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Abstract

In search of the electron’s electric dipole moment in thorium

monoxide:

an improved upper limit, systematic error models, and

apparatus upgrades

Brendon R. O’Leary

2016

Searches for violations of discrete symmetries can be sensitive probes of physics beyond the

Standard Model. Many models, such as supersymmetric theories, introduce new particles at

higher masses that include new CP -violating phases which are thought to be of order unity.

Such phases could generate measurable permanant electric dipole moments (EDMs) of par-

ticles. The ACME collaboration has measured the electron’s EDM to be consistent with

zero with an order of magnitude improvement in precision compared to the previous best

precision (J. Baron et al., ACME collaboration, Science 343 (2014), 269–272) with a spin

precession measurement performed in the H state of a beam of thorium monoxide (ThO).

This limit constrains time-reversal violating physics for particles with masses well into the

TeV scale. In this thesis I discuss the details of this measurement with an emphasis on the

data analysis, search for systematic errors, and systematic error models that contributed

to this result. I also discuss implemented and planned upgrades to the experimental ap-

paratus intended to both improve the statistical sensitivity and reduce its susceptibility to

systematic errors. At this time, the upgraded apparatus has been demonstrated to have a

statistical sensitivity to the electron EDM that is more than a factor of 10× more precise

than our previous measurement.



Chapter 1

Introduction

Every mystery ever solved had been a
puzzle from the dawn of the human
species right up until someone solved it.

Eliezer Yudkowsky, Harry Potter and
the Methods of Rationality

1.1 Symmetry in Physics

We as humans tend to have a bias toward a world with more symmetry rather than less [60].

Perhaps this is unsurprising since Occam’s razor would prefer a hypothesis with symmetry

over one with asymmetry assuming both hypotheses were consistent with the available

data. Consider as an example the evolution of our knowledge of the structure of the Solar

System. Around 350 BC Plato postulated that the earth was a point of symmetry in

the cosmos and all celestial bodies rotated around the earth with circular orbits and fixed

angular velocity [29]. However, in order to remain consistent with furthur astronomical

measurements this geocentric model was reduced in symmetry by introducing epicycles in

the circular orbits and shifting the earth away from the point of symmetry.

More surprising is the fact that the laws of physics do, in fact, tend to exhibit a consid-

erable amount of symmetry [60]. After contributions to a heliocentric model by Copernicus

and Kepler, Newton postulated his spherically symmetric law of gravity which perhaps out-

did even the Platonian model in terms of simplicity, but had far more explaining power

with respect to astronomical observations [29].

Nevertheless, the symmetries postulated in the laws of physics must be supported by

experiment, and measured deviations in these symmetries can provide clues regarding im-

1



Chapter 1. Introduction

provements that can be made to our current understanding of physics. For example, ob-

served violations of parity (P ) symmetry [176] and charge-parity (CP ) symmetry [32] have

provided motivation for and aided in understanding the weak and strong forces [94, 106]

respectively. Additionally, precision measurements of charge-parity-time (CPT ) invariance

and Lorentz invariance [10,16,40,45,63,80,81,97,114] provide experimental support for the

assumptions that underlie modern quantum field theories [151].

This thesis concerns my contributions as a member of the ACME Collaboration, with

much credit due to those with whom I worked, to measurements of the permanent electric

dipole moment (EDM) of the electron in a beam of thorium monoxide (ThO) molecules.

These measurements are the most recent and most sensitive [6] in a series of EDM mea-

surements that are a part of a tradition that began more than 50 years ago with Purcell

and Ramsey’s proposal to test the validity of time reversal symmetry (T ) in the laws of

physics of elementary particles [139]. Since then many measurements have been performed

with ever increasing precision and with ever increasing diversity of systems. For more on

the history of these measurements, I direct the reader to references [92] and [35].

In this thesis, I do not attempt to provide a full detailed account of the ACME exper-

iment, and hence will frequenctly direct the reader to additional details to our published

works [6,93,129,135] and other theses [69,77,86,158,164]. Instead, I will provide details of

the first ACME measurement, referred to as ACME I throughout, with an emphasis on the

data analysis, search for systematic errors, and systematic error models that contributed

to that result. I also discuss implemented and planned upgrades to the experimental ap-

paratus intended to both improve the statistical sensitivity and reduce its susceptibility to

systematic errors in a future measurement, referred to as ACME II.

1.2 The Standard Model and Beyond

The Standard Model (SM), which provides our current best understanding of particle

physics, has an impeccable track record when it comes to providing predictions that are

consistent with experiments. Some of the most impressive include agreement between the

SM and the measurement of the electron’s magnetic moment [72], and the discovery of

the Higgs Boson [30, 56]. However the SM is known to be incomplete in that it does not

currently provide answers to the following large open questions in physics:

2
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1. Dark Matter: What is dark matter? [20]

2. Baryon Asymmetry: Why do we observe so much more matter than antimatter

despite the laws of physics treating both nearly equivalently? [44]

3. Hierarchy Problem: Why is gravity so weak and why is the Higgs mass close to

the electroweak scale rather than the Plank scale? [178]

Theories beyond the Standard Model (BSM) attempt to solve these problems by introducing

new particles or interactions and in doing so result in measurable differences between the

SM and BSM models.

For example, Supersymmetric models introduce a symmetry between known fermions

and unknown bosons and between known bosons and unknown fermions. These as-of-

yet undiscovered particles, termed “super-partners”, must be at or above the electroweak

energy scale, or else they would likely have been detected in earlier accelerator experiments,

assuming that they do not interact too weakly with the known particles. The contributions

to the Higgs mass due to each particle/super-partner pair would nearly cancel which could

provide a solution to the hierarchy problem [110, 178]. Furthurmore, if one of these as-

of-yet undiscovered particles is stable, this particle could constitute a Weakly Interacting

Massive Particle (WIMP) which is a class of candidates for explaining Dark Matter [89].

Additionally, this array of postulated new particles would introduce a large number of

possible CP violating phases in their interactions with other particles (in analogy to the

phases in the CKM matrix [18]). Given that similar phases in the Standard Model have been

observed to be of order unity, there is no reason to expect these phases to be small or exactly

zero. Hence, these phases could provide sufficient CP violation to satisfy conditions that

Sakharov determined [144] would be necessary to generate the observed matter/antimatter

asymmetry during the evolution of the early universe1 [84].

BSM models such as Supersymmetry (SUSY) are currently being tested with a number

of complementary methods including high-energy accelerator experiments [1, 2, 13], dark

matter experiments [3, 7, 8], and electric dipole moment measurements [6, 82, 108]. An

1. Sakharov’s conditions for bariogenesis [144], the generation of a baryon number excess B > 0 assuming
that we start with a baryon symmetric universe B = 0, include 1.) B-number violating interactions, 2.)
C and CP violating interactions, 3.) Thermodynamic Non-equilibrium in the early universe. All of these
conditions are satisfied by the Standard Model, but it is generally agreed that it does not include sufficient
CP-interactions to generate the size of baryon asymmetry that we currently observe [65,83]
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examination by Feng [59] of the SUSY parameter space that has been excluded, under a

set of assumptions that are considered reasonable by some theorists, indicates that each of

these experimental methods are indeed complementary and that each method is probing

SUSY mass scales at or higher than the TeV scale. Based on experimental progress in

improvements in sensitivities of each of these types of experiments, it is possible that in

the not too distant future we will either discover Supersymmetry, exclude all of the viable

parameter space in the eyes of most theorists, or theorists will significantly shift their

definitions of what constitutes viable parameter space (hopefully for a well founded reason).

In any case, progress will have been made in our understanding of physics.

The current best limit on the electron EDM was produced by the ACME I experiment

in 2014 [6]:2

de ≤ 9.3× 10−29 e · cm (at a 90% confidence level). (1.1)

Many extensions to the SM predict electron EDM values many orders of magnitude higher

than the SM prediction of < 10−38 e · cm [92,137,138], meaning measurement of a non-zero

electron EDM at current experimental sensitivity would be a clear signature of new physics.

Some examples of electron EDM predictions are shown in figure 1.2 and are depicted as

leading order Feynman diagrams that contribute to the modification of the interaction

between the electron and the electromagnetic field in the presence of the electron EDM

interaction.

The Minimal Supersymmetric model (MSSM) generates an electron EDM at 1-loop

order in perturbation theory due to a coupling between the electron and it’s superpartner,

the selectron, which is predicted to be in the range of 10−25 − 10−27 e · cm, assuming that

the supersymmetric particles have masses around .1 − 1 TeV and the CP-violating phase

for the interaction is in the range of sinφCP ∼ .1− 1 [54]. This model has been fairly well

constrained by the ACME I and previous EDM measurements. The Split Supersymmetric

model (SSUSY) has leading order contributions to the electron EDM at 2-loop order [15,

54,66] which predicts an electron EDM in the range of 10−27−10−29e · cm with comparable

assumptions. A large swath of the parameter space in this model was constrained by ACME

I.

2. Note that the limit we report here uses an updated value for Eeff = 78.4 GV/cm which is obtained by
averaging the results from references [61,154].
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ẽL

X

e

ẽ
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Ω =
∣∣∣
〈
ψf , P̃ |OE1 +OM1|ψiÑ
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ẽR

ẽL
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Figure 1.1: Comparison of Supersymmetric and Standard Model electron EDM predictions.
These predictions are depicted as leading order Feynman diagrams, where the electron EDM
appears as a modification in the interaction between the electron, e, and the electromagnetic
field, γ. Left: In the Minimal Supersymmetric Model (MSSM), the electron couples to the
selectron, ẽ, and generates an electron EDM at 1-loop order in the range of 10−25−10−27 e ·
cm [54] which has been experimentally excluded. Center: In Split Supersymmetry (SSUSY)
the leading contribution to the electron EDM is a Barr-Zee diagram [15,66] at 2-loop order
which is in the range of 10−27 − 10−29 e · cm which we partially excluded with ACME I.
Right: The Standard Model generates an electron EDM at 4-loop order (or higher) with a
magnitude smaller than 10−38 e ·cm [24]– since the Standard Model background is predicted
to be beyond current experimental sensitivity, any observed signal must come from physics
beyond the Standard Model.

From a more generic perspective, given a CP -violating phase φCP , and a sensitivity

δde to the electron EDM, we can estimate the mass scale Λ of new physics being probed,

according to the following formula for an n-loop process [54]:

Λ2 = e
me

δde

( α
4π

)n
sinφCP (1.2)

where e is the electron charge, me the electron mass, α is the fine structure constant, and

φCP is a CP -violating phase. Assuming that sin(φCP ) ∼ 1 [137], we find that the ACME I

result interrogates energy scales for one-loop processes up to around 10 TeV. Similar analysis

shows that our result was sensitive to two-loop effects up to around the 1 TeV mass scale.

While any such estimates are inherently model-dependent, with reasonable assumptions the

ACME I experiment is probing high energy physics at energy scales usually associated with

the largest particle accelerators with a very precise low energy experiment.
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1.3 Sensitivity of atoms and molecules to the electron EDM

The electron’s EDM, ~de, is a vector quantity that is aligned along (or against) the axis of

the electron’s spin, ~S [92]. By convention, we relate define the electron EDM vector as

~de = 2de~S, such that a measurement of any Cartesian component of ~de yields a value of

±de. (Here and throughout, we set ~ = 1.) For an electron moving non-relativistically, the

electron’s EDM interacts with an electric field ~E via the dipole Hamiltonian

HEDM = −~de · ~E ∝ ~S · ~E . (1.3)

Under time reversal, T , ~S reverses direction, but ~E is unchanged. Similarly, under space

inversion, P , ~S is unchanged, but ~E reverses direction. Hence HEDM is odd under P and

T , which implies that if a nonzero electron EDM is found, the theory of nature is T , and

P violating, and assuming CPT invariance, CP -violating as well. Hence a measured non-

zero EDM could contribute to an understanding of the observed Baryon asymmetry of the

universe as per the discussion in the previous section.

To measure the electron EDM, we can look for an energy shift due to the interaction

in equation 1.3. Since 1964, every improvement in experimental sensitivity to de has been

obtained by measuring this shift for electrons bound in neutral atoms or molecules [4, 33,

82,101,118,136,141,147,159,168]. This might seem surprising at first glance, since Schiff’s

theorem states that there can be no net electric field acting on a non-relativistic point

particle bound in a neutral system [149]. However, in 1958 Salpeter showed that, when

relativistic effects are taken into account, a neutral species can experience an energy shift

due to an electron EDM when an external electric field Eext is applied [145]. In 1965 Sandars

showed, that the size of the resulting energy shifts can be much larger than deEext [146],

resulting in an enhancement in sensitivity when using bound electrons over free ones.

More detailed explanations of the evasion of Schiff’s theorem can be found elsewhere,

e.g. [34, 36, 92], but we summarize the basic principle here. The relativistic interaction

between the electron EDM and an electric field ~E and magnetic field ~B is given by the Dirac

Hamiltonian,

HEDM = −de(γ0~Σ · ~E + i~γ · ~B), (1.4)

acting on 4-component spinors where γµ = (γ0, ~γ) are the Dirac gamma matrices, and
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~Σ = γ0γ5~γ is the relativistic spin operator. Neglecting the relativistic interaction between

the electron EDM and the magnetic field, expanding the Dirac wavefunction in terms of

plane waves with well defined velocity ~β = ~v/c, and projecting on the electron subspace

of the 4-component Dirac spinor, this interaction takes the form of a relativistically length

contracted electron EDM interacting with an applied electric field,

HEDM = −2de

(
~S − γ

1 + γ
~β · ~S~β

)
· ~E , (1.5)

where γ is the Lorentz factor. The first term in this expression is the non-relativistic

EDM interaction that vanishes by Schiff’s theorem. The second, relativistic term results

in non-zero energy shifts to the bound states in atoms and molecules which are typically

parameterized in analogy to equation 1.3,

〈HEDM〉 ≡ −〈~de〉 · ~Eeff . (1.6)

where ~Eeff is the sensitivity of a given state to the existence of the electron’s EDM in a

given species. Detailed calculations show that this “effective electric field” within an atom

or molecule can be significantly larger in magnitude than the applied external field. The

size of Eeff is maximal for systems where a valence electron has significant wavefunction

amplitude near a highly-charged nucleus. In such species with a nucleus of atomic number

Z, Eeff scales approximately as [92]

Eeff ∝ PEZ3R(Z), (1.7)

where PE ∈ [0, 1) is the degree of electric polarization of the state and R is a relativistic

factor that is roughly constant for Z � α−1, but grows quickly as Z approaches α−1

[34, 42, 78, 92]. For fully polarized systems with Z ≈ 90 (as with our molecule of choice,

ThO), the effective electric field can reach values as large as Eeff ≈ 100 GV/cm. In practice,

the maximum polarization attainable with atoms, even in the highest laboratory static

electric fields (∼ 100 kV/cm), is PE ∼ 10−3. Nevertheless, this can lead to values of Eeff

nearly 1,000 times larger than the applied laboratory field (e.g. Eeff∼ 70 MV/cm in Tl

atoms [141]). Using this kind of enhancement, the limit on de was reduced by six orders of

magnitude by the first atom-based electron EDM measurement [147]. Further improvement
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is afforded by working with polar molecules, which can be completely polarized, PE ∼ 1

due to having much more closely spaced levels of opposite parity, which are associated with

their rotational motion [34, 42, 78]. In ThO, the effective electric field has been calculated

to be about Eeff ≈ 78.4 GV/cm [61,154].

To measure the electron’s EDM, the electron spin3 is prepared in a superposition of

states parallel and antiparallel to ~Eeff . After an interaction time τ , the energy shift in

equation 1.3 produces a relative phase accumulation 2φEDM = −2deEeffτ between these

states. Colloquially, we frequently speak of the experiment in analogy to a classically

precessing top. We can think of the prepared spin state, the top, as having been aligned

orthogonal to ~Eeff , which plays the role of the gravitational force, which then results in a

spin precession about ~Eeff by an angle φEDM.

For a shot-noise-limited measurement, the uncertainty in the electron EDM, δde, is given

by

δde =
(

2τEeff

√
N
)−1

, (1.8)

where N is the number of measurements. The large values of Eeff accessible in many

molecules have motivated several recent electron EDM searches [49,82,105].

1.4 Thorium monoxide for an electron EDM search

Thorium monoxide (232Th16O) has a number of properties that make it well-suited to an

electron EDM measurement, both by enhancing statistical sensitivity and by suppressing

systematic errors relative to previous measurements [82, 141]. We performed our measure-

ments in the H electronic state of ThO, which has two valence electrons in a (σδ)3∆1

molecular state. Such states were first proposed for use in an electron EDM measurement

in reference [113]. The σ orbital valence electron wavefunction has a large amplitude near

the heavy Th nucleus, facilitating the relativistic speeds required for a large electron EDM

sensitivity, Eeff , as described in section 1.3. The H state of ThO has one of the largest

calculated values of Eeff ≈ 78 GV/cm [61,154]. We note that the value of Eeff in our exper-

iment with ThO is more than 5 times larger than that attained in experiments using YbF,

which set the previous best electron EDM limit [5,116,148] before the ACME I result, and

3. the spin of the valence electron with large wavefunction overlap with the heavy nucleus
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over 1,000 times larger than that in experiments using Tl atoms [141].

All 3∆1 states have very small magnetic moments [76] since the δ3/2 orbital valence

electron serves to nearly cancel the magnetic moment of the σ1/2 orbital. The actual

magnetic moment of H deviates from zero primarily because of mixing with other states

on the 1% level [135]. We express ThO molecule states using the basis |Y, J,M,Ω〉, where

Y is the electronic state, J is the total angular momentum, M is the projection of J onto

the laboratory ẑ-axis, and Ω is the projection of the electronic angular momentum onto

the internuclear axis, n̂, which points from the lighter nucleus (O) to the heavier nucleus

(Th). We used the |H,J = 1,M, |Ω| = 1〉 rotational manifold for our measurement, for

which the magnetic moment is µH,J=1 = gH,J=1µB, where gH,J=1 = −0.00440(5) is the

associated g-factor [135, 167] and µB is the Bohr magneton. This small g-factor, generic

to all molecules with this structure, ensures that the H state is particularly insensitive to

spurious magnetic fields that could cause systematic errors.

States with nonzero Ω, |Ω| > 0, have closely spaced pairs of opposite-parity levels with

identical values of J and M , called “Ω-doublets” (also referred to as Λ doublets), which are

split by energy ∆A,J (where A is the electronic state and J is the total angular momentum)

due to the Coriolis effect in the rotating molecule [27,75,102]. The application of an electric

field ~E mixes the M 6= 0 opposite-parity levels via the Stark interaction, − ~D · ~E , where D

is the electric dipole operator, and from here on ~E is the applied (laboratory) field. In the

limit |〈 ~D〉 · ~E| � ∆A,J , the molecule is fully polarized, the internuclear axis is nearly aligned

or anti-aligned with the applied electric field, and the alignment orientation is described

by quantum number Ñ ≡ Ê · n̂ = ±1. This structure is shown for the H state of ThO in

figure 1.2.

The use of molecules with Ω-doublet structure for an electron EDM measurement, first

explored in in the context of experiments using PbO for such a measurement [41, 42], is of

great importance to our experiment. The |H,J = 1〉 manifold has an Ω-doublet splitting

∆H,J=1 ≈ 2π × 360 kHz4 [86] and an electric dipole moment DH,J=1 ≡ |〈H,J = 1,M =

±1,Ω| ~D · ẑ|H,J = 1,M = ±1,Ω〉| ≈ 2π × 1 MHz/(V/cm) [77]; this permits full (>99%)

polarization of the state in small applied electric fields, E > 10 V/cm, allowing us to take

full advantage of the large Eeff in ThO. The Ω-doublet structure is also useful in rejecting

4. Throughout the paper, we give numerical values of energies (with ~ = 1) in terms of angular frequencies
by using the notation 2π × f , where f is a linear frequency in units of Hz.
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systematic errors since it allows for spectroscopic reversal of ~Eeff ∝ −n̂ by addressing differ-

ent Ñ states without reversing the applied electric field, thereby reversing the sign of the

electron EDM energy shift [90]. This is discussed in greater detail in section 3.3.

The H state in ThO is metastable with a lifetime ≈ 1.8 ms [165], limiting our measure-

ment time to τ ≈ 1 ms. We note that this is comparable to previous beam-based eelectron

EDM measurements where the atomic/molecular states used had significantly longer life-

times [82,140,165], but shorter than the precession times now being observed in trap-based

EDM experiments [23,108].

As with many other species, ThO proved nicely compatible with a new approach to

creating molecular beams, the hydrodynamically enhanced cryogenic buffer gas beam [87,

111, 132]. This method provides a cold, high-flux and low-divergence beam [88] yielding a

large number of molecules in the few lowest-lying quantum states. The molecule beam’s

forward velocity (≈ 180 m/s) was also lower than a typical supersonic beam, which helped

minimize the apparatus length for a given coherence time.
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Figure 1.2: Energy level diagram of the states in the |H,J = 1〉 state manifold in ThO in
the presence of a fully polarizing electric field, ~E . In the absence of applied fields, opposite-
parity states |H,J = 1,M, P̃〉 ≡ |H,J = 1,M〉(|Ω = −1〉 − P̃|Ω = +1〉)/

√
2, where P̃ = ±1

is the state parity, are separated by energy ∆H,J=1 ≈ 2π × 360 kHz. For each M = ±1,
the two P̃ = ±1 states are nearly fully mixed by an electric field E > 10 V/cm. These fully
polarized states are approximately given by |H,J = 1,M, Ñ 〉≈|H,J = 1,M,Ω = MÑ Ẽ〉
where Ñ = ±1 denotes the alignment orientation of the molecule with respect to the applied
electric field. The Stark, Zeeman, and electron EDM energy shifts are depicted for the states
|H,J = 1,M = ±1, Ñ = ±1〉 with the black, red, and light blue arrows respectively. The
orientation of ~Eeff (green arrows), the spin of the valence electron in the σ orbital (black
arrow next to molecule), the external electric field ~E , and the external magnetic field ~B are
shown relative to the laboratory ẑ direction which is oriented upwards on the page.
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Measurement Scheme and Data

Analysis

“Did I do anything wrong today,” he
said, “or has the world always been like
this and I’ve been too wrapped up in
myself to notice?”

Douglas Adams, The Hitchhiker’s
Guide to the Galaxy

2.1 The spin precession measurement

We performed a spin precession measurement, resembling previous beam-based electron

EDM experiments [33, 82, 141], on 232Th16O molecules in a pulsed molecular beam gener-

ated by a cryogenic buffer gas beam source. Figure 2.1 shows a simplified schematic of

the ACME I apparatus and figure 2.3 illustrates the measurement scheme for the ACME I

spin precession measurement. The molecules fly at velocity v ≈ 180 m/s into a magneti-

cally shielded region with nominally uniform and parallel electric ~E and magnetic ~B fields.

Molecule population is transferred from |X1Σ+, J = 1,M = ±1〉 in the electronic ground

state to the metastable |H,J = 1,M = ±1,Ω = ±Ñ Ẽ〉 ≡ |±, Ñ 〉 state manifold (in the

|±, Ñ 〉 nomenclature we use ± to refer to M = ±1) by optical pumping through the short-

lived |A3Π0+ , J = 0,M = 0〉 state with a 943 nm laser, which partially decays to |H〉. This

results in an even distribution of population in an incoherent mixture of the four |±, Ñ 〉
states in H. Figure 2.2 shows the electronic states of ThO and transition wavelengths

relevant to the electron EDM measurement in ACME I and II.
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Figure 2.1: A schematic of the ACME I apparatus. A beam of ThO molecules was pro-
duced by a cryogenic buffer-gas-cooled source. After exiting the source, the molecules were
rotationally cooled via optical pumping and microwave mixing and then collimated before
entering a magnetically shielded spin-precession region where nominally uniform magnetic
and electric fields were applied. Using optical pumping, the molecules were transferred into
the H state and then prepared into a coherent spin state. The spin precesses for a distance
of ≈ 22 cm and is then read out via laser-induced fluorescence. The fluorescence photons
were collected by lenses and passed out of the chamber for detection by photo-multiplier
tubes (PMTs).

Our experiment coordinate system, depicted in both figures 2.1 and 2.3, is defined as

follows: The ẑ direction is fixed in the lab and is either aligned or anti-aligned with respect

to the applied electric field ~E , with the relative orientation specified by Ẽ = Ê · ẑ = ±1. x̂ is

specified approximately by the velocity of the molecule beam x̂ ≈ v̂, but is constrained to

be perpendicular to ẑ. +ŷ is approximately aligned with acceleration due to earths gravity,

but is also specified to be perpendicular to ẑ and x̂. These three Cartesian coordinate

directions constitute a right handed orthogonal coordinate system. Just as we defined Ẽ to

specify the orientation of the applied electric field relative to ẑ, we also define the direction

of the applied magnetic field by B̃ ≡ sgn(ẑ · ~B) = ±1. Since the directions of the fields are

encoded by Ẽ and B̃, we define the magnitudes of the fields along the ẑ direction simply as

Bz ≡ |Bz| and E ≡ |~E|.
A superposition of the M = ±1 sub-levels in |H,J = 1〉 is prepared by optically pumping

on the X → C transition at 1090 nm between states |±, Ñ 〉 and |C1Π1, J = 1,M = 0〉(|Ω =

+1〉 − P̃|Ω = −1〉)/
√

2 ≡ |C, P̃〉, where P̃ = ±1 is the excited state parity, with laser

light linearly polarized in the xy plane. The state preparation laser frequency is tuned to

spectroscopically select the molecule alignment Ñ , while the nearly degenerate M = ±1

states remain unresolved. The excited state C, which decays at a rate γC ≈ 2π × 0.3

13
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Figure 2.2: Levels and transitions in ThO used in our measurement of the electron EDM,
based on [51, 133, 165]. Solid blue lines denote electronic states and the transparent blue
lines denote vibrationally excited states corresponding to those excited states. Black lines
indicate transitions that are relevant to either ACME I or ACME II, labeled by the transition
wavelength in nm.

MHz, decays primarily (≈ 70 % [77]) to the ground state, and has negligible decay back to

|H〉, so that one superposition of the two |±, Ñ 〉 states is optically pumped out of H and

the remaining orthogonal superposition, which is “dark” to the preparation laser beam, is

the prepared state. The linear polarization of the state preparation laser beam, ε̂prep, sets

the relative coupling of each of the two |±, Ñ 〉 states to |C, P̃〉 and determines the spin

alignment angle of the remaining state in the laboratory frame. The bright superposition

|B(ε̂prep)〉 is pumped away, and the orthogonal dark superposition |D(ε̂prep)〉 remains.

For the moment, we consider the specific case P̃ = +1 and ε̂prep = x̂, (the general case

will be discussed in section 2.2). In this case, the prepared state

|ψ(t = 0), Ñ 〉 =
1√
2

(|+, Ñ 〉 − |−, Ñ 〉) (2.1)
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has the electron spin aligned along the ŷ axis. As the molecules traverse the spin precession

region of length L = 22 cm (which takes a time τ ≈ 1 ms), the electric and magnetic fields

exert torques on the electric and magnetic dipole moments, causing the spin to precess in

the xy plane by angle φ; this corresponds to the state

|ψ(t = τ), Ñ 〉 =
1√
2

(e−iφ|+, Ñ 〉 − e+iφ|−, Ñ 〉), (2.2)

where φ is given approximately by the sum of the Zeeman and electron EDM contributions

to the spin precession angles,

φ = −(B̃gH,J=1µBBz + Ñ ẼdeEeff)τ. (2.3)

The sign of the electron EDM term, Ñ Ẽ , arises from the relative orientation between ~Eeff

and the electron spin as illustrated in figure 1.2.

At the end of the spin precession region, we measure φ by optically pumping on the same

H → C transition with the linearly polarized state readout laser beam. The polarization

alternates rapidly between two orthogonal linear polarizations X̂ and Ŷ , such that each

molecule is subject to excitation by both polarizations as it flies through the detection

region, and we record the modulated fluorescence signals FX and FY from the decay of C

to the ground state at 690 nm. This procedure amounts to a projective measurement of the

spin onto X̂ and Ŷ , which are defined such that X̂ is at an angle θ with respect to x̂ in the

xy plane. To determine φ we compute the asymmetry,

A ≡ FX − FY
FX + FY

∝ cos[2(φ− θ)]. (2.4)

We set Bz and θ such that φ − θ ≈ (π/4)(2n + 1) for integer n, so that the asymmetry is

linearly proportional to small changes in φ and maximally sensitive to the electron EDM.

A simplified schematic of the experimental procedure just described is shown in figure 2.3.

By repeating the measurement of φ after having reversed any one of the signs Ñ , Ẽ
or B̃, we may isolate the electron EDM phase from the Zeeman phase. In practice, we

repeat the phase measurement under all 23 (Ñ , Ẽ , B̃) possible experiment states to reduce

the sensitivity of the electron EDM measurement to other spurious phases, and we extract

the phase φNE = −deEeffτ = φEDM. Here, we have introduced the notation φu, discussed in
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Figure 2.3: Simplified ACME I measurement scheme. 1. Molecules in the |X, J = 1〉 state
are optically pumped via the A state into |H,J = 1〉 by a retro-reflected (and offset in
x) laser beam (blue arrows into/out of page), polarized along x̂ and ŷ (blue arrows). 2.
Molecules from one of the Ñ states are then prepared in a superposition of M sub-levels
(M = −1, 0,+1 from left to right) by a linearly polarized laser beam (red) addressing the
H → C transition. This aligns the molecule’s angular momentum, ~J , which in turn aligns
the spin of the electron EDM-sensitive σ electron, which is on average aligned with ~J . 3.
The angular momentum (and hence electron spin) then precesses due to the electric and
magnetic fields present (into the page) by an angle φ. This precession is dominated by the
magnetic interaction but also includes a term linear in de (see equation 2.3). 4. The spin
state is projected onto orthogonal superpositions of theM sublevels by laser beams polarized
along X̂, Ŷ (red arrows). The resulting fluorescence is determined by the population in each
superposition state and hence the precession angle φ. Here, the numbers next to the energy
levels denote quantum number J .

detail in the next section, which we use throughout this document to refer to the component

of φ that is odd under the set of switches listed in the superscript u, and implicitly even

under those which are not listed (see section 2.2 and equation 2.16 for a rigorous definition).

A component which is even under all switches is considered to be “non-reversing” and is

given an “nr” superscript.

2.2 Experimental switching scheme to extract the electron

EDM

To fully describe the method by which we extracted de from the data in section 2.3, and to

describe the systematic error models in section 3, we must introduce some additional for-

malism to describe the spin precession measurement to generalize the simple case described

in the previous section.
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We work in the regime in which the Stark shift in |H,J = 1,M, Ñ 〉 is approximately

linear, EStark ≈ −ÑDH,J=1|E|, which holds when the Stark interaction energy is large

compared to the Ω-doublet energy splitting ∆H,J=1 but small compared to the rotational

splitting, described by the H-state rotational constant BR,H ≈ 2π× 9.8 GHz, i.e. ∆H,J=1 �
DH,J=1E � BR,H . In this regime, the molecular alignment is approximately related to

Ω by Ñ = sign(ẼMΩ); this relation is assumed throughout this document. This is a

good approximation, but it is notable that due to the Stark interaction at first order in

perturbation theory, each |M, Ñ 〉 state is a superposition of all four |H,J,M,Ω〉 states with

J = 1, 2 and Ω = ±1. This effect is discussed further in sections 4.2.3 and 5.6.1.

Let us consider the initial preparation of the spin-aligned state again. Starting from an

incoherent mixture of the four |±, Ñ 〉 states, we perform optical pumping on the electric

dipole transition between |±, Ñ 〉 and |C, P̃〉, for a specific Ñ , with laser light of polarization

ε̂prep that is nominally linear in the xy plane. This step depletes the bright superposition

state (see e.g. [21])

|B(ε̂prep), Ñ , P̃〉 = (ε̂∗+1 · ε̂∗prep)|+, Ñ 〉 − P̃(ε̂∗−1 · ε̂∗prep)|−, Ñ 〉, (2.5)

where ε̂±1 = ∓ (x̂± iŷ) /
√

2 are unit vectors for circular polarization. The corresponding

dark state (with which the laser does not interact) is the orthogonal superposition

|D(ε̂prep), Ñ , P̃〉 = (ε̂∗+1 · ε̂prep)|+, Ñ 〉+ P̃(ε̂∗−1 · ε̂prep)|−, Ñ 〉. (2.6)

This dark state serves as the initial state, |ψ(0), Ñ 〉 = |D(ε̂prep), Ñ , P̃prep = +1〉, for the

spin-precession experiment, where we fixed the state preparation laser frequency to address

the excited state with parity P̃prep = +1. The state preparation laser polarization can be

parameterized as

ε̂prep = −e−iθprep cos Θprepε̂+1 + e+iθprep sin Θprepε̂−1, (2.7)

where Θprep ≈ π/4 defines the ellipticity Stokes parameter (S3/I)prep = cos 2Θprep ≈ 0, and

θprep defines the linear polarization angle with respect to x̂ in the xy plane. From here on,

we refer to the ellipticity Stokes parameter as S ≡ S3/I, for convenience of notation. There

is a one-to-one correspondence between the dark state superposition and the projection of
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the laser polarization ε̂prep onto the xy plane. If the laser polarization does not lie entirely

in the xy plane, equations 2.5 and 2.6 are still appropriate, but require normalization. Note

that if the laser is linearly polarized, switching the excited state parity P̃ has the same

effect on the dark state as rotating the laser polarization angle by π/2.

Following the initial state preparation, the molecules traverse the spin-precession region

with their forward velocity nominally along x̂. In this region there are nominally uniform

and parallel electric (~E) and magnetic ( ~B) fields, which produce energy shifts given by

E(M, Ñ ) = −|MDH,J=1E|Ñ −MgH,J=1µBBzB̃−MηH,J=1µB|E|BzÑ B̃−MdeEeffÑ Ẽ , (2.8)

where DH,J=1 is the electric dipole moment of |H,J = 1〉. Here ηH,J=1 = 0.79(1) nm/V

accounts for the E-dependent magnetic moment difference between the two sets of Ñ levels

in |H,J = 1〉 [135], as described in section 4.4. The energy shift terms that depend on the

sign of M contribute to the spin precession angle φ, which is given by:

φ =
1

2

∫ L

0
(E(M = +1, Ñ )− E(M = −1, Ñ ))

dx

v
. (2.9)

This phase is dominated by the Zeeman interaction phase. The Stark shift, proportional to

|M |, does not contribute. The state then evolves to:

|ψ(τ), Ñ 〉 =
(
e−iφ|+, Ñ 〉〈+, Ñ |+ e+iφ|−, Ñ 〉〈−, Ñ |

)
|ψ(0), Ñ 〉, (2.10)

(recall |ψ(0), Ñ 〉 = |D(ε̂prep), Ñ , P̃prep = +1〉 per equation 2.6) and molecules enter a

detection region where the state is read out by optically pumping again between the

|H,J = 1,M, Ñ 〉 → |C, J = 1,M = 0, P̃〉. This optical pumping is performed alternately by

two laser beams with nominally orthogonal linear polarizations ε̂X and ε̂Y .1 These beams

excite the projection of |ψ(τ), Ñ 〉 onto the bright states

|B(ε̂X), Ñ , P̃〉 and |B(ε̂Y ), Ñ , P̃〉, (2.11)

(with the same Ñ that was addressed in the state preparation optical pumping step, but

with an independent choice of P̃) with probability PX,Y respectively. In the ideal case in

1. For convenience, the notation ε̂X , ε̂Y is used interchangeably with the previously used notation X̂, Ŷ .

18



Chapter 2. Measurement Scheme and Data Analysis

which all laser polarizations are exactly linear, this probability is given by

PX,Y =
∣∣∣〈B(ε̂X,Y , Ñ , P̃)|ψ(τ), Ñ 〉

∣∣∣
2

=
[
1− P̃ cos(2(θprep − θX,Y + φ))

]
/2, (2.12)

where θX,Y are the linear polarization angles of the state readout beams, with respect to x̂.

The result is a signal that varies sinusoidally with the precession angle φ and with the laser

polarizations θprep, and θX,Y . To measure these probabilities, we observe the associated

modulated fluorescence signals, FX,Y = fN0PX,Y , where N0 is the number of molecules in

the addressed Ñ level at the state readout region, and f is the fraction of total fluorescence

photons that are detected.

To distinguish between molecule number fluctuations and phase variations, we normalize

with respect to the former by rapidly switching the state readout laser between the two

orthogonal polarizations, ε̂X,Y , every 5 µs. This is significantly quicker than fluctuations in

the molecule number and is sufficiently quick that every molecule is interrogated by both

polarizations (see section 2.3 or [93] for more details). We then form an asymmetry A,

which is immune to molecule number fluctuations, given by

A =
FX − FY
FX + FY

= P̃ cos[2(φ− θ)], (2.13)

where we have assumed that the readout polarizations are exactly orthogonal, given by

θX = θread and θY = θread + π/2, and where we have defined θ ≡ θread − θprep.2 In this

equation and from now on unless otherwise noted, P̃ refers to the excited state parity that

is addressed by the state readout laser, not to be confused3 with the excited state parity

addressed by the state preparation laser, which is kept fixed with P̃prep = +1.

The value of Bz and the state preparation and readout laser beam polarizations are

chosen so that |φ−θ| ≈ π/4. This corresponds to the linear part of the asymmetry fringe in

equation 2.13, where A is most sensitive to, and linearly proportional to, small changes in φ.

A variety of effects including imperfect optical pumping, decay from C back to H, elliptical

laser polarization and forward velocity dispersion, reduce the measurement sensitivity by a

2. Note that this reduces to equation 2.4 for θprep = 0 (i.e. ε̂prep = x̂) and P̃ = +1.

3. The symbol P̃ plays three roles in this document in actuality and we try to make it clear what we mean
at each instance. 1.) it specifies the parity of a given state, 2.) it specifies one of the two opposite parity
states in the excited state |C, J = 1,M = 0, P̃〉, 3.) it specifies which of the two |C, J = 1,M = 0, P̃〉 states
is being addressed by the state read-out laser.

19



Chapter 2. Measurement Scheme and Data Analysis

“contrast” factor

C ≡ −1

2

∂A
∂θ
≈ 1

2

∂A
∂φ

, (2.14)

with |C| ≤ 1. We measure this parameter by dithering θ = θnr + ∆θθ̃ (where θnr is the

average or non-reversing polarization angle) between states of θ̃ = ±1, with amplitude

∆θ = 0.05 rad by changing the polarization angle of the state read-out lasers. We found

that typically |C| ≈ 0.94. We then extract the measured phase, Φ = A/(2C) + qπ/4,

by normalizing the asymmetry measurements according to the measured contrast — see

section 2.3 for more details on the data analysis methods used to evaluate this quantity.

In the ideal case, the measured phase matches closely with the precession phase, Φ ≈ φ.

However, a variety effects that are discussed in section 4 lead to slight deviations between

these two quantities, which can contribute to systematic errors in the measurement. Unless

explicitly specified, C is assumed to be an unsigned quantity from here on. In particular,

when averaging over multiple states of the experiment, |C| is used.

To isolate the electron EDM term from other components of the energy shift in equa-

tion 2.8, the experiment is repeated under different conditions that are characterized by pa-

rameters whose sign is switched regularly during the experiment. The spin precession mea-

surement is repeated for all 24 experiment states defined by the four primary binary switch

parameters: Ñ , the molecular orientation relative to the applied electric field (changed every

0.5 s); Ẽ , the direction of the applied electric field in the laboratory (2 s); θ̃, the sign of the

readout polarization dither (10 s); and B̃, the direction of the applied magnetic field in the

laboratory (40 s). For each (Ñ , Ẽ , B̃) state, the asymmetry A(Ñ , Ẽ , B̃), contrast C(Ñ , Ẽ , B̃),

and measured phase Φ(Ñ , Ẽ , B̃) are determined as described earlier. The data taken under

all 24 = 16 experimental states derived from these four binary switches constitutes a block

of data.

We can write the phase Φ(Ñ , Ẽ , B̃) in terms of components with particular parity with

respect to the experimental switches:

Φ(Ñ , Ẽ , B̃) =Φnr + ΦN Ñ + ΦE Ẽ + ΦBB̃

+ΦNEÑ Ẽ + ΦNBÑ B̃ + ΦEBẼ B̃ + ΦNEBÑ ẼB̃. (2.15)

We refer to these components as switch-parity channels, or correlations between the phase

and certain experiment switches. A channel is said to be odd with respect to some sub-
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set of switches (labeled as superscripts) if it changes sign when any of those switches is

performed. It is implicitly even under all other switches. We use this general notation

throughout this document to refer to correlations of various measured quantities and exper-

imental parameters with experiment switches. To generalize, if we have k binary experiment

switches (S̃1, S̃2, . . . , S̃k) such that S̃i = ±1, and we perform a measurement of the param-

eter X(S̃1, S̃2, . . . , S̃k) for a complete set of the 2k switch states, then the component of X

that is odd under the product of switches
[
S̃aS̃b . . .

]
is given by

XSaSb... ≡ 1

2k

∑

S̃1...S̃k=±1

[
S̃aS̃b . . .

]
X
(
S̃1, S̃2, . . . , S̃k

)
. (2.16)

The switch parity behavior of a given component is expressed in the superscript which

lists the experimental switches with respect to which the component is odd. We order

the switch labels in the superscripts such that the fastest switches are listed first and the

slowest switches are listed last. Some components give particularly important physical

quantities. Most notably, the electron EDM precession phase is extracted from the Ñ Ẽ-

correlated component of the measured phase: that is, in the ideal case ΦNE = −deEeffτ .

Additionally, the Zeeman precession phase is nominally given by ΦB = −µBgH,J=1Bzτ .

Recall we label “non-reversing” components with an “nr” superscript. In a few cases, we

drop the superscript parity because it is redundant. For example, we drop the superscript on

the dominant components of the applied electric and magnetic fields, E ≡ EE and Bz ≡ BBz .

Many other experiment parameters are also varied between blocks of data to suppress

and monitor known systematic errors (figure 2.4). These “superblock” switches include:

excited-state parity addressed by the state readout laser beams, P̃ (chosen randomly after

every block, with equal probability of P̃ = ±1); simultaneous change of the power supply

polarity and interchange of leads connecting the electric field plates to their voltage supply,

L̃ (every 4 blocks); a rotation of the state readout polarization basis by θread → θread + π/2

to interchange the roles of the X̂ and Ŷ polarized state read-out beams, R̃ (every 8 blocks);

and a global polarization rotation of both state preparation and readout lasers by θread →
θread + π/2 and θprep → θprep + π/2, G̃ (every 16 blocks).

Additionally, the magnitude of the magnetic field, Bz, was switched on the timescale

of 64–128 blocks (∼ 1 hour), and the magnitude of the applied electric field, E , and the

laser propagation direction, k̂ · ẑ, were changed on timescales of ∼ 1 day and ∼ 1 week,
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respectively.

On these longer timescales, we also alternated between taking electron EDM data under

Normal conditions, for which all experiment parameters were set to their nominally ideal

values, and taking data with Intentional Parameter Variations (IPVs), during which some

experimental parameter was set to deviate from ideal so that we could monitor the size of

the known systematic errors described in section 3. We took IPV data in which we varied

(a) the non-reversing electric field Enr and (b) the Ñ Ẽ-correlated Rabi frequency, ΩNEr ,

to measure the sensitivity of the electron EDM measurement to these parameters and we

varied (c) the state preparation laser detuning ∆prep to monitor the size of the residual Enr

so that we would be able to identify changes in this quantity over time. These systematic

errors are discussed in more detail in sections 3 and 4.

The details of the data analysis required to extract the electron EDM-correlated phase

ΦNE are described in section 2.3. A lower bound on the statistical uncertainty δΦNE of

the electron EDM-correlated phase is given by photo-electron shot noise to be δΦNE =

1/(2|C|
√
N) for N detected photo-electrons [92, 164]. In the case where shot noise is the

sole contribution, we can express the statistical uncertainty δde in our measurement of the

electron EDM as

δde = δΦNE
1

Eeffτ
=

1

2|C|τEeff

√
ṄT

, (2.17)

where Ṅ ≈ fṄ0 is the measurement rate (equivalent to the photo-electron detection rate)

and T is the integration time (recall f is the fraction of fluorescence photons detected and

N0 is the number of molecules in the addressed Ñ level).

2.3 Data Analysis

In this section I describe the data analysis routine used to extract the electron EDM value,

and other quantities, from our dataset of nearly 106 PMT fluorescence traces. The entire

analysis was implemented with a “blind” offset on the electron EDM channel such that

the channel’s mean value was not known by us until after all the data had been acquired

and the systematic error in the measurement had been determined. No analysis changes

were made after the blind was revealed. Several data cuts were applied to ensure that the

resulting electron EDM measurements would be nearly normally distributed and to filter

data that was not taken under normal operating conditions.
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Figure 2.4: A schematic of the switches performed during ACME I and the associated
timescales. See the main text for a description of each of the switch parameters and a de-
scription of the distinction between the Normal and IPV (Intentional Parameter Variation)
data types. The 15-hour run time and |E| switching timescale are approximate.
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2.3.1 Signal Asymmetry

As described in section 2.1, the accumulated phase Φ was read out by resonantly addressing

the H → C transition with linearly polarized light and monitoring the resulting fluorescence.

The state readout laser was switched between orthogonal polarizations, X̂ and Ŷ , at 100 kHz

(with 1.2 µs of dead time between polarizations) in order to normalize against molecular

flux variations. By switching at a rate fast enough such that each molecule experienced both

polarizations, we achieved nearly photon-shot-noise-limited phase measurements of some of

the correlated phase channels such as ΦNE [93]. With a sufficiently wide laser beam, all

molecules were completely optically pumped by both laser polarizations during their ∼20 µs

fly-through time. We induced approximately one fluorescence photon from each molecule

by projecting the molecule state onto the two orthogonal spin states excited by laser beams

with orthogonal polarizations.

The rapid switching of the laser polarization resulted in a modulated PMT signal, S(t),

as shown in figure 2.5. For the following discussion we consider the polarization state to

switch at a time t = 0. Immediately after, there is a rapid increase in fluorescence as the

molecules in the laser beam are quickly excited; while Ωrt� 1, where Ωr ∼ 2π × 1 MHz is

the Rabi frequency on the H to C transition, the fluorescence increases as S(t) ∝ (Ωrt)
2.

At later times, when Ωrt > 1, population is about evenly mixed between the H and C

states (since Ωr > γC); hence, S(t) decays exponentially with a time constant of roughly

1/(2γC) ≈ 1 µs. Molecules that were not present at t = 0 continue to enter the laser beam,

causing S(t) to approach a steady state. The laser is then turned off and the signal decays

exponentially with time constant 1/γC ≈ 0.5 µs. The next laser pulse, with orthogonal

polarization, is turned on 1.2 µs ≈ 2.5/γC after the end of the previous one to prevent

significant overlap of contributions to S(t) induced by different polarizations. A low-pass

filter in the PMT voltage amplifier with a cut-off frequency of 2π×2 MHz removed any time

dynamics from S(t) that are much faster than γC , and prevented aliasing of high frequency

components in the signal given our fixed digitization rate of the signal at 5 MSa/s.

To determine the laser-induced fluorescence F (t) produced by each polarization state,

we subtracted a time-dependent background signal, B(t′), taken from data with no molecule

fluorescence present, i.e. F (t) = S(t) − B(t′). Examples of the extracted F (t) and B(t′)

time series are shown in figure 2.5A and B, respectively. B(t′) was modulated in time
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due to scattered light from the state readout laser beam and has a DC electronic offset

intrinsic to the PMTs. The first millisecond of data, which contains no fluorescence, was

used to determine B(t′). We assumed that B(t′) was periodic with the switching of the

laser polarization but did not depend on the polarization; we inferred its value by averaging

together the recorded PMT signal across all polarization bins for ≈ 1 ms of data taken before

the arrival of the molecule pulse. Since molecule beam velocity variations caused jitter in

the temporal position of the molecule pulse within the trace, 9 ms of data were collected per

pulse, despite the fact that only the ≈2 ms of strong signal with F (t)� B(t′) and ≈ 1 ms

of background contained useful information for the spin precession measurement.

Integrating F (t) over times associated with pairs of orthogonally polarized laser pulses

resulted in signals FX , FY . The integration was performed over a specified time window

that we denote as a “polarization bin”. The bottom of figure 2.3.4 shows the blinded

measurements of the electron EDM, taken during the course of our searches for systematic

errors, for different choices of polarization bin and illustrates that the extracted electron

EDM is not significantly affected by this choice. Figure 3.5 shows that most of the extracted

quantities did not vary linearly within the polarization bin (Pol. Cycle Time Dependence

column).

After polarization binning, the data displayed a fluorescence signal modulated by the

envelope of the molecule pulse, as in figure 2.5C. Figure 2.5D shows the asymmetry, A,

computed from these data. The asymmetry is computed for each 10 µs polarization cycle,

so that for the ith cycle we have

Ai =
FX,i − FY,i
FX,i + FY,i

. (2.18)

The molecule phase, and hence asymmetry (see equation 2.4), had a linear dependence on

the time after ablation because the molecules precessed in a magnetic field over a fixed

distance; the slower molecules, which arrive later, precessed more than the faster molecules,

which arrived earlier. We applied a fluorescence signal threshold cut of around F = (FX +

FY )/2 ≥ 3× 105 s−1, indicated by dashed lines in figure 2.5C,D. Section 2.3.3 describes the

threshold choice in detail.

To determine the statistical uncertainty in A, I grouped n ≈ 18 adjacent asymmetry

points together. For each group, j, centered around a time after ablation tj , we calculated
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Figure 2.5: (A) Molecule fluorescence signal F (t) in photo-electrons/s induced by X̂ (blue)
and Ŷ (red) readout laser polarizations. Lines show the raw data for a single trace consisting
of an average of 25 molecule pulses. Shaded regions show the waveform averaged over 16
traces. (B) Background signal B(t′) in photo-electrons/s obtained before the arrival of
molecules in the state readout region. (C) Integrated fluorescence signals FX and FY
throughout the molecule pulse. Dashed lines denote the region with F = (FX + FY )/2 >
3× 105 s−1, used as a typical cut for inclusion in electron EDM data. Points are spaced by
5 µs. (D) Computed asymmetry throughout the molecule pulse. In this example, 18 of the
ungrouped asymmetry points are grouped together to compute the mean and uncertainty
shown as the grouped asymmetry.
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the mean, Āj , and the uncertainty in the mean, δĀj , depicted as red points and error bars

in figure 2.5D. For smaller n, the variance in the sample variance in the mean grows, in

which case, error propagation that utilizes a weighted mean of data ultimately leads to an

underestimate of the final statistical uncertainty [91]. For larger n, the mean significantly

varies within the group due to velocity dispersion, and the variance in the mean grows in

a manner not determined by random statistical fluctuations. For the range n = 15-30 we

observed no significant change in any quantities which were deduced from the measured

asymmetry.

As described earlier in this section, the background, B(t′), which we subtracted from the

PMT signal, S(t), was observed to be correlated with the fast switching of the readout laser

beam polarization. This can arise, for example, if the two polarizations have different laser

beam intensities or pointings. We chose to use a polarization independent B(t′) by averaging

over the two polarization states, despite observing significantly different background signals

for the two polarization states; we did this so that the uncertainty in the background

asymmetry, which was not well characterized, would not contribute to the uncertainty in

the signal asymmetry [124]. This choice produced an asymmetry offset as per equation 2.18

and hence a significant shift to Φnr associated with the polarization-dependent background.

However, we did not consider Φnr to be a crucial physical or diagnostic quantity. We

found that this methodology produced accurate estimates of the uncertainties of quantities

computed from the measured asymmetry, as verified by χ2 analysis of measurements of ΦNE .

We also found that none of the phase channels of interest changed significantly dependent

on whether a polarization-dependent B(t′) was used.

2.3.2 Computing Contrast and Phase

To compute the measured phase Φ we must also measure the fringe contrast C and relative

laser polarization angle θ = θread − θprep, as described in section 2.1. The X̂ and Ŷ laser

polarizations were set by a λ/2 waveplate and were determined absolutely by auxiliary

polarimetry measurements [77]. The contrast, defined as either 2C = −∂A/∂θ or 2C =

∂A/∂φ4, can be determined by dithering either the accumulated phase φ (by varying Bz)
or the relative laser polarization angle θ. We chose the latter as it could be changed quickly

4. Recall that in practice we consider C as an unsigned quantity for the purposes of data analysis.
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(< 1 s) by rotating a half-wave plate with a stepper-motor-driven rotation stage in the state

read-out laser beam path. We ran the experiment at the steepest part of the asymmetry

fringe and measured the contrast, Cj , for each asymmetry group, Āj , by switching θ between

two angles, θ = θnr + ∆θθ̃, for θ̃ = ±1 and ∆θ = 0.05 rad:

Cj = −Āj(θ̃ = +1)− Āj(θ̃ = −1)

4∆θ
. (2.19)

The fringe contrast was fairly constant over the duration of the molecule pulse (fig-

ure 2.6A), but did exhibit statistically significant variation that was not well understood.

Since the contrast did vary over this timescale, we might have liked to normalize the mea-

surement of each asymmetry group by the corresponding contrast group. Unfortunately,

when only n = 18 points were averaged together the fractional uncertainty in the contrast,

δC/C is sufficiently large to significantly increase in the uncertainty in the measured phase

relative to the measured asymmetry. As an alternative, I fit Cj to a 2nd-order polynomial

as a function of time during the ablation pulse. This lead to a good fit to the data and

negligible increase in the uncertainty of the phase measurement relative to the asymmetry.

We typically found |C| ≈ 95%. We believe that this was limited by a number of effects

including: imperfect state preparation/readout, decay from the C state back to the H state

and dispersion in the spin precession. We also observed that this value was constant over a

±2π×1 MHz detuning range of the state preparation laser (figure 2.6B), indicating complete

optical pumping over this frequency range. Recall that, as defined, C can be positive or

negative, depending on the sign of the asymmetry fringe slope. Given that we worked near

zero asymmetry where the fringe slope was steepest, and that θnr was always chosen to be

0 or π/4, we computed the total accumulated phase as

Φj =
Āj(θ̃ = +1) + Āj(θ̃ = −1)

4C + q
π

4
. (2.20)

Here, q = 0,±1 or ±2, corresponds to applied magnetic fields of ± 1
20Bπ/4, ±Bπ/4, and

±2Bπ/4 mG, respectively, where Bπ/4 = π/4
µBgH,J=1τ

≈ 20 mG. We chose to apply a small

magnetic field, B = 1 mG when operating at q = 0 rather than turning off the magnetic

field completely so that we would not need to change the experimental switch sequence or

data analysis routine for data taken under this condition.
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Figure 2.6: (A) Contrast vs time after ablation, averaged over 64 traces. The signal thresh-
old window is indicated by dashed lines (cf. figure 2.5). (B) Contrast vs preparation laser
detuning. Error bars were computed as the standard error associated with 64 averaged
traces. The solid line is a fit of the form C = a tanh(bγ2

C/(4∆2
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C)), motivated by
solution of a classical rate equation.

Accounting for Correlated Contrast

It was possible for the magnitude of the contrast |C| to vary between different experimental

states. For example, if the state preparation laser detuning or fluorescence signal back-

ground were correlated with any of the block switches Ñ , Ẽ , or B̃, then contrast would

also be correlated with those switches. As described in section 3, we observed both Ñ -

and Ñ Ẽ-correlated contrast. The latter was particularly troubling since it could lead to

a systematic offset in the measured electron EDM if not properly accounted for: since

A = C cos[2(φ− θ)], a nonzero ANE could occur due to either CNE or φNE . We accounted

for contrast correlations by calculating C separately for each combination of Ñ , Ẽ , and B̃
experimental states (“state-averaged” contrast5):

Cj(Ñ , Ẽ , B̃) =
Āj(θ̃ = +1, Ñ , Ẽ , B̃)− Āj(−θ̃ = −1, Ñ , Ẽ , B̃)

4∆θ
. (2.21)

As previously discussed, I applied a quadratic fit to all Cj(Ñ , Ẽ , B̃) within a molecule pulse

to compute C̄j(Ñ , Ẽ , B̃). The precession phase was calculated from each state-specific asym-

metry and contrast measurement (cf. equation 2.19):

Φj(Ñ , Ẽ , B̃) =
Āj(Ñ , Ẽ , B̃)

2C̄j(Ñ , Ẽ , B̃)
+ q

π

4
, (2.22)

5. Since there were 23 = 8 different Ñ , Ẽ , and B̃ states in each 64-trace block, 64/8 = 8 traces were
averaged together to determine the contrast for each experimental state.
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where

Āj(Ñ , Ẽ , B̃) =
Āj(θ̃ = +1, Ñ , Ẽ , B̃) + Āj(θ̃ = −1, Ñ , Ẽ , B̃)

2
(2.23)

is the average asymmetry over the two θ̃ states in a data block that share identical values of

Ñ , Ẽ and B̃. By construction, phases computed from state-averaged contrast are immune

to contrast correlations. We also computed phases by ignoring contrast correlations (i.e.

treating contrast as independent of Ñ , Ẽ , B̃) and the result did not change significantly.

Computing Phase and Frequency Correlations

After extracting the measured phase Φj(Ñ , Ẽ , B̃), we performed the basis change described

in equation 2.16, from this experiment switch state basis to the experiment switch parity

basis, denoted by Φp
j , where p is a placeholder for a given experiment switch parity.

We observed that the molecule beam forward velocity, and hence the spin precession

time τj , fluctuated by up to 10% over a 10 minute time period. Since Bz and gH,J=1 are

known from auxiliary measurements to a precision of around 1%, we were able to extract

τj from each block from the Zeeman precession phase measurement, ΦBj = −µBgH,J=1Bzτj
(see section 2.2). Velocity dispersion caused τj to vary across the molecule pulse with

a nominally linear dependence on time after ablation, t, however we observed significant

deviations from linearity. Thus, I fit τj to a 3rd order polynomial in t in order to evaluate

τ̄j . Then, we evaluated the measured spin precession frequencies defined as

ωpj = Φp
j/τ̄j , (2.24)

for all phase channels p (see equation 2.15 for definition). We extracted the electron EDM

from ωNEj , which in the absence of systematic errors would be given by ωNE = −deEeff

independent of j.

From here on we will drop the j subscript that denotes a grouping of n adjacent asym-

metry points about a particular time after ablation tj ; it is implicit that independent phase

measurements were computed from many separate groups of data, each with different values

of tj across the duration of the molecule pulse. At the end of the analysis, and whenever it

was convenient to do so, we implicitly performed weighted averaging across the j subscript.

Other phase channels could be used to search for and monitor systematic errors, dis-

cussed in detail in sections 3 and 4, or to measure properties of ThO, as is the case with
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ωNB. The dominant contribution to this channel comes from Ñ dependent modification to

the g−factor that comes from rotational Stark mixing [21,86,135], discussed in section 4.4.

This channel,

ωNB = −µBηH.J=1|E|Bz,

provided a measure of ηH,J=1 = −0.79±0.01 nm/V, since |E| and Bz were well characterized.

2.3.3 Varying the analysis method

Three primary data cuts were applied as part of the analysis: fluorescence rate threshold,

polarization bin, and contrast threshold. These cuts made sure that we only used data

taken under appropriate experimental conditions (e.g. only when lasers remained locked

etc.) and thus ensured a high signal to noise ratio for the data used to extract the electron

EDM value. We thoroughly investigated how each of these cuts affected the calculated

electron EDM mean and uncertainty.

As previously mentioned, a fluorescence threshold cut of about Fcut ≈ 3× 105 s−1, was

applied to each trace (average of 25 molecule pulses) to ensure that the fluorescence rate

would always be larger than the background rate. This threshold was chosen to include

the maximum number of asymmetry points in our measurement while also excluding low

signal-to-noise asymmetry measurements that would increase the overall electron EDM

uncertainty, as described below. We also removed entire blocks (complete sets of Ñ ,Ẽ ,B̃,θ̃)

of data from the analysis if any of the block’s experiment states had < 0.5 ms of fluorescence

data above Fcut.

The count rates of uncorrelated fluorescence photo-electrons exhibit Poissonian statis-

tics. In each block we averaged together four traces with the same experimental configu-

ration. After such averaging, the number of detected photo-electrons within a pair of laser

polarization bins was > 50, which was large enough that the photo-electron number distri-

bution closely resembled a normal distribution. Because the asymmetry was defined as a

ratio of two approximately normally distributed random variables (FX −FY and FX +FY ),

its distribution was not necessarily normal. Rather, it approached a normal distribution in

the limit of large FX + FY [86]. The same followed for all quantities computed from the

asymmetry, including the electron EDM. The fluorescence threshold cut therefore ensured
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that the distribution of electron EDM measurements was very nearly normally distributed.

Including low-signal data would have caused the distribution to deviate from normal and

increase the overall uncertainty. To check that this signal size cut did not lead to a system-

atic error in our determination of ωNE we routinely varied this cut-point in the analysis. If

the cut was increased above 6×105 s−1 the mean value was seen to move slightly, but within

the computed uncertainties, and the uncertainty to increased as expected. However, for all

plausible values of the cuts the resulting value of ωNE was consistent, within uncertainties,

with our final stated value.

As described in section 2.3.1, data points within a polarization bin were averaged to-

gether when calculating the asymmetry (cf. figure 2.5A). These data points were separated

by 200 ns. Numbering these points from when the readout laser beam polarization is

switched, I binned points 0–25, but others performing the analysis [86, 158] used fewer

points, 5–20. I made this choice to minimize the statistical uncertainty in the result given

the lack of evidence for systematic errors that depended on time within the polarization

switching cycle. As shown in figure 2.3.4, we checked for systematic errors associated with

this choice by also using several different polarization bins to compute the electron EDM.

The uncertainty increased, as expected, for polarization bins that cut out data with sig-

nificant fluorescence levels, but the mean values were routinely consistent with each other

within their respective uncertainties.

In order for a block of data to be included in our final measurement, we also required

that each of the 8 (Ñ , Ẽ , B̃) experiment states had a measured fringe contrast above 80%.

The primary cause of blocks failing to meet this requirement was the state preparation

laser becoming unlocked. This cut resulted in less than 1% of blocks being discarded. If

the contrast cut was lowered, or not applied at all, the electron EDM mean and uncertainty

change by less than 3% of our statistical uncertainty. As with the signal threshold, if this

cut threshold was increased to 90%, close to the average value of contrast, C, then a larger

fraction of data was neglected and the electron EDM uncertainty was seen to increase.

For all the cuts discussed, we significantly varied the associated cut and in some cases

removed it entirely. The electron EDM mean and uncertainty were very robust against

significant variation of each of these cuts, and the cuts were chosen before the blind offset

applied to the electron EDM channel was removed.

As a mentioned, three of us [86, 158] performed independent analyses of the data. We
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each followed the general analysis method described above, but varied some of the small

details such as background subtraction method, cut thresholds, numbers of points grouped

together to compute asymmetry, polarization bin choice, etc. The analyses differed in the

polynomial order of the fits applied to both the contrast C and the precession time τ vs.

time after ablation t. The analyses also differed in the inclusion of a subset of the electron

EDM data that featured a particularly large unexplained signal in the ωN channel. Having

multiple analyses frequently proved useful in finding sign-errors and bugs in our respective

code, as we would frequently compare the results of data runs and flag instances where we

significantly disagreed.

Each of the three analyses independently computed the electron EDM channel and the

systematic error in the electron EDM channel. The uncertainties for all three routines were

nearly identical, and the means agreed to within ∆ωNE < 3 mrad/s, which is within the

statistical uncertainty of the measurement δωNE = ±4.8 mrad/s. The electron EDM mean

and uncertainty were averaged over the three analyses to produce the final result.

2.3.4 EDM Mean and Statistical Uncertainty

The final data set used to report our result is shown in figure 2.7. It consisted of ∼ 104

blocks of data taken over the course of ∼2 weeks (figure 2.7B); each block contains ≈ 20

separate electron EDM measurements distributed over the duration of the molecule pulse

(Figure 2.7A). All ≈ 2 × 105 measurements were combined with standard Gaussian error

propagation to obtain the reported mean and uncertainty. Figure 2.7C,D shows histograms

of all measurements on a linear (C) and log (D) scale, showing the distribution agrees

extremely well with a Gaussian fit. The resulting uncertainty was about 1.2 times that

expected from the photo-electron shot-noise limit, taking into account the photo-electron

rate from molecule fluorescence, background light, and PMT dark current. When the

electron EDM measurements were fit to a constant value, the reduced χ2 was 0.996± 0.006

where this uncertainty represents the 1σ width of the χ2 distribution for the appropriate

number of degrees of freedom.

When computing the electron EDM result, data from superblocks were averaged to-

gether. The mean could be either weighted or unweighted by the statistical uncertainty

in each superblock state. Weighted averaging minimized the resulting statistical uncer-

tainty, but unweighted averaging could suppress systematic errors that have well-defined
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Figure 2.7: The data set associated with our reported electron EDM limit. (A) Variations
in the extracted electron EDM as a function of position within the molecular pulse. (B)
Over 10,000 blocks of data were taken over a combined period of about two weeks. (C)-
(D) The distribution of ∼200,000 separate electron EDM measurements (black) matches
very well with a Gaussian fit (red). The same data is plotted with both a linear and a log
scale. In these histograms the mean of each individual measurement was normalized to its
corresponding error bar.

34



Chapter 2. Measurement Scheme and Data Analysis

280 300 320 340 360
−2.5

−2
−1.5

−1
−0.5

x 10−27 Blinded d
e
,mean:(−1.142±0.049)×10−27e cm

Run Index (~days)
Bl

in
de

d 
d e (e

 c
m

)

0 1000 2000 3000 4000 5000 6000

−5

0

5
x 10−27

Block Index (~minutes)

Bi
nd

ed
 d

e (e
 c

m
)

Serial Correlation: r = (2±11)×10−3, Reduced χ2 = (1.0376±0.0045)

Time after Ablation (ms)

Bl
in

de
d 

d e (e
 c

m
)

Line−�t slope: δ de/δ t = (−8.54±6.21)×10−29 e cm/ms

8 9 10 11 12 13 14 15

−1.5

−1

−0.5
x 10−27

time within polarization bin (µs)

Bi
nd

ed
 d

e (e
 c

m
)

0 1 2 3 4 5

−1.3

−1.2

−1.1

−1
x 10−27

x 10−27

Figure 2.8: Searches for variation of ωNE over many timescales spanning from µs to months
during the course of a large set of runs that constituted the searches for systematic errors.
This data includes the blind offset that had been applied to the measurement of de and is
presented in units of e · cm assuming a Eeff ≈ 100 GV/cm. Bottom: variation with choice of
polarization bin (µs timescale). Bottom Middle: variation with time within the molecule
pulse (ms timescale). Top Middle: variation with time between blocks (minute timescale).
Top: variation with time between systematic error search data runs (day timescale).
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superblock parity from entering into the extracted value for ωNE .

Due to molecule number fluctuations, each block of data had a different associated

uncertainty. However, roughly equal amounts of data were gathered for the 24 superblock

states defined by the state readout parity P̃, field plate lead configuration L̃, state readout

laser polarization R̃, and global laser polarization G̃. For the reported electron EDM value,

unweighted averaging (or to be precise, performing the basis change prescribed by equation

2.16) was used to combine data from the different P̃, R̃, L̃, G̃ experiment states, since there

were known systematic errors with well-defined superblock parity that were suppressed by

these switches. Note, however, that figure 3.5 shows that these systematic errors produced

no significant electron EDM shift, and that the overall uncertainty was comparable (within

10%) when the data was combined with weighted or unweighted averaging.

Unequal amounts of data were collected for the Bz, E , and k̂ · ẑ experimental states. For

example, 40% (60%) of data were gathered with the state preparation and readout laser

beams pointing east (west), k̂ · ẑ = −1(+1). To account for this, we performed state-by-

state analysis of the systematic errors: the primary systematic errors (described in section 3)

were allowed to depend on the magnitude of the magnetic field (though Bz = 1, 40 mG were

grouped together), and the pointing direction, and separate systematic error subtractions

were performed for each (Bz, k̂ · ẑ) state. After this subtraction, the systematic uncertainties

were added in quadrature with the statistical uncertainties for each state, and the data

from each state was averaged together weighted by the resulting combined statistical and

systematic uncertainties.

The reported statistical uncertainty was obtained via the method above assuming no

systematic uncertainty. The reported systematic uncertainty was defined such that the

quadrature sum of the reported statistical and systematic uncertainties gives the same

value as when incorporating the state-by-state analysis. A description of the methods used

to evaluate the systematic error and the systematic uncertainty in the measurement is

provided in section 3.6.1. To prevent experimental bias we performed a blind analysis by

adding an unknown offset to the mean of the electron EDM channel, ωNE . This blind offset

can be seen in a sample set of data that we took during our systematic error search data

runs in figure 2.3.4; the blind allows us to examine possible variations of the measurement

without knowing whether the actual measurement is consistent with zero or not. The offset

was randomly generated in software from a Gaussian distribution with standard deviation
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σ = 150 mrad/s and mean zero. The mean, statistical error, procedure for calculating the

systematic error, and procedure for computing the reported confidence interval were all

determined before revealing and subtracting the blind offset.
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Chapter 3

Systematic Error Search and

Characterization

“It is what you don’t expect,” he’d
said, “that most needs looking for.”

Neal Stephenson, Anathem

According to Sozzi [157], “The best way to handle systematic effects is not to have

any...”. This is good advice, and we designed the ACME experiment to be very resilient to

the systematic errors that had impacted electron EDM experiments in the past [164, 165].

However, we cannot ensure that those systematic errors that we are protected against

are the only ones that could appear in our experiment, so we performed an extensive

search for unforeseen systematic errors. After observing some, we developed models to

understand them, which are described primarily in section 4, and carefully quantified them

in auxiliary measurements. In this chapter I describe the search for and characterization

of these systematic errors. Note that additional details regarding this process may also be

found in these theses, [77, 86,158].

A true electron EDM should contribute to the Ñ Ẽ-correlated spin precession frequency,

ωNE , with a signal ωNET that does not vary with any experimental parameter. To discrim-

inate between a systematic error in ωNE and ωNET , we pursued a strategy to vary a large

number of experimental parameters and imperfections while closely monitoring ωNE . If

ωNE changes then there must be a systematic error correlated with that varied parameter.

During our search for systematic errors we varied parameters including applied electric and

magnetic fields, magnetic field gradients, molecule beam pointing, and laser beam shape,
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pointing, detuning, and polarization. In addition to monitoring ωNE , we monitored the

spin precession frequency ω, contrast C, fluorescence signal F , and a number of additional

experimental conditions such as molecule beam velocity, vacuum pressure and room tem-

perature. We examined the correlations of these quantities with the experiment switches to

determine whether there are any spurious signals that might point to unforeseen systematic

errors, or a gap in our understanding of the experiment.

3.1 Systematic error search

We varied more than 40 parameters during our systematic error search, and most of these

have been listed in table 3.1. These fall into two categories. Category I consists of param-

eters P which are zero in the idealized measurement scheme described in section 2.1. We

choose parameterizations such that P 6= 0 represents an experimental imperfection. We

were able to use experimental data to put a direct limit on the size of possible systematic

errors proportional to these parameters. Category II contains parameters that have no op-

timum value and which we could vary significantly without affecting the nature of the spin

precession measurement. The variation of these parameters could reveal systematic errors

and serve as a check that we understood the response of our system to those parameters,

but no quantitative bounds on the associated systematic errors were derived.

For each Category I parameter P , we exaggerated the size of the imperfection by a factor

greater than 10×, if possible, relative to the residual size of the imperfection under normal

operating conditions, P̄ , which was obtained from auxiliary measurements or based on

estimation. Following previous work [68,82,141], we assumed a linear relationship between

ωNE and P , and extracted the sensitivity of the ωNE to parameter P , ∂ωNE/∂P . The

systematic error under normal operating conditions was computed as ωNEP = (∂ωNE/∂P )P̄ .

The statistical uncertainty in the systematic error, referred to as the systematic uncertainty,

δωNEP was obtained from linear error propagation of uncorrelated random variables,

δωNEP =

√(
∂ωNE

∂P
δP̄

)2

+

(
P̄ δ

∂ωNE

∂P

)2

, (3.1)

where δP̄ is the uncertainty in P̄ and δ∂ωNE/∂P is the uncertainty in ∂ωNE/∂P .

For parameters that had been observed to produce statistically significant shifts in ωNE ,
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Table 3.1: Parameters varied during our systematic error search. Left: Category I Param-
eters — These are ideally zero under normal experimental running conditions and we were
able to vary them significantly relative to the residual size of the imperfection. For each of
these parameters direct measurements or limits were placed on possible systematic errors.
Right: Category II Parameters — These had no single ideal value. Although direct limits
on these systematic errors could not be derived, they served as checks for the presence of
unanticipated systematic errors. See the main text for more details on all the systematic
errors referenced.

Category I Parameters Category II Parameters

Magnetic Fields Laser Powers
- Non-reversing B-field: Bnr

z - Power of prep./read lasers
- Transverse B-fields: Bx,By Experiment Timing

(both even and odd under B̃) - X̂/Ŷ polarization switching rate
- B-field gradients: - Number of molecule pulses averaged
∂Bx
∂x ,

∂By
∂x ,

∂By
∂y ,

∂By
∂z ,

∂Bz
∂x ,

∂Bz
∂z per experiment trace

(both even and odd under B̃) Analysis

- Ẽ correlated B-field: BE - Signal size cuts, asymmetry size cuts,

(to simulate~v × ~E/geometric phase contrast cuts
/leakage current) - Difference between two PMT detectors
Electric Fields - Variation with time within molecule
- Non-reversing E-field: Enr pulse (serves to check vx dependence)
- E-field ground offset - Variation with time within polarization
Laser Detunings switching cycle
- State preparation/readout - Variation with time throughout the
lasers: ∆nr

prep, ∆nr
read full data set (autocorrelation)

- P̃ correlated detuning, ∆P - Search for correlations between

- Ñ correlated detunings: ∆N all channels of phase, contrast and
Laser Pointings fluorescence signal
- Change in pointing of prep./read lasers - Correlations with auxiliary

- State readout laser X̂/Ŷ measurements of B-fields, laser powers,
dependent pointing vacuum pressure, and temperature

- Ñ correlated laser pointing - 3 independent data analysis routines

- Ñ and X̂/Ŷ dependent
laser pointing
Laser Powers

- Ñ Ẽ correlated power ΩNEr

- Ñ correlated power ΩNr
- X̂/Ŷ dependent state readout
laser power, ΩXY

r

Laser polarization
- Preparation laser ellipticity, Sprep

Molecular Beam Clipping
- Molecule beam clipping along ŷ and ẑ
(〈vy〉,〈vz〉,〈y〉,〈z〉 of molecule beam)
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such as the non-reversing electric field, Enr, we monitored the size of the systematic error

throughout the reported data set during Intentional Parameter Variations (described in

section 2.2) and deducted this quantity from ωNE to give a value of the spin precession

frequency due to T-odd interactions in the H state of ThO, ωNET = ωNE −∑P ω
NE
P . Most

Category I parameters did not cause a statistically significant ωNEP and were not monitored.

For these parameters, we did not subtract ωNEP from ωNE , but rather included an upper

limit of
[
(ωNEP )2 + (δωNEP )2

]1/2
in the systematic uncertainty on ωNET , or chose to omit this

parameter from the systematic error budget altogether based on the criteria described in

section 3.6.1.

Where applicable, we also fit higher-order polynomial functions to ωNE with respect to

P during the systematic error searches. No significant increase in the systematic uncertainty

was observed using such fits and hence the contributions to the systematic error budget in

Table 3.2 were all estimated from linear fits. We note, however, that certain non-linear

dependences of ωNE on P could lead to underestimates of the systematic uncertainty, for

example if ωNE has a small (large) nonzero value for large (small) values of P . In efforts to

avoid this, data were taken over as wide a range as possible, it is, however, always possible

that such non-linear dependence is present between the parameter values for which we took

data. Our models indicated that over the range in which the parameters were varied, no

significant non-linearity should be manifest, so we believe the procedure outlined above

produced accurate estimates of the systematic errors.

Most of the searches for systematic errors related to the parameters listed in table

3.1 did not produce any statistically significant shift in the ωNE measurement. Since we

performed so many checks, we can look at the distribution of the measured parameter

slopes, ∂ωNE/∂P , which are presented in figure . This distribution does not have any clear

outliers and the χ2 value for the fit of the resulting distribution to the expected normal

distribution is measured to be consistent with 1, which gives us added confidence that we

did not overlook any possible systematic error during this search.

3.2 Systematic errors due to correlated laser parameters

The dominant contributions to the systematic error in ACME I were derived the use of lasers

for state preparation and state read-out in the phase precession measurement. Correlations
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Figure 3.1: Left: Distribution of the measured sensitivity of ωNE to various parameters P
during our search for systematic errors, for parameters that were not observed to produce
a significant systematic error. The χ2 value for the fit of the distribution to the expected
normal distribution is consistent with 1. Right: All of the data points that contributed to
the histogram on the left are shown. The mean of all of these data points is reasonably
consistent with zero.

between the laser detuning from resonance ∆ and the transition Rabi frequency Ωr and the

expected EDM signal were able to mimic the EDM signal by entering the phase measurement

through a dependence of the measured phase on these parameters, Φ = Φ(∆,Ωr), with an

empirically determined functional behavior,

dΦ(∆,Ωr) =
∑

i

[
α∆,i∆i + α∆2,i∆

2
i + βdΩr,i(dΩr,i/Ωr,i) + . . .

]
, (3.2)

where i ∈ {prep, read} indexes the state preparation and read-out lasers. We determined

that this phase dependence can come from mixing between bright and dark states due to a

small non-adiabatic laser polarization rotation during the optical pumping that is performed

to prepare the coherent spin state and then later read it out. The mixed bright and dark

states differ in energy by the A.C. Stark shift that leads to a relative phase accumulation

that depends on the laser parameters ∆ and Ωr. In this section we describe the observed

correlated laser parameters ∆NE and ΩNEr and we described the characterization of the

resulting systematic errors. In section 4.3 we explore an array of mechanisms by which

these AC Stark shift phases may be produced.

3.2.1 Laser parameter correlations

In the state preparation and state read-out regions we optically pumped on the |H,J =

1,M, Ñ 〉 → |C, J = 1,M = 0, P̃〉 transition to first prepare an initial spin state, and then
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later to read-out how the spin state changed in the spin precession region. The transition

frequency can be described by,

ωHC,i =ωnr
HC −

1

2
P̃i∆C,J=1 + ÑDH,J=1|~E(xi) · ẑ|, (3.3)

where ωnr
HC is the optical transition frequency between the line centers of the |H,J = 1〉 and

|C, J = 1〉manifolds, ∆C,J=1 is the omega-doublet splitting in |C, J = 1〉, and −ÑDH.J=1|E|
is the Stark shift in |H,J = 1〉. The index i ∈ {prep, X, Y } denotes the laser that is

addressing the molecules, and we note that we fix parity of the excited state addressed by

the state preparation laser, P̃prep = +1, and we switch the excited state addressed by the

two state read-out lasers P̃ = P̃X = P̃Y . We can parameterize imperfections in the electric

field as,

~E(x) · ẑ = E(x)Ẽ + Enr(x) + ELL̃+ . . . , (3.4)

where L̃ represents the binary state of the physical leads connecting the voltage supply

to the field plates, EẼ is the intentionally applied electric field component, Enr is a non-

reversing component of the electric field, and EL is a non-reversing electric field component

from the power supply that can be reversed by switching L̃. In order to switch the molecule

orientation, Ñ , and excited state parity, P̃, that we address in the experiment, we use

an array of Acousto-optic modulators (AOMs) to shift the laser frequency ωnr
L,i → ωL,i

into resonance with the desired transition, ωHC,i. Hence, we can parameterize the laser

frequency as

ωL,i =ωnr
L,i + ÑωNL + P̃ωPL δi,{X,Y }, (3.5)

where ωNL and ωPL are RF frequency shifts applied to the laser frequency ωnr
L,i by AOMs.

Note that we use the same laser for both the state preparation and state readout laser

beams, but we can apply independent laser detuning shifts to these two beam paths using

AOM frequency shifts so that ωnr
i can depend on index i as suggested in equation 3.5.

Given the expression in equations 3.3, 3.4, and 3.5, The laser detuning from resonance

and its correlations can be expressed as
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∆i =ωHC,i − ωL,i (3.6)

≈∆nr
i + Ñ∆Ni + Ñ Ẽ∆NEi + P̃∆Pi δi,{X,Y } + . . . , (3.7)

Here, ∆Ni = (DH,J=1E(xi) − ωNL ) is the mismatch between the Stark shift and the AOM

frequency ωNL used to switch between resonantly addressing the two Ñ states, where xi is the

x position of laser beam i. ∆NEi = DH,J=1Enr(xi) is a detuning component correlated like

an electron EDM signal which is due to a non-reversing component of the applied electric

field. ∆Pi = (−1
2∆C,J=1 − ωPL,i) is the mismatch between the omega doublet splitting and

the AOM frequency used to switch between resonantly addressing the two P̃ states in the

state readout region. We observed that ∆N (∆P) was typically less than 2π × 20 kHz

(2π × 50 kHz). Although we could measure ∆N with ∼ 2π × 1 kHz precision, fluctuations

in the Stark splitting, likely caused by thermally-induced fluctuations of the field plate

spacing, or a drifting voltage supply output, limited our ability to zero out this correlated

detuning [158]. The overall detuning ∆nr, defined as ∆nr = (∆nr
prep + (1/2)(∆nr

X + ∆nr
Y ))/2,

typically fluctuated by∼ 2π×0.1 MHz over several hours. Every 30–60 minutes the detuning

of the state read-out laser was scanned across resonance using an AOM and was set to the

value where the fluorescence signal was maximum. This ensured that the average detuning

of the state read-out laser beams, (∆nr
X +∆nr

Y )/2, was close to zero, however, if the three laser

beams are not quite parallel, there could be a difference between in the detunings of these

beams due to the resulting difference in Doppler shifts. Additionally, each day we scanned

the frequency of the preparation laser across the molecule resonance while monitoring the

contrast of our fluorescence signal to ensure ∆nr
prep was kept below 2π×0.2 MHz (an example

scan is shown in figure 2.6). The Ñ Ẽ correlated detuning ∆NE ∼ −2π · 5 kHz, caused by

a non-reversing component of the electric field, was characterized by a number of methods

that are described in section 6.2. It was found to vary significantly spatially, but was not

found to drift significantly in time. This detuning correlation can couple to the AC Stark

shift phase in equation 3.2 to result in a systematic error, ωNEEnr ≈ (1/τ)
∑

i α
nr
∆,i∆

NE .

In an entirely analogous manner, the Rabi frequency magnitude Ωr of the H → C
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transition exhibited correlations,

Ωr,i =Ωnr
r,i + ÑΩNr,i + Ñ P̃ΩNPr,i + Ñ ẼΩNEr,i + . . . (3.8)

Here, Ωnr
r,i is the dominant component of the Rabi frequency for laser i ∈ {prep, X, Y },

which could fluctuate in time on the order of 5% due to laser power instability. ΩNr,i is

generated by a laser power difference between the Ñ states. This arose because we routed

the laser light along different paths through a series of AOMs for each state. We measured

this effect with photodiodes and found that the largest fractional power correlation was

ΩNr /Ω
nr
r ≈ 2.5 × 10−3. An additional contribution to ΩNr,i, and a contribution to ΩNPr,i on

the same order, arises due to Stark mixing between rotational levels in H and C, and is

derived in section 4.2.3.

Although we did not observe a laser power correlation with Ñ Ẽ we did observe signals

consistent with a Rabi frequency correlation, ΩNEr . A nonzero Ñ Ẽ-correlated fluorescence

signal (as defined in section 2.3.1) that also reversed with the laser propagation direction k̂·ẑ,
FNE/F nr ≈ −(2.4×10−3)(k̂ · ẑ), together with a nonzero ωNEB ≈ (2.5 mrad/s)(Bz/mG)(k̂ ·
ẑ), provided the first evidence that a nonzero ΩNEr existed in our system. We believe that

this fluorescence correlation arises from a linear dependence of the fluorescence signal size on

Rabi frequency, FNE = (∂F/∂Ωnr
r )ΩNEr , which is nonzero since the state readout transitions

were not fully saturated. Although the measurements are consistent with an ΩNEr , the origin

of this correlation is still not fully understood, and we are continuing to explore models to

understand this effect, as discussed in section 4.2.4.

We believe that the signal in ωNEB was caused by a coupling between the Rabi frequency

correlation and the B-odd AC Stark shift phase, ωNEB = 1
τ

∑
i β
B
dΩr,i

(dΩNEr /Ωnr
r ), where

βBdΩr,i
is an AC Stark shift phase factor from equation 3.2. We were able to verify a linear

dependence of both of these channels on ΩNEr by intentionally correlating the laser intensity

with Ñ Ẽ using AOMs; this is shown for the ΦNEB channel in Figure 3.2. Varying the

size of this artificial ΩNEr allowed us to measure the value present in the experiment under

normal operating conditions, ΩNEr /Ωnr
r = (−8.0 ± 0.8) × 10−3(k̂ · ẑ). ΩNEr can couple to

βnr
dΩr,i

as per equation 3.2 to result in a systematic error in ωNEdΩr
= 1

τ

∑
i β

nr
dΩr,i

(dΩNEr /Ωnr
r ).

A nonzero βnr
dΩr,i

can be produced by a linear polarization angle gradient (not observed in

the experiment) or by a non-reversing Zeeman shift component, gH,J=1µBBnr
z .
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Figure 3.2: ΦNEB as a function of applied Ñ Ẽ-correlated laser power, PNE , for both di-
rections of laser pointing, k̂ · ẑ. The artificial ΩNEr resulting from correlated power PNE

systematically shifts ωNEB in accordance with equation 4.62. ΦNEB is zero when the ap-
plied PNE is such that there is no net Ñ Ẽ-correlated Rabi frequency. The intrinsic ΩNEr

(i.e. that inferred when PNE = 0) changed sign with k̂ · ẑ within the resolution of the
measurement. The slopes between the two measurements differ due to differences in the
AC Stark shift phase, believed to be due to differences in the spatial intensity profile and
polarization structure between the two measurements.
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Given the empirical AC Stark shift phase model in equation 3.2, the resulting systematic

errors in the frequency measurement are given by

ωNEEnr =
1

τ

∑

i∈{prep,X,Y }

αnr
∆,iDH,J=1Enr(xi) (3.9)

ωNEΩNEr
=

1

τ

∑

i∈{prep,X,Y }

βnr
dΩr,i(Ω

NE
r /Ωnr

r ). (3.10)

Early in the experiment, we observed a nonzero systematic shift ωNEEnr and took steps

discussed in reference [158] to suppress it. To verify that the steps taken were effec-

tive, we examined ωNE as a function of an intentionally applied non-reversing electric

field. The resulting data are shown in figure 3.3. The original slope, ∂ωNE/∂Enr =

(6.7 ± 0.4)(rad/s)/(V/cm), corresponded to a systematic shift of ωNEEnr ≈ −34 mrad/s

when combined with the measured Enr ≈ −5 mV/cm. Following the modifications de-

scribed above, the ∂ωNE/∂Enr slope was greatly suppressed, reducing the systematic error

to ωNEEnr < 1 mrad/s, well below the statistical uncertainty in the measurement of ωNE .
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Figure 3.3: Linear dependence of the ωNE channel on an applied non-reversing electric field
observed before (red) and after (black) we suppressed the known AC Stark shift phase by
optimizing the preparation laser beam shape, time-averaged power and polarization.

Because we observed that the parameters Enr and ΩNEr caused systematic errors in ωNE ,

we intermittently measured the size of the associated systematic errors throughout the data

sets that were used for our reported result. We measured ∂ωNE/∂Enr by applying a range of

large non-reversing electric fields, up to around 70 times that present under normal running
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conditions. The value of ∂ωNE/∂ΩNEr was measured by applying a correlated laser power

PNE in the state preparation and state readout beams with a magnitude corresponding to

an applied ΩNEr that was up to 20 times that measured under normal operating conditions.

These parameters were measured for multiple values of the magnetic field magnitude, Bz,
for which different state readout laser beam polarