of a molecular dipole moment
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The matrix elements of the Stark Hamiltonian are

〈J ′m′|Hstark|Jm〉 = −PE 〈J ′m| cos θ|Jm〉 . (5.5)

Now, cos θ can be rewritten as a spherical harmonic cos θ =
√

4π
3
Y 0

1 , so that the

calculation of the matrix elements of the Stark Hamiltonian reduces to a calculation

of matrix elements of spherical harmonics and yields the familiar E1 selection rules

for linearly polarized electric fields, ∆J = J ′ − J = ±1 and ∆m = m′ −m = 0.

So 〈J ′m′|Hstark|Jm〉 = −
√

4π
3
PE 〈J ′m|Y 0

1 |Jm〉 and from reference [98] we have

〈J ′m′|Y 0
1 |Jm〉 =

∫ 2π

0

∫ π

0

dφdθ sin θ
(
Y m′

J ′

)∗
Y 0

1 Y
m
J

= (−1)m
′

√
(2J ′ + 1)(2J + 1)

4π

(
J ′ 1 J
−m′ 0 m

)(
J ′ 1 J
0 0 0

)
,

(5.6)

where the objects in parenthesis are the Wigner 3-j symbols. Inserting this into the

expression for matrix elements of HStark gives, for example

〈J ′ = 1 m′ = 0|HStark|J = 0 m = 0〉 = −PE 1√
3

〈J ′ = 2 m′ = 0|HStark|J = 1 m = 0〉 = −PE 2√
15

〈J ′ = 3 m′ = 0|HStark|J = 2 m = 0〉 = −PE 3√
35

〈J ′ = 2 m′ = 1|HStark|J = 1 m = 1〉 = −PE 1√
5

〈J ′ = 3 m′ = 1|HStark|J = 2 m = 1〉 = −PE
√

8

35

(5.7)

Now, to see the complete stark effect, let’s write down the full Hamiltonian H =

Hrot + HStark in matrix form for several states. Because HStark only couples states

of the same angular momentum projection along the z-axis, we’ll choose as a sub-

space states with mJ = 0. Then the Hamiltonian for these states is (with J ′ = J = 0

being in the upper left-hand corner)
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H =


0 −PE 1√

3
0 0

−PE 1√
3

2B −PE 2√
15

0

0 −PE 2√
15

6B
. . .

0 0
. . . . . .

 . (5.8)

It can be seen that the ground state decreases in energy for increasing eletric fields

due to a repulsion from the the J = 1, mJ = 0 state. The J = 1, mJ = 0 state

initially increases in energy with increasing electric field until repulsion from the

J = 2, mJ = 0 state (and, in turn, its repulsion from higher states) causes it to

reach a peak value and then begin to decrease in energy. For this state, the energy

is minimized (as long as the electric field is below its value at the peak energy)

at minimum electric field. That is to say, this state is a low-field-seeker and can

thus be guided or trapped with DC electric fields. The J = 1, mJ = ±1 states,

however, are repelled by the corresponding J = 2 states and are high field seekers

at all non-zero electric fields. A plot of Stark shifts as a function of electric field is

given in Figure 5.2. It is worth noting that for low-field seeking states, the energy

is not a linear function of electric field, so that guiding and trapping potentials

will have different functional forms than the magnitude of the electric field. That

said, for all states, there are significant ranges over which the Stark shift can be

approximated as linear, and thus with correct (non-zero) bias fields, the guiding

and trapping potentials can be made to match the field magnitude. To accurately

calculate trapping and guiding potentials, one should perform a curve fit for the

functional form of the Stark shift and take that to be a function of E(x, y, z). Matlab

code to calculate Stark energies is given in Appendix A.

5.2.2 Majorana effect in trapped and guided diatomic molecules

Our description of the Majorana effect in a diatomic molecule begins by writing

the Schrödinger equation in a reference frame in which the electric field is always

oriented along the z-axis. This part of the treatment of the effect is largely similar

to the treatment in reference [99]. We start with the Schrödinger equation for a
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Figure 5.2: Stark shifts in a rigid-rotor type diatomic molecule. The horizontal axis
is the energy of interaction PE of the “bare” dipole moment with the electric field
normalized to units of the rotational constant B. The total energy including both
rotation and the Stark effect is given on the vertical axis, also normalized toB. Note
that all m = 0 states are low-field seeking at lower fields and thus can be guided
or trapped with DC electric fields. The exact state one would choose for a guiding
or trapping experiment would tend to reflect other experimental considerations.
The maximum guiding/trap depth of 0.64B is indicated for the J = 1, m = 0 state.
Note that all states become high field seekers at sufficient field.
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diatomic molecule in an electric field, Hψ = (HStark + HRot)ψ = i d
dt
ψ, where ψ is

a spinor wavefunction. We wish to transform this equation into a reference frame

which has been rotated by at time t by θ(t) about the y-axis. We define the operator

R(θ(t)) = e−iJyθ(t) (note that in this section we are taking ~ = c = 1) as the opera-

tor which performs this rotation, where Jy is operator for the y-component of the

angular momentum (the generator of rotations about the y-axis).

R(θ(t))Hψ = R(θ(t))i
d

dt
ψ,

RHR−1Rψ = i[R,
d

dt
]ψ + i

d

dt
Rψ,

H ′ψ′ = i[R,
d

dt
]R−1ψ′ + i

d

dt
ψ′.

(5.9)

where the primes indicate that the quantities are to be taken in the rotated frame

in which the electric field is oriented along ẑ. Now, [R, d
dt

]f = R d
dt
f − d

dt
(Rf) =

R d
dt
f − dR

dt
f − Rdf

dt
f , so [R, d

dt
] = −dR

dt
= idθ

dt
JyR. This allows us to rewrite the

Schrödinger equation above as

H ′ψ′ = −dθ
dt
JyRR

−1ψ′ + i
d

dt
ψ′,

(H ′ +
dθ

dt
Jy)ψ = i

d

dt
ψ′.

(5.10)

Which allows us to define an effective Hamiltonian Heff = H ′ + dθ
dt
Jy = H ′ + V .

Because the Majorana effect is only significant near a field zero, the energy of the

Stark interaction is negligible in comparison the the splitting between states of

different J . This means that we can use the |J,m > basis and consider states of

differing J separately after calculating the Stark shift for that state. Then we have

〈J = 1,m|H ′|J = 1,m′〉 =

 0 0 0
0 ω0 0
0 0 0

 , (5.11)

where ω0 = 2π (PE)2

10B
and

〈J = 1,m|V |J = 1,m′〉 =
dθ

dt

1√
2

 0 −i 0
i 0 −i
0 i 0

 . (5.12)
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This is sufficient to information perform a numerical solution of the Schr’́odinger

equation for a given field configuration. Here we will make estimates of the be-

havior of a trapped molecule initially in the |J = 1,m = 0〉 trapped state travelling

in the vicinity of a quadrupolar field zero with |~E(r)| = dE
dr
r (this is accurate in two

dimensions, but in three, the quadrupolar field is ellipsoidal, not spherical).

We will begin by assuming that the molecule is travelling along the ẑ-direction at

a distance x from the z-axis with speed v. We take the field direction to be propor-

tional to zẑ − xx̂. The angle the field makes with the x-axis is θ(t) = − tan−1( z
x
) =

− tan−1(vt
x

). Then the derivative of angle (i.e., the angular frequency) is given by
dθ
dt

= − ω
1+t2( v

x
)2

= − ω
1+ω2t2

, where we have defined ω = v/x.

This leads to V = − ω
1+ω2t2

Jy, which is especially nice for use in perturbation the-

ory. Taking the unperturbed wavefunction to be ψ =

 c−1(t)
c0(t)
c+1(t)

 with c−1(−∞) =

c+1(−∞) = 0 and c0(−∞) = 1 and making the approximation that ω0 is given

by its value at z = 0, we can write the first order correction to c0(t) due to the

m = −1 state as c(1)
0 = i

∫∞
−∞〈m = 0|V |m = −1〉eiω0tdt = − 1√

2

∫∞
−∞

ω
1+ω2t2

eiω0tdt.

And the Fourier transform of a Gaussian is known, so we can write the result

c
(1)
0 = π√

2
e−ω0/ω. This result is, not surprisingly, reminiscent of that given by the

Landau-Zener formalism for avoided crossings in, for example, reference [100]. It

is evident from this result that the change to the population of the trapped state is

only a perturbation if ω0 � ω, which is the same as the familiar criterion for adi-

abatic field following as in the magnetic case, where ω0 would be replaced by the

Larmor precession frequency. This criterion lets us write down a critical radius be-

low which we can consider all trapped molecules crossing near the zero at a given

speed within a critical radius rc to be lost3. Then rc is given by ω0 = ω, which gives

(still with ~ = c = 1) 2π P
2

10B
(dE
dr

)2r2
c = v

rc
, so

rc =

(
2π
P2

10Bv

(
dE
dr

)2
)−1/3

. (5.13)

3Numerical calculations show it is actually more interesting than this, but for an experimenter,
such complications hardly matter.
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This will give a typical critical radius of about 50 µm for a molecule traveling at

10 m/s in a centimeter scale guide and about 50 nm in a micrometer scale guide.

This would result in approximately 0.5% and 5% loss respectively per oscillation

across the two different sized guides. This limitation would likely prove severe

in chip-based molecule guides. Any real guide implementation should include an

axial bias field to lift the state degeneracy which leads to the Majorana effect.

5.3 Planar electrostatic guides

While hybrid electrostatic and magnetic guides have been developed [3], purely

electrostatic planar guide and trap structures are a relatively new and undevel-

oped [101]. In this section, we describe electrostatic guides we have designed and

modeled.

Planar electrostatic guide designs can be created by analogy with planar magnetic

guides through the following heuristic algorithm: identify regions in the magnetic

guide where the field is into (out of) the page and place negatively (positively)

charged electrodes in these areas. This method provides a basic layout for the

electrodes. However, the condition that the electric field is always normal to the

surface of the conductor gives the electrodes a tendency to cancel transverse fields.

The size of the electrode sets the height scale over which transverse fields are elim-

inated. The result is that electrodes should be made narrow in directions where

transverse fields are desired. In addition, while in the magnetic case, one has di-

rect control over currents, one does not have explicit control over the direct analog

(charge distributions) in the electric case. Instead, one has control over voltage,

which is sufficient to create the required fields, but imposes different conceptual

considerations on the design process. This consideration is relevant to design of

more complex structures. Figures 5.5 and 5.6 illustrate the design principles de-

scribed above. Notice that the electrostatic analog of a single current-carrying wire

in a plane is a pair electrodes.
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5.3.1 Electrostatic “side-guide”

The direct electrostatic analog of the “side-guide” is a pair of thin electrodes with

a transverse bias field.

To discuss this, we first look at the electric field created by a pair of wires separated

by distance d with linear charge density ±λ.

~E =
λ

2πε0

(
x− d/2

(x− d/2)2 + y2
− x+ d/2

(x+ d/2)2 + y2

)
x̂+

λ

2πε0

(
y

(x− d/2)2 + y2
− y

(x+ d/2)2 + y2

)
ŷ (5.14)

In the his field has a more complicated dependance on y than in the case of a

single wire with current (1/y in the midplane). However, for heights y ≈ d/2,

the dependance of the field matches the single wire case.4 While this makes the

analogy with a single wire explicit, for making a guide, this is not critical.

To make a guide, a transverse ( ~Ebias = Ebiasx̂) electric field is added in opposition

to the transverse component of the field from the wires. The field can be created

either by external bias plates or by electrodes in the plane of the wires. The total

transverse field Ex is then

Ex = Ebias +
λ

2πε0

(
x− d/2

(x− d/2)2 + y2
− d/2 + x

(d/2 + x)2 + y2

)
, (5.15)

while the ŷ component of the field is unaffected.

At a height y0 = d
2

√
4λ

2πε0 d Ebias
− 1, the transverse electric field is zero. For suffi-

ciently large electric field (where the bias field overwhelms the fields of the elec-

trodes) there is no zero on the midplane. The vertical electric field is zero along the

midplane at all heights.

In the transverse direction for all y0, the field magnitude increases linearly from

4This can be seen by Taylor expanding the function in the vicinity of x = 0,y = d/2 and seeing
that it matches 1/y.
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x = 0 in both positive and negative directions with a slope of

d|E|
dx

=
2πε0
λ

E2
bias

√
4λ

2πε0dEbias
− 1. (5.16)

There is no quadratic term to the slope of the field magnitude in this direction.

Because of the more complicated form of the y-dependance than in the magnetic

side-guide case, the field magnitude has this slope in the vertical direction, but

has a quadratic term as well. There does exist a value of the bias field for which

this quadratic term vanishes. At this bias field, Ebias = 3λ
2π ε0 d

(and y0 = d
2
√

3
), the

guiding field is a radial quadrupole field, just as in the case of the magnetic side-

guide. A contour plot of the electric field magnitude |E| is given for this particular

bias field (although other bias fields produce a similar looking plot) in Figure 5.3.

Figure 5.4 shows slices of |E| through the guide center along the x- (transverse)

and y- (vertical) directions.

Because the guide has a field zero, it can be susceptible to Majorana losses dis-

cussed in section 5.2.2, wherein a molecule traverses the region field of the field

zero at a speed such that the rate of rotation of the field is comparable to the fre-

quency splitting between different projections of the dipole moment on the local

electric field and undergoes a transition to an unguided state. This field zero can

be eliminated in the same way that it is eliminated in magnetic guides through the

addition of an axial field. However, one would expect that in an electrostatic guide,

the guide electrodes which run parallel to this axial field would tend to diminish

or even eliminate this field (and this could easily be modeled). Still, because this

effect would likely not dominate in short guide segments and because trap designs

we discuss later rely on an axial field, we discuss briefly the effect of this field here.

The total electric field in a guide with an axial field ~Ez = Ez ẑ and transverse field
~Et is ~E = ~Et + ~Ez. Because ~Et · ~Ez = 0, the magnitude of the field near the (axial-

field free) field zero is |E| =
√
E2
z + E2

t ≈ Ez +
E2

t

2Ez
, where the approximation that

Ez � Et has been made. So, with the addition of the axial field, the center of the

guide has no field zero and the field increases quadratically over the region where

the approximation is valid.
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Figure 5.3: The magnitude of the electric field |E| for an electrostatic side-guide
with wire spacing d for a bias field that produces a radial quadrupole field near the
field zero. The plot here is from a finite-element simulation. The actual value of the
field is arbitrary and would be chosen by practical considerations. The maximum
field achievable will be set by discharge limits. Note that the electrodes in this
simulation are situated on top of a dielectric slab (ε = 12.1), and this was found to
have little effect on the guiding field.
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Figure 5.4: The magnitude of the electric field |E| for an electrostatic side-guide
with wire spacing d for a bias field that produces a radial quadrupole field near the
field zero. The upper curve is the field magnitude along the y-direction (vertical) in
the mid-plane of the guide and the lower curve is along the x-direction (transverse)
through the center of the guide at height y0.
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(a) Magnetic field in the plane of a
single current carrying wire.
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(b) Electrode configuration
needed to create an electric
field which approximately
matches the magnetic field of
the wire.

Figure 5.5: A simple prescription for making electric fields which approximate
magnetic fields created by planar current carrying structures is to place a positive
electrode everywhere the magnetic field is oriented “out of the page” and a nega-
tive electrode everywhere the magnetic field s oriented “into the page.”

(a) Magnetic field due to a single current carrying wi re.

(b) Electric field due to two oppositely charged wires.
Figure 5.6: Comparison of simple electric and magnetic fields created by wires
patterned on a two dimensional substrate.
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5.3.2 Electrostatic analogue of a 2-wire guide

For two wires in parallel in a plane with counter-propagating currents, the mag-

netic field is oriented normal to the plane, with one orientation between the wires

and the opposite orientation elsewhere. In the simple prescription we use to map

magnetic guides onto electric guides, this leads us to a 3 electrode configuration

with, for example, a positively charged central electrode flanked by a pair of neg-

atively charged electrodes. Since we intend to create a guiding potential near the

central electrode, where the fields due to the outer electrodes are not of primary

importance, we may discard the outer electrodes.

The two-wire magnetic guide uses a vertical bias field to create the guide min-

imum. While in the magnetic case the vertical field can be created with wires

in-plane, the zero curl of the electric field causes an electrostatic design to be resis-

tant to a purely planar geometry. As such, in order to create a guide analogous

to the magnetic two-wire guide, one needs a three-dimensional (actually, two-

dimensional, since the guide is translationally invariant along one dimension) elec-

trode structure. A resulting simple layout for the guide is that of a single wire in

a plane inside of a parallel plate capacitor creating a constant vertical bias field. A

quick analysis shows that the mathematical form of the field magnitude is identical

to that of the magnetic side-guide. However, in the electrostatic case, capacitances

between the different electrodes create modifications to the field. Indeed, it is not

obvious that a structure of this type using conductors (rather than fixed charges)

will produce a guide at all. Happily, numerical simulations discussed below show

that this is a robust guide design.

5.3.3 Finite-element models of guides

As discussed above, a real guide will use charged metal electrodes rather than

fixed charge distributions. The vast majority of guide designs will not submit to

a simultaneously simple and accurate mathematical description. However, the

exact models for charge distributions discussed above can be modified to provide
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approximate analytic field distributions for electrodes in certain size ranges. The

approximate voltage required on electrodes of a given spacing is also fairly simple

to estimate. Still, any real guide is best designed and “tested” using a numerical

model.

The simplest way of modeling electrostatic fields relies on the fact that the electric

potential in center of a sphere in a source-free region is the same as the average

over the surface of that sphere (see any introductory E&M textbook, such as Grif-

fiths [102]). Using this fact, a simple 2 dimensional finite element model can be

constructed in a spreadsheet program by setting the boundaries to have the volt-

ages on the electrodes and setting each cell to be the average of its neighbors. A 3

dimensional model can be set up in a similar way in any scientific programming

language using arrays. However, it becomes cumbersome to implement anything

but the simplest geometries in this way, and good commercial software packages

that are far more powerful and include sophisticated visualization tools are readily

available.

Because our goal was not only to model simple guides, but also to design traps

that could be integrated with realistic designs for microwave stripline resonators,

we chose to use a commercial software package. A variety of guide configura-

tions were modeled using the software COMSOL Multiphysics version 3.2 with

the Electromagnetics Module 5. The results of one such simulation are shown in

Figure 5.3.

5.4 Planar Electrostatic Traps

To design a planar electrostatic trap, we began, as in the case of guides, with planar

magnetic designs. The simplest magnetic guide which has no Majorana hole (see

section 5.2.2) is the Z-trap, described in section 5.1, so we began with attempts to

map this design to the electrostatic case. A sketch of the orientation of the magnetic

field in the plane of the wires reveals essentially two L-shaped regions of field

5http://www.comsol.com
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which bracket the wire forming the trap. Applying our prescription described

above for the design of electrostatic guides and traps based on magnetic guides

and traps results in the placement of two oppositely charged L-shaped electrodes

(which we will refer to as els). This is the essential part of the electrostatic Z-trap,

or “EZ-trap.” The other component to the trap is a transverse bias field, exactly as

in the case of the Z-trap.

The design of a trap then becomes a problem of sizing and spacing the electrodes.

Our first cut at simulating the trap was just an analytic model of wires with a

given linear charge density. This model did reveal that the basic design of the

trap was likely to work and that proper electrode spacing at the ends of the trap

is key to producing the correct axial field profile. However, because charges are

free to move on conductors, a model assuming a fixed charge configuration could

offer little to optimize the trap design. Thus, we moved directly to finite-element

modelling to complete the trap design.

5.4.1 Finite-element models of the EZ-trap

A drawing of the geometry of a model of the EZ-trap is given in Figure 5.7. In

this simplest model, the bias electric field is provided by parallel plates oriented

with the normal in the plane of the els and opposes the field produced by the long

sections of the els, as in the case of the electrostatic side-guide. The ends of the els

are closer together than the midsections so that the electric field increases in this re-

gion. We found that if the ends were not brought closer together, the resulting field

had two local minima (i.e., the trap potential split into two traps). Also, all elec-

trodes are rounded to smooth gradients in the electric field, to prevent the buildup

of excessively high fields, and for computational purposes (sharp corners result

in the software producing uneccessarily dense meshes in places of little physical

interest). The initial design of the EZ-trap utilized two isolated els and two of the

boundaries of the simulation region were held at a fixed voltage to provide the

bias electric field. This model is illustrated in figures 5.7,5.8, and 5.9.
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Figure 5.7: A schematic of the basic layout of electrodes for the EZ trap. The two
halves of the trap, the “els” are oppositely charged with a typical voltage of a few
volts and a typical spacing of 1 µm, resulting in fields of a few tens of kV cm−1.

Figure 5.8: A top-down view of the EZ-trap. The shaded region in the center show
contours of constant field surrounding the trapping region. The arrows represent
the horizontal components of the electric field. Note the absence of a field-zero in
the trap center. Instead there is an “axial bias field,” as in the magnetic Z-trap.
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Figure 5.9: The EZ-trap with isosurfaces of electric field shown.
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Figure 5.10: A drawing of a realistic model of the EZ-trap. The yellow slab rep-
resents a silicon substrate. The box over the central trapping region represents
a region where in the model we increased the density of the finite-element mesh
for improved accuracy in this region. Note that the voltages listed are chosen to
be within the range where electrical breakdown will not spontaneously begin in
good vacuum. The shape of the trapping potential is similar to that shown in the
simpler design in figure 5.9.

After the initial proof-of-principle model above, we set out to design a more real-

istic model. The els in this model are connected to leads, the bias field is provided

by planar electrodes, and the whole structure is set on a realistic dielectric surface

(with ε = 12, a typical value for silicon). A drawing of this geometry is shown in

figure 5.10. The electric field for typical trap voltages is shown in figure 5.11 and

the trapping potential for a typical diatomic molecule (CaF) is shown in figure 5.12.
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Figure 5.11: The magnitude of the electric field E along the three principal axes
through the trap center. The position of the trap center can be shifted by altering
the bias field or the voltage on the trap els.
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Figure 5.12: The trapping potential for a typical diatomic molecule (in this case
CaF) of the EZ-trap along the three principal axes, with actual Stark shifts of the
N = 1, mN = 0 state (blue) and the harmonic approximation at the trap minimum
(red). The trap frequencies ωx, ωy, and ωz along the three axes are shown.
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5.4.2 Integration of EZ-trap with a floating center pin

For the quantum computer architecture discussed in chapter 6, we require a trap

that can hold a polar molecule in a position where it will interact strongly with the

vacuum electric field of a superconducting stripline resonator. Because the trap

electrodes will pin the electric field lines of the resonator, if the stripline is not part

of the trap itself, the interaction of the stripline with the molecule will be weak.

This is because the interaction required for performing cavity QED with hybrid

molecule/stripline system relies on the d · E interaction, where E is the electric

field of the cavity.

Thus, we sought to integrate the EZ-trap with a stripline resonator. The essential

components of a stripline resonator are a center pin, which is at a floating DC po-

tential, and a pair of ground planes which confine the electric field of a microwave

field on the center pin to the region immediately around the pin. This presents

then two essential design problems in incorporating the EZ-trap with the stripline.

First, the voltage on the floating stripline must be specifically set so that it can

function in place of an el of the EZ-trap. Second, the EZ-trap structure which is not

already part of the resonator must function as an extension of the ground plane.

That is, it must not shunt power out of the resonator.

The scheme we propose for integrating the EZ-trap with the stripline is the follow-

ing: The ground planes will serve two purposes in the trap. The first purpose is

to provide the transverse bias field, and for this they are biased oppositely with

several tens of volts, ±Vbias. Second, to this bias voltage is added an offset Voffset
specifically chosen to set the voltage on the stripline to a value approximately op-

posite that applied to the other el, which we call the “trap electrode.” Numerically,

the voltage on the stripline for a given Vtrap (the trap electrode voltage), Vbias, and

Voffset is determined by solving our numerical model for two assumed voltages on

the stripline Vfloat and using the modeling program to integrate the charge over

the surface of the stripline. Because the stripline is just a capacitor, the total charge

is linear in the applied voltage. The presence of other charged conductors intro-

duces a non-zero y-intercept in the charge-voltage relation. We find the correct
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Vfloat by using the linear charge-voltage relation to determine the value for which

the charge is zero.6 For a more flexible solution, it is also possible (and simple) to

use COMSOL Multiphysics to compute the capacitance matrix defined such that

Qsl = Csl,slVfloat +Csl,trVtr +Csl,gp−(−Vbias +Voffset) +Csl,gp+(Vbias +Voffset), (5.17)

where sl stands for stripline, and C are the self- and cross- capacitances. To set

the offsets and bias fields appropriately, the procedure is to set Vbias, Vtr, and Vfloat

to the values required to make a good trapping field and then to solve for Voffset
given Qsl = 0. Typical values for the capacitances are Csl,gp+ ∼ Csl,gp+ ∼ −0.3 pF,

Csl,sl ∼ 1 pF, and Csl,tr ∼ −4× 10−5 pF.

The solution of the second problem, that of preventing the trap electrode from

shunting power out of the resonator, is essentially geometric. We solve this by

running the lead to the trap electrode over the top of one of the ground planes

so that at high frequencies, the trap electrode and the ground plane function as a

single unit. Also note that the extremely small value of Csl,tr quoted above makes

it probable that the disruption of the resonator by the trap electrode will be small.

We have modeled the trapping fields produced by an EZ-trap integrated with a

stripline and found it easy to produce fields similar to those in a conventional

EZ-trap. For a sketch of one possible geometry for integrating the EZ-trap with a

stripline, see figure 6.1b.

5.5 Conclusion and outlook

The field of molecule chips will likely take off in the next several years as our abil-

ity to produce cold and ultracold molecules improves. A key challenge will be in

achieving the phase space density of polar molecules necessary for loading these

traps and guides at any substantial rate. One can imagine many ways of load-

ing EZ-traps. One possibility is the optical pumping of a beam of cold molecules

directed at the trap such that the molecule is transferred from an untrapped to a

6Thanks go to Bjorn Sjodin of COMSOL, Inc. for describing this method.
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trapped state within the volume of the trap. Another possibility is the transfer of

photo-associated molecules from an optical lattice using optical tweezers. A third

possibility is the adiabatic transfer of a cloud of trapped molecules from a magnetic

trap.

Many applications and fundamental studies will eventually be enabled by the

trapping of molecules on microchips. In the next chapter, we detail one such po-

tential application: building a quantum information device which uses the EZ-trap

as an integral part of its implementation.

87



6

Polar molecules near superconducting
resonators: a coherent, all-electrical,
molecule-mesoscopic interface

This work has been published in similar form in: A. Andre, D. DeMille,

J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and

P. Zoller. A coherent all-electrical interface between polar molecules

and mesoscopic superconducting resonators. Nature Physics, 2(9):636–

642, September 2006.

Polar molecules [103] have exceptional features for use in quantum information

systems. Stable internal states of polar molecules can be controlled by electrostatic

fields, in analogy with quantum dots and superconducting islands [104–107]. This

controllability of polar molecules is due to their rotational degree of freedom in

combination with the asymmetry of their structure (absent in atoms). By applying

moderate laboratory electric fields, rotational states with transition frequencies in

the microwave range are mixed, and the molecules acquire large dipole moments

(on the order of a few Debye, similar to the transition dipole moments of optical

atomic transitions). These dipole moments are the key property that makes polar

molecules effective qubits in a quantum processing system. Furthermore, applica-

tion of electric field gradients leads to large mechanical forces, enabling trapping

of the molecules. Finally, polar molecules also combine the large-scale preparation
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available for neutral atoms [88, 108] with the ability to move them with electric

fields, as with ions [109–111].

We here show that trapping the molecules at short distances from a superconduct-

ing transmission line resonator greatly enhances the coupling of the molecular ro-

tational transitions to microwave radiation, leading to methods both for cooling

the molecule and for manipulation of the molecule as a qubit. The qubit can be en-

coded in rotational states and coherently transferred to the resonator. It has already

been shown that the strong free-space dipole-dipole coupling of polar molecules is

viable for construction of a quantum computer [112]. Here we show that coupling

to and through a resonator enables high fidelity quantum gates at a distance as

well as cooling, high fidelity readout, and the construction of a potentially scalable

quantum information processor.

6.1 Chip-based microtraps for polar molecule qubits

In a polar molecule, the body-fixed electric dipole moment (µ) gives rise to large

transition moments between rotational states, which are separated by energies cor-

responding to frequencies in the microwave range. The level structure of a di-

atomic rigid rotor is determined by the Hamiltonian Hrot = ~BN2, where N is

the rotational angular momentum and B is the rotational constant. This Hamil-

tonian gives energy levels EN = ~BN(N + 1) that are (2N + 1)-fold degener-

ate, corresponding to the different projections mN . In the presence of a DC elec-

tric field EDC = EDC ẑ, the Stark Hamiltonian HSt = −µ·EDC mixes rotational

states and induces level shifts that break the degeneracy between states of differ-

ent |mN |. Two of the low-lying states, |1〉 ≡ |N = 1〉 ≡ |N = 1,mN = 0〉 and

|2〉 ≡ |N = 2〉 ≡ |N = 2,mN = 0〉 with corresponding eigenenergies E1 and E2,

are weak-field seeking; i.e., their energy increases with larger EDC . We take these

two states as the working rotational qubit states for the system. As discussed be-

low, qubits stored in spin or hyperfine states can be transferred to these rotational

qubits with microwave pulses. A static electric field minimum can be formed in
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free space, allowing for trapping of these low-field-seeking molecules.

The maximum trap depth possible, determined by the maximum Stark shift of the

|1〉 state, is Umax ≈ 0.6~B, attained at an electric field EmaxDC ∼ 6~B/µ. The energy

splitting between rotational states, ω0, is field dependent due to mixing with other

|N,mN〉 states. However, under all conditions discussed in this paper the rela-

tion ω0 ≡ (E2 − E1)/~ = 4B is valid to within 10%. Explicit calculations of the

molecular energy levels as a function of EDC are shown in Fig. 1. For concrete-

ness, throughout the paper we use CaBr as our example molecule, although many

others share the desired properties for quantum computation in our scheme. For

CaBr, µ = 2π× 2.25 MHz V−1 cm (4.36 Debye), B = 2π× 2.83 GHz, Umax ≈ 80 mK,

EmaxDC ≈ 7× 103 V cm−1 and ω0 = 2π × 11.3 GHz.

A variety of macroscopic electrostatic traps for polar molecules have been pro-

posed and/or implemented [101, 113, 114]. We here describe a novel Electrostatic

Z-trap (EZ trap, Fig. 6.1a), a mesoscopic electric trap that is closely related to the

magnetic Z trap [88], which is widely used in miniature atomic traps. The EZ trap

creates a non-zero electric field minimum in close proximity to the surface of a

chip1. The field at the bottom of the trap is designated Eoff
DC . Metallic electrodes

set to the appropriate DC voltages give rise to the inhomogeneous trapping field.

Adjustment of the trap and bias electrodes sets the trap depth as well as Eoff
DC and

the position of the trap center, typically at height z0 ∼ w above the surface, where

w is the typical spacing between the trap electrodes.

With EZ trap electrodes thin compared to w and held at voltage VEZ , maximum

DC electric fields EmaxDC ∼ VEZ/w can be generated, leading to harmonic trap poten-

tials with depth U0 ∼ 0.1 µEmaxDC and motional frequency ωt ∼
√

2U0/(mw2) for a

molecule of mass m. With electrode dimensions ranging from w = 0.1− 1 µm and

corresponding voltages VEZ ∼ 0.1 − 1 V, U0 ∼ Umax and ωt ∼ 2π × 6 − 0.6 MHz

for CaBr. Note that the trapping potential is only slightly modified by the van der

Waals interactions of the molecules with the chip surface (see Methods).

1For a discussion of the effects of van der Waals interactions, see Appendix D.2
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To efficiently load the EZ trap, it is necessary to have a source of cold polar molecules

that can achieve phase-space density Φ comparable to that for a single molecule in

the EZ trap, i.e., Φ ∼ w−3U
−3/2
0 (∼ 1015 cm−3K−3/2 for our nominal conditions).

While this value is beyond what has yet been achieved with polar molecules, it

seems feasible with several methods currently under development. For example,

pre-cooled molecules (produced using, e.g., techniques such as buffer-gas cool-

ing [115] or Stark slowing [113]) could be trapped and then further cooled to in-

crease Φ, using a variety of techniques. Possibilities include evaporative [116–118]

or sympathetic cooling, cavity cooling [119], or the stripline-assisted side-band

cooling described below. With sufficient phase space density, mode matching to

a micron-sized EZ trap configuration should be possible using electrostatic fields

[120].

6.2 Cavity QED with polar molecules and supercon-
ducting striplines

Superconducting stripline resonators [121] can be used to confine microwave fields

to an extremely small volume [122], V ∼ w2λ � λ3, where λ is resonant wave-

length. One important consequence is the large vacuum Rabi frequency g = ℘E0/~
for molecules located close to such a resonator, enabling coherent coupling of the

molecule to the quantum state of the resonator field. (Here ℘ is the transition dipole

matrix element and E0 ∝ V −1/2 is the zero-point electric field; ℘ ≈ 0.5µ under the

relevant conditions.)

When the microwave field is confined to a resonator and is quantized, the coupling

becomes the well-known [123] Jaynes-Cummings Hamiltonian Ĥ = −~g(â†σ̂− +

âσ̂+), where â is the annihilation operator for the resonator mode, σ̂− = |1〉〈2| is

the lowering operator for the molecule, and |1〉, |2〉 are the two states coupled by

the field. The value of g can be calculated as follows (see also [124]). The stripline

zero-point voltage is V0 =
√

~ω/(2C), where C is the effective capacitance of the

stripline resonator. For impedance matching with standard microwave devices,
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Figure 6.1: a. EZ-trap design. The thin wire-like electrodes biased at ±Vtrap
generate the strong local electric field gradients needed for trapping. A radial
quadrupole field is created by the long sides of the electrodes, in combination
with a transverse bias electric field Ebias (created by the large electrodes with ap-
plied voltages ±Vbias). This part is an electrostatic analog of the magnetic guides
developed for “atom chips”. Axial confinement is achieved by curving each elec-
trode at the end and bringing it closer to the oppositely charged electrode, cre-
ating an increased electric field. Like its magnetic counterpart, the trap is of the
Ioffe-Pritchard type: there is no field zero, which avoids dipole flips from the field-
aligned to the anti-aligned state (i.e. a “Majorana hole”, which would enable cou-
pling to the untrapped states with mN 6= 0). b. Zoomed-out view of the EZ trap,
integrated with a microwave stripline resonator. The ground planes of the res-
onator are biased at the DC voltages ±Vbias + Voffset, giving rise to the bias field
Ebias for the EZ trap. The offset voltage Voffset is used to bias the central pin and
adjust Vfloat. In the region shown, which is of size much smaller than the wave-
length of the microwave photons carried by the stripline, the width of the central
pin of the stripline resonator is gradually reduced and deformed to the shape of
one of the L-shaped electrodes of the EZ trap. The second L-shaped electrode nec-
essary to form the EZ trap is made of a thin wire like electrode overlaid on one
of the conducting ground planes. This electrode can behave as a continuation of
the ground plane for AC voltages at microwave frequencies, while at DC it can
be independently biased at the voltage Vtrap, thereby completing the EZ trap. The
overall effect of the region where the central pin is thinner is a slight change in
the capacitance per unit length, without significantly affecting the quality of the
resonator.
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C = π/(2ωZ0), with Z0 = 50Ω. At a height z0 above a stripline with conductor

spacing w, the zero-point electric field is E0 ∼ f(z)V0/w. Here f(z) is a dimension-

less geometric factor describing the reduction of the field away from the electrodes;

f(z) = 1 for z � w and we find through simulation that f(z) ∼ 0.5(w/z) for z < w.

For CaBr trapped at a height z . w = 0.1 − 1 µm above the resonator, the single

photon Rabi frequency in the range g/2π ' 400− 40 kHz.

High Q resonators (internal Q’s of 106 have been demonstrated [121, 125, 126])lead

to long microwave photon lifetime. When coupling to the resonator is stronger

than the cavity decay rate (i.e., g > κ, κ = ω/Q), coherent quantum state ex-

change between the polar molecule and the resonator field is possible. That is,

for molecules held close to a small resonator, the electric dipole interaction with

the resonator mode is strong enough to reach the strong coupling regime of cavity

QED [127, 128].

6.3 Cooling via resonator-enhanced spontaneous emis-
sion

Strong coupling of the molecule to the microwave cavity enhances spontaneous

emission of excited rotational states, which can be employed to cool the trapped

molecules. When molecules are initially loaded into the trap, their temperature

may be as high as the trap depth U0, corresponding to a mean number of trap ex-

citations n̄trap ∼ U0/(~ωt). Depending on the cold molecule production method

employed, n̄trap can be very large. As discussed below, the best coherence prop-

erties for molecular superposition states are achieved when the molecule is in the

ground motional state of the trap. Hence, it is desirable to cool the motional de-

gree of freedom. The tight confinement of the molecule in the EZ trap suggests

side-band cooling, as done with trapped ions [129] . If the molecule were in free

space this would not be possible due to the low natural decay rate of excited ro-

tational states, γ < 10−5s−1. However, the cavity-enhanced spontaneous emission

makes sideband cooling feasible.
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The absorption spectrum of the trapped molecule in the combined rotational (N =

1, 2) and motional (n) states , |N, n〉, consists of a carrier at frequency ω0 and side-

bands at frequencies ω0 + (m − n)ωt (n,m = 0, 1, · · · ). Electromagnetic coupling

to sidebands arises due to the position dependence of g. Sideband cooling occurs

when a driving field is tuned to the lower energy sideband |1, n〉 → |2, n−1〉, while

the resonator mode is resonant with the |2, n〉 → |1, n〉 transition (Fig. 6.2a). Each

scattering cycle reduces the kinetic energy of the molecule by ~ωt. If κ < ωt, the

sidebands can be resolved. The lower energy sideband state can either be directly

excited by an on-resonant driving field or virtually excited by a red-detuned field.

De-excitation occurs by emitting a photon into the resonator, which can then decay

out of the resonator (see Methods). The maximum cooling rate can be estimated as

follows. For g � κ (g & κ), the cavity-enhanced spontaneous emission rate for the

cavity tuned to resonance, ω = ω0, is given by Γc = g2/κ (Γc = κ/2). For example,

with g = 2π × 40− 400 kHz and κ = 2π × 10 kHz (Q = 106), Γc ∼ 2π × 5 kHz; this

yields a cooling rate dn/dt = Γc and hence dE/dt = ~ωtΓc ≈ 10 K/s for trapping

frequency ωt ∼ 2π × 5 MHz. Thus, a trapped molecule can be cooled to the mo-

tional ground state of the trap with a rate much higher than the observed trap loss

rates of atoms from microtraps – typically limited by background gas losses.

In the absence of any heating mechanisms, cooling proceeds until the molecule’s

mean motional quantum number in the trap, n̄t equals the mean number of ther-

mal microwave photons in the resonator mode, n̄γ . Due to the frequency mismatch

between the resonator mode frequency ω and the trap frequency ωt, the effective

final temperature Tt of the trap degree of freedom is lower than the ambient res-

onator temperature, Tr, by the large factor R = ωt

ω
. For example, Tt < 100 µK for

Tr = 100 mK. Technical noise sources may lead to a larger photon occupancy in the

cavity than the nominal thermal value n̄ = exp(−~ω/kTr) ∼ 5× 10−3. However, it

has been shown that n̄γ � 1 is achievable [121]. For more on sideband cooling, see

Appendix D.1.

The location of the EZ trap center is determined by the voltage on the electrodes

(Fig. 6.1a), so that fluctuations of this voltage cause random motion of the trap
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center and heating of the molecule’s motion in the trap. As a worst case, we can

assume that the micron-sized electrodes experience the typical 1/f charge noise as

measured in work with single-electron transistors and charge qubits. These may

be roughly analogous (at micron size and mK temperatures) to the ”patch poten-

tials” observed in ion traps [130]. The typical charge noise [131] density SQ has a

1/f dependence, with magnitude SQ(f) = 10−6 − 10−7e2/f ; on a metal electrode

with Ct ∼ 1 fF (typical for µm-scale features, the corresponding voltage spectral

density is SV (f) = SQ/C
2
t ∼ 10−14

f
V2Hz−1. With the trap operating in the linear

Stark regime, the heating rate, defined as the rate of excitation from |0〉 to |1〉, is

Γ01 ∼ ω2
t (w/a0)2 SV (ωt)

V 2
EZ

Hz, where a0 =
√

~/(2mωt) is the ground state wavefunc-

tion width. Under our conditions Γ01 � 2π× 1 Hz [132], indicating that cooling to

n̄� 1 should be feasible. The rate of heating in a real device, along with the actual

dephasing rates for a molecule near the surface of a chip, are important phenom-

ena which must be experimentally determined.

6.4 Polar molecules as quantum bits: encoding, coher-
ence properties, and one-bit gates

Trapped polar molecules, cooled close to their ground state of motion in the EZ

trap and coupled to stripline resonators, represent a good starting point for quan-

tum bits. For quantum processing, the qubit can be encoded in a pair of trapped

rotational states (|1〉 and |2〉) and single qubit operations performed using classi-

cal microwave fields. Molecules coupled through stripline resonators allow for

two-qubit operations.

We now consider coherence properties of rotational superpositions. Voltage fluc-

tuations in the trap electrodes (quantified by SV (f)) cause random fluctuations of

the qubit transition frequency, and hence dephasing of rotational superposition

states. Decoherence due to this voltage noise is determined by the field sensi-

tivity of the rotational splitting, ∂ω0

∂E , and the effective RMS variations of the trap

voltage, V eff
RMS . With proper accounting of qubit phase fluctuations from a 1/f
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Figure 6.2: Resonator-enhanced sideband cooling and quantum state readout.
a. Sideband cooling using resonator-enhanced spontaneous emission. The driving
field is tuned to the red sideband |1, n〉 → |2, n − 1〉, while the resonator is reso-
nant with the |2, n〉 → |1, n〉 transition, where n denotes the trap motional level.
b. Quantum state readout via dispersive shift of cavity induced by the qubit. In
the dispersive limit when the rotational transition of the molecule is significantly
detuned from the cavity frequency (∆r � g), a qubit state-dependent frequency
shift δω = ±g2/∆r allows non-demolition measurement of the molecule’s state by
probing the transmission or reflection from the cavity. In the limit δω < κ, mi-
crowaves transmitted at the cavity frequency undergo a phase shift of ± tan−1 2g2

κ∆r

when the qubit is in state |1〉, |2〉 respectively. c. Probe field transmission versus
probe frequency. When g2/∆r > κ, the frequency shift of the cavity is larger than
the resonator linewidth. A probe beam at one or the other of the new, shifted fre-
quencies will be transmitted or reflected, again allowing a potentially high-fidelity
readout of the qubit state. In the absence of molecules, no frequency shift occurs,
so the presence or absence of molecules in the trap can also be determined.
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spectrum [133], V eff
RMS ∼ 0.2 µV. In the linear Stark regime, and over a wide range

in electric fields, the electric field sensitivity of the qubit transition frequency is∣∣∂ω0

∂E

∣∣ ≈ 0.1µ/~ ≈ 2π × 200 kHz/(V/cm) for CaBr, leading to RMS frequency shifts

δω0 = (∂ω0

∂E )VRMS/w. For short times, this results in quadratic decay of qubit coher-

ence [134], with a characteristic rate γV ∼ δω0 = 2π × 4− 0.4 kHz.

Although the trap potential is in general different for the two rotational qubit

states, as assumed above, there exists a specific offset field value – a “sweet spot” –

for which the trap curvature is the same. (This occurs at Eoff, sweet
DC ≈ 3~B/µ.) When

the trap is biased at this sweet spot,
∣∣∂ω0

∂E

∣∣ = 0 for the lowest vibrational levels of

the trap. The second order term is given by
∣∣∣∂2ω0

∂E2

∣∣∣ ≈ 0.1µ2/(~2B). In CaBr this

is given numerically by ∆ω0/E2
DC = 2π × 100 Hz (V cm−1)−2. Decoherence due

to voltage noise can thus be vastly reduced by operating at the sweet spot, where

δω0 ≈
∣∣∣∂2ω0

∂E2

∣∣∣ (V eff
RMS

w

)2

and γV,2 ∼ δω0 is below the 1 Hz level. Operation at the sweet

spot comes with the modest expense of reducing the maximum possible trap depth

by a factor of 4.

Molecular motion also causes variations in the qubit level splitting, and thus also

dephases rotational qubits. If the molecule is in its motional ground state, n̄ = 0,

it can be kept there during microwave manipulation of the qubit (provided the

excitation rate is slower than the trap frequency). In the case of finite molecu-

lar temperature the rotational superpositions will dephase with characteristic rate

γT ∼ (ω2
t /B)n̄2. If n̄ ∼ 1 and ωt ∼ 2π×5 MHz, then γT ∼ 2π×1 kHz. Thus, cooling

of the molecular motion is crucial for long-lived rotational coherences.

Single qubit quantum gates can be accomplished by driving rotational transitions

with oscillating electric fields. During such a gate operation (driven at Rabi fre-

quency Ω), the error probability p is bounded by p ≤ (γ∗/Ω)2 per single Rabi cycle,

where γ∗ ≡ γT + γV,2 is a total dephasing rate for rotationally encoded qubits. Tak-

ing e.g. Ω ∼ 2π × 1MHz (consistent with all constraints on the system), we find

that p is negligible for our operating conditions.

Finally, we note that for quantum storage the qubits can also be encoded in hyper-
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fine or Zeeman spin sublevels of a single rotational state, in which low dephasing

can be obtained even away from sweet spot. As discussed below such encoding

might facilitate scalability of the polar molecule quantum computer. Our exam-

ple case of CaBr has one nuclear spin I = 3/2 and one unpaired electron spin,

with molecular state 2Σ+. Figure 6.3a shows the energy levels of selected states

in an electric field. Within a broad range of electric field values, the value of
∣∣∂ω
∂E

∣∣
for transitions between hyperfine sublevels with MF3 = 0 is ∼ 103 smaller than

for rotational transitions away from the ”sweet” spot. Zeeman sublevels whose

splittings are completely insensitive to electric fields also exist (although these in-

troduce new features beyond the scope of this paper). Note that hyperfine level

degeneracies do not impose additional restrictions on one-bit gate speeds; for CaBr

near the “sweet spot”, the rotational transitions differ by δωh ≈ 15 MHz for two

hyperfine states.

6.5 Long-range quantum coupling of molecular qubits

We now consider coherent interaction of polar molecules through the capacitive,

electrodynamic coupling to superconducting transmission line resonators [124].

We consider a
√

SWAP operation between a pair of rotational qubits. This oper-

ation combined with single qubit rotations has been shown to form a universal

quantum gate [135]. The truth table for the
√

SWAP is (up to an overall phase)

|11〉 7→ eiπ/4|11〉

|10〉 7→ i√
2
|10〉 − 1√

2
|01〉

|01〉 7→ − 1√
2
|10〉+

i√
2
|01〉,

|00〉 7→ eiπ/4|00〉.

(6.1)
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Figure 6.3: Molecular structure and level shifts of CaBr relevant to the proposed
schemes. a. Stark shifts of rotational levels in an applied electric field, showing
the trappable states |1〉 ≡ |N = 1,mN = 0〉 and |2〉 ≡ |N = 2,mN = 0〉 (weak
field seekers). The dotted line marks the field value EDC = Eoff, sweet

DC for which the
effective dipole moments of the weak field seeking states are the same. Splittings
due to electron and nuclear spin are too small to see on this scale. b. Spin-rotation
and hyperfine structure of Ca79Br in a strong electric field. Energies shown are
for EDC = Eoff, sweet

DC = 4 kV cm−1. The effects of electron and nuclear spin are
determined by the spin-rotation Hamiltonian [4] Hspin−rot = γsrN · S and the hy-
perfine Hamiltonian Hhfs = bS · I + cSz′Iz′ − e ∇E · Q, where ẑ′ is the molecu-
lar fixed internuclear axis, and the final term is the scalar product of two second
rank tensors representing the gradient of the electric field at the location of the
bromine nucleus and the electric quadrupole moment of that nucleus. For Ca79Br,
the size of the spin-rotation and hyperfine terms are comparable: γsr = 90.7 MHz,
b = 95.3 MHz, c = 77.6 MHz, and the electric quadrupole coupling constant
(eqQ)0 = 20.0 MHz [5]. For large enough electric fields (such that µEDC � γsr),
the nuclear spin I and electron spin S decouple from the rotational angular mo-
mentum N , while they couple to one another to form F3 = S + I(= 1, 2 for CaBr).
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The square of this operation, SWAP, performs the mapping (up to a different over-

all phase)
|11〉 7→ |11〉,

|10〉 7→ |01〉,

|01〉 7→ |10〉,

|00〉 7→ |00〉,

(6.2)

hence the name, SWAP.

As illustrated in Fig. 6.4, we use an off-resonant interaction with detuning ∆ be-

tween resonator and qubit, with the molecules located at voltage nodes along the

resonator. Assuming ∆ � g and adiabatically eliminating the resonator degree of

freedom, we find an interaction of the form Hint = g2

∆

(
σ̂+

1 σ̂
−
2 + σ̂−1 σ̂

+
2

)
, where g2

∆
is

the interaction rate and σ̂−i = |1〉〈2|i is the lowering operator for ith molecule. This

effective exchange interaction can be used to map coherent superpositions from

one quantum bit to another in time τ = π∆
2g2

, thus enabling a universal two-qubit

gate [136]. Note that at large molecule-resonator detuning (∆ � κ), the resonator

mode is only virtually occupied, so that cavity decay has little effect: the proba-

bility of error due to spontaneous emission of a photon during the two-bit gate is

psp = κ g2

∆2 τ . While slower gate speed (at large detuning ∆) results in reduced psp, it

also results in increased probability of dephasing pdep = (γ∗τ)2. The overall proba-

bility of error perr = psp + pdep is minimized by choosing ∆∗ =
(
g4κ
πγ∗2

)1/3

, resulting

in a total error probability perr ≈
(
κγ∗

g2

)2/3

. For example, with κ = 2π × 10 kHz

(Q = 106), g = 2π × 200 kHz, and γ∗ ∼ 1 kHz we find that at the optimal detun-

ing a probability of error is well below one percent. Thus, high-fidelity two-qubit

operations between remote qubits are possible.

6.6 State-dependent detection

The presence of a trapped molecule, as well as its internal state, can be detected by

measuring the phase shift of an off-resonant microwave field transmitted through
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Figure 6.4: Capacitive coupling of molecules mediated by stripline. a. Po-
lar molecule qubits are coupled to each other via (off-resonant) virtual exchange
of microwave photons through a stripline resonator. The detuning between the
resonator mode and the qubit frequency is ∆, and the qubits are coupled to
the resonator mode with the same vacuum Rabi frequencies g. The effective
dipole-dipole interaction mediated by the resonator is given by the Hamiltonian
Hint = g2

∆

(
σ̂+

1 σ̂
−
2 + σ̂−1 σ̂

+
2

)
. As indicated schematically on the figure, this interaction

corresponds to qubit 1 emitting a virtual photon in the resonator while changing
state from the upper to the lower state, and qubit 2 absorbing the virtual photon
while changing state from the lower to the upper state. b. Multiple EZ traps can
be patterned along the length of a stripline resonator, enabling coupling of multi-
ple qubits. Here two EZ traps located at the resonator mode antinodes are shown,
with typical dimensions as indicated on the figure.
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the resonator. The dispersive interaction of the dipole and resonator leads to

a state-dependent phase shift of the resonator field [121], implementing a near-

perfect quantum non-demolition (QND) measurement of the qubit state. This

method has already been used to detect superconducting qubits [105], and it can

also be applied to detecting the quantum state of the molecules with high signal to

noise ratio. For example, with Q = 106 and for a detuning of ∆r = 2π×5 MHz, the

phase shift of a microwave probe beam is θ0 = tan−1[2g2/κ∆r] ∼ 10 degrees. This

phase shift can be measured using a probe beam with up to ncrit = ∆2
r/4g

2 ∼ 1000

photons, or an incident power Pread = ncrit~ω0κ ∼ 10−15 Watts. The signal to

noise ratio in one cavity lifetime is given by SNR = sin2[θ0](ncrit/namp) ∼ 2, where

namp = kBTN/~ω0 ∼ 20 is the noise added by a cryogenic amplifier with a noise

temperature of TN ∼ 5 K. During the readout, the rotational state of the molecule

can still decay by spontaneous emission via the cavity at a rate γκ = κ g2

∆2
r
, leading

to a lifetime T1 = 1/γκ ∼ 50 ms; here the maximum SNR of the measurement is im-

proved by a factor κ/γκ ∼ 5, 000, showing that very high fidelity (> 99%) readout

is feasible.

6.7 Potential for scaling quantum circuits

In order to realize scalable quantum information processors, or to implement quan-

tum error correction on logical qubits and high fidelity quantum gates, the physical

qubits need to be connected to each other through quantum channels. In addition,

quantum information needs to be moved around the network efficiently. To im-

plement a logical qubit suitable for error correction, one requires the proximity of

several physical qubits, any pair of which can be subjected to a quantum gate. A

possible solution involves an array of storage zones where molecules are trapped,

cooled and initialized via their coupling to stripline resonators. Furthermore, in

analogy to ion trap approaches [137], qubits stored in hyperfine or Zeeman sub-

levels of a single rotational state may be moved to interaction zones using elec-

trostatic gates. Moving and coupling of qubits could be achieved by patterning

multiple EZ traps in the gap between the two ground planes of a stripline res-
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onator.

In this scheme, we envision qubit transport in hyperfine/Zeeman states to rele-

vant interaction zones and processing in rotational states. When a particular qubit

is needed to perform a quantum operation, it can be transferred from storage to

a rotational state using frequency selective microwave transitions. Taking the ex-

ample of CaBr encoded in hyperfine states, dephasing from either voltage noise or

finite temperature of the molecule is suppressed during storage and transport to

very low levels. Specifically, over a broad range of electric field values, a hyperfine

qubit associated with a motionally excited molecule will dephase at a rate scaling

as γhfT ∼ ωtn̄/103. This implies that for reasonably cold molecules, n̄ = 1, trap

potentials can be changed adiabatically (i.e. with negligible motional heating) on

time scale much faster than qubit dephasing. The hyperfine qubit can be transfered

to rotational states when the molecule is brought back to the ”sweet spot”. Finally,

we note that it may be possible to cool the molecule’s motion without destroy-

ing hyperfine/Zeeman state coherence, provided that the detuning between cavity

and qubit is much larger than hyperfine/Zeeman level splitting. Thus, potentially

scalable quantum circuits could be designed using polar molecules as quantum

bits and superconducting resonators as the quantum bus connecting these qubits.

6.8 Outlook

In this work, we have proposed an avenue in which the principal respective ad-

vantages of isolated atomic and mesoscopic solid state systems can be combined.

The resulting system provides tightly confined, coherent quantum systems with a

high degree of control. Cooling and coherent manipulation of the quantum states

of single molecules, as well as coherent coupling of molecules to one another, can

be achieved near the surface of a superconducting chip using DC and microwave

electric fields. We have shown that these techniques can be combined to yield a

novel approach to quantum computation and that appropriately cooled molecules

should have excellent coherence properties even in close proximity to the surface.
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Achievement of long distance entanglement of molecular qubits via exchange of

microwave photons provides a complimentary approach to the shuttling of ions

in segmented traps, which underlies the scalability of the ion trap quantum com-

puter [109].

A number of other interesting avenues can be considered. For example, the ex-

cellent coherence properties of hyperfine states of polar molecules may provide

a long-term quantum memory for solid-state qubits. Specifically, coupling to a

stripline resonator can be used to map the quantum state of a superconducting

qubit [105–107] to the state of either a single molecule, or perhaps also of a col-

lective excitation of a small molecular ensemble through a collectively enhanced

process [138]. In addition, this approach can be used to provide an interface to

“flying” qubits. Molecular microwave-frequency qubits can be mapped via a Ra-

man process to single photons in the infrared or optical regime (corresponding to

vibrational and electronic molecular transitions, respectively) [139]. In addition,

novel approaches to controlled many-body physics can be envisaged. Tightly con-

fined polar molecules in high aspect ratio EZ traps can be used to realize a one

dimensional quantum system with strong, long-range interactions. Coupling to

the stripline may provide a novel tool for preparation of such strongly interacting

systems, as well as for detecting the resulting quantum phases [140].

We emphasize that the approach described here is unique in that it combines tight

localization, fast manipulation, and electrical gate control, unprecedented for AMO

systems, with the exceptional coherence properties which are uncommon for con-

densed matter approaches. While the techniques for production of cold polar

molecules are not developed as well as those for charged ions and neutral atoms,

exciting recent experimental progress indicates that the ideas proposed here are

within experimental reach.
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Appendix A

Code to calculate stark shifts

% This file calculates energy levels of a 1Sigma state diatomic in an
% electric field.
% This file requires the existence of another file which creates the index
% function with the name ’index.m’ and the contents
% function z = index(J,m)
% z=J*(J+1)+m+1;
%This creates an index for the perturbation matrix which can be addressed
%by J and m. Note that matlab orders eigenvalues so as to avoid all level
%crossings, so care must be taken to correctly identify states above a
%crossing.
%this file also also requires ’delta.m’, which defines the Kronecker delta

%define fundamental constants
kb=1.38*10ˆ-23; %boltzmann’s constant in J/K
h=6.626*10ˆ-34; % Js
c=2.998*10ˆ10; %cm/s so hc is in units of J*cm

% set the dipole moment
d=1.454*10ˆ-27 %C-cm (3.1 debye)
% Rotational constant
B=0.094466; %cmˆ-1

% Energy levels and number of rotational levels included
% Make sure to include several levels above the maximum level of interest
% to insure that states of interest are accurately calculated
ls=0:4
energy=B*ls.*(ls+1);

% the degeneracies of the rotational energy levels are
degen=2*ls+1;
%and the total number of states involved is
nstates=max(ls)+1+max(ls)*(max(ls)+1)

% First create a hamiltonian matrix of the right size
H=zeros(nstates,nstates);
Hstark=H;
H0=H;
%set values of electric field
E=0e3:.25e2:1e4; %V/cm
%set magnetic field steps
Bfield=0:1e-2:0
%create a matrix to accomodate all the energy values. First index should
%be indexed by index(J,m), second is E field value.
stark=zeros(nstates,length(E));
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% now generate the elements of the hamiltonian
for k=ls

for kp=ls
for m=-k:k

for mp=-kp:kp
Hstark(index(k,m),index(kp,mp))= ...

1/(h*c)*d*1* delta(m,mp)*( delta(k,kp+1)*...
sqrt((k-m)*(k+m)/((2*k-1)*(2*k+1))) + ...
delta(k,kp-1)*sqrt((kp-m)*(kp+m)/((2*kp-1)*(2*kp+1))) );

H0(index(k,m),index(kp,mp))=...
delta(index(k,m),index(kp,mp))*energy(k+1);

end
end

end
end

%Calculate eigenvalues
for step=1:length(E)

stark(:,step)=eig(H0+E(step)*Hstark);
end

%Plot all states
figure;
hold;
for n=1:nstates;

plot(E/1e3,c/1e9*stark(n,:),’Color’,[mod(n/3+.6666,1) mod(n/5-.2,1)...
mod(n/7-1/7,1)],’LineWidth’,2);

end

axis tight
%set(gca,’Ylim’,[-15 25])
set(gca,’FontSize’,12)
set(gcf,’DefaulttextInterpreter’,’Latex’,’DefaulttextFontSize’,14)
xlabelhandle=xlabel(’$\mathcal{E}_{DC}$ (kV/cm)’,’FontSize’,14,...

’Interpreter’,’Latex’);
ylabelhandle=ylabel(’Energy (GHz)’,’Interpreter’,’Latex’,’FontSize’,14);
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Appendix B

Spin-orbit coupling

Spin orbit coupling is given by Hso = −~µ · ~B. But what is ~B, since without motion,
there are only electric fields in atoms? The answer is that it is a motional magnetic
field experienced by a single electron moving in the electric field of the nucleus
~Enuc, so that we have

Hso = − ~v
c2
× ~Enuc, (B.1)

where the electric field of the nucleus is given by ~Enuc = Ze
4πε0r2

r̂. Now, atomic states
are characterized by their angular momentum and not their velocity, so we wish
to recast the velocity in a more useful form. Fortunately, the angular momentum
is given by ~l = ~r × ~v = −r (~v × r̂). So then we have

Hso = −~µ ·
(
v

c2
× Z e

4πε0r2
r̂

)
= − Ze

4πε0c2r2

1

r
~µ · r (~v × r̂)

=
Ze

4πε0c2r3
~µ ·~l.

(B.2)

And ~µ = gµB~s
~ , we then have

Hso =
Ze

4πε0r3

gµB
~c2

~s ·~l (B.3)

which is the complete form of the spin orbit coupling for a single electron. First
order matrix elements of the spin orbit coupling include the expectation value of
1
r3

. Now, the expectation value of r ∝ a
Z

, where a is the Bohr radius. So, approx-
imately, 〈 1

r3
〉 ∼ Z3

a3 . Then from this, we see that 〈Hso〉 ∝ Z4. Note that screening
of the nucleus by filled shells of electrons will have only a minimal effect on this
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dependance because of the weighting of the spin-orbit Hamiltonian toward the
nucleus, thus making a large contribution come from radii which are not strongly
shielded.

There are a couple of things that this analysis makes clear right away. First, the
form of the spin-orbit coupling Hamiltonian often leads to the conclusion that an
electron spin is somehow interacting with the magnetic dipole created by its own
orbital angular momentum. This is not the case. Second, spin-other-orbit coupling
should be quite small in comparison to spin-orbit: for any given other electron,
there is no factor of Z in the coupling. Further, contributions from different elec-
trons will not all add with the same sign, and the expectation value of the spacing
between any two electrons is much larger than the mean spacing between either
electron and the nucleus, so that the relevant 〈 1

r3
〉 factor will be quite small. And

the interaction of an electron in an open shell with an electron in a closed shell is
fully accounted for by a screened potential. For a good discussion of these issues
and an introduction into related literature, see reference [141]

So, the dominant contribution to the spin orbit coupling is a single-electron effect,
and is diagonal in a ~j = ~l + ~s basis. However, for a multi-electron atom, if the
basis used is the Russell-Saunders L-S basis, where the good quantum numbers
are taken to be ~L =

∑
i

~li , and ~S =
∑
i

~si, the spin orbit coupling will couple states

with simultaneously different values of L and S. It is electrostatic interactions be-
tween electrons that tend to couple the orbital angular momenta of different elec-
trons together. In the limit of high-Z, the spin-orbit interaction outweighs these
inter-electron interactions, and the Russell-Saunders scheme is less appropriate
than the jj -coupling scheme in which the individual ji of the electrons are taken
to be the good quantum numbers and higher-order effects couple these angular
momenta together [142].

Most atoms, including bismuth, lie somewhat between the two coupling cases, and
can be considered to be in the “intermediate coupling” regime. A naı̈ve, account-
ing of the valence electrons in bismuth (in a p3 configuration) using the Russell-
Saunders scheme would lead one to believe that bismuth has a similar ground
state term to its lightest group sibling, nitrogen. That is, one would expect that it is
well characterized by a 4S term, implying that it has a spherically symmetric elec-
tronic distribution and a magnetic moment of 3µB. However, its magnetic moment
is closer to 2.5µB, which indicates that there is a significant admixture of configu-
rations in which there are paired spins. In fact, in Condon and Shortley [142], the
states which are coupled together by the spin-orbit couplin are the 4S3/2, the 2P3/2
and the 2D3/2. Calculations in support of the research reported in this thesis by
A. Buchachenko show that the contributions to the Hamiltonian of Bismuth due
to electrostatic interactions are of the same order of magnitude as the off-diagonal
spin orbit matrix elements. This is consistent with previous reports of a strongly
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mixed wave function for Bismuth [143, 144].
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Appendix C

Dust: The ablative mess

As discussed in Chapter 4, the dust problem manifests itself in a lifetime for atoms
in the buffer gas well below the expected diffusion-limited lifetime. We expect
that the lifetime of a signal of stable atomic states in the absence of magnetic field
gradients would be set limited by the zero-order diffusion mode of our cylindrical
cell. This can be found by a solution of the diffusion equation for one gas diffusing
through another:

ṅ = D ∇2n, (C.1)

where D =
3
√

2π

16

1

nHeσ

(
k T

µ

)
is the diffusion constant [145], n is the density of

the diffusing gas, σ is the elastic collision cross section of that gas with helium,
µ is the reduced mass of the atom and helium, and T is the temperature. For
our cell, this leads to a diffusion lifetime1 of τ = 3.01 cm2

(
µ
kT

)
nHeσ For atomic

bismuth diffusing through helium, this yields, assuming a diffusion cross section
of σ = 2 × 10−14 cm2, a lifetime τ ∼ 400 ms. However, the longest lifetime we
observe for Bi is ∼ 80 ms.

In an attempt to understand this anomlously low lifetime and to verify that it is
“real” (i.e., that the low lifetime isn’t simply caused by a low buffer gas density),
we performed a test wherein neodymium was ablated by itself and the diffusion
lifetime observed, and then bismuth was ablated simultaneously and the diffusion
lifetime of the neodymium was again observed. What we found was a drastic re-
duction in the neodymium lifetime, consistent with a model in which some phys-
ical process is affecting all particles present. See figure C for a comparison of the
(presumed diffusion limited) decay of ablated Nd with the rapid decay of Nd in
the presence of simultaneously ablated Bi.

1This expression is obtained by a solution of the diffusion equation for our cylindrical cell ge-
ometry using the boundary condition that atoms are annihilated at the walls. Only the lowest order
solution plays a significant role at long times.
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Figure C.1: A comparison of the decay of ablated neodymium ablated alone and
ablated in the presence of bismuth. Ablating rhenium simutaneously with Nd has
only a small effect on the lifetime of Nd.
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While it is hard to draw any solid conclusions from this data, it does confirm the
reality of the “dust” effect and provides a nice illustration of the magnitude of
the effect. It also strongly suggests that the effect is not due to specific chemical
reactions.
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Appendix D

Methods section from Chapter 6

D.1 Sideband cooling through enhanced spontaneous
emission

We assume the molecule is in a harmonic trap of frequency ωt, a distance z above
a stripline resonator of resonant frequency ω, as shown in Fig. 6.2a. The resonator
is tuned close to the resonance frequency ω0 of the molecular dipole transition
|1〉 → |2〉. The height of the molecule above the resonator can be written as z =
z0 + ẑ, where ẑ is the displacement from equilibrium position in the trap. We write
ẑ = a0x̂. Then x̂ = (b̂+ b̂†) is a dimensionless position operator, with p̂ = −i(b̂− b̂†)
its conjugate momentum, so that in the ground state ∆x = ∆p = 1. Introducing the
effective Lamb-Dicke parameter η = a0/z0 � 1 in analogy with sideband cooling
in ion traps [129], we have g(x̂) = g0 [1− ηx̂+O[η2]]. For our nominal parameters
we find a0 ' 3 nm, so that for CaBr trapped at z0 = 100 nm, η ' 0.03.

For cooling, the resonator is pumped by an external field tuned to the red side-
band, while the resonator field is resonant with the dipole transition, as shown in
Fig. 6.2a. The coupling of the resonator field to the molecular dipole is described
by the interaction Hamiltonian

Ĥ = ωtb
+b− + g0

(
â†σ− + σ+â

)
+ ηg0x̂

(
â†σ− + σ+â

)
.

A general analysis based on perturbation theory using the small parameter η can
be used to obtain the cooling rates [146]. We can also obtain approximate analytic
expressions for the cooling rates in a simple regime of sideband cooling when ωt �
κ � g0. In this case the cavity field can be adiabatically eliminated, resulting in
effective spontaneous decay of the excited rotational state at rate γsp = 2g2/κ. The
sideband excitation rateR from a coherent microwave drive with Rabi frequency Ω
is given by R = η2Ω2/γsp. The cooling rate is then given by Γc = γspR/(2R+γsp)→
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γsp/2 in the limit of strong driving. This rate is ultimately limited by cavity decay
κ/2 when the strong coupling regime is reached.

The resonator and trap degree of freedom exchange quanta until they equilibrate to
the same mean number of quanta, which is set by the background (e.g., thermal)
number of photons in the microwave cavity. Note that while we describe here
only cooling of the degree of freedom perpendicular to the chip surface, similar
considerations can be applied to all trap degrees of freedom. Finally, we note that
the trapping potentials experienced by the molecule in the upper and lower states
may be different. However, sideband cooling can still occur in this regime and
leads to similar cooling rates and final temperatures as described above.

D.2 Effect of surface on trapped molecules

For a molecule at a small distance z above a conducting surface (z < ω/c, where
ω is the frequency of the dominant transition contributing to the dipole moment),
there is a van der Waals (VDW) potential due to the attraction of the molecule to
its image dipole [147]. The potential is given approximately by

U(z) =
µ2

4πε0(2z)3
=
C3

z3
≈ 20 [µm3]

z3
nK, (D.1)

for CaBr. Note that retardation does not modify the potential on the micron scale,
unlike in the case of atoms, because of the long wavelength of the transition which
contributes most to the dipole moment. In addition, the trap frequency is modi-

fied by the z−3 potential and becomes ω′t =
√
ω2
t − 12C3

mz5
for a harmonic potential

centered at z0. At z0 = 100 nm and ωt = 2π×6 MHz, the change in the trapping
frequency ∆ωt/ωt � 1% and there is no effect on the trap depth due to the VDW in-
teraction. The trap depth begins to be affected for the case of smaller z0 or weaker
confinement. For example, for z0 = 100 nm and ωt = 2π × 1 MHz, the van der
Waals potential shifts the trapping frequency by 2% and reduces the maximum
trap depth from ∼ 3 mK (set by the surface at z=0) to < 1 mK.
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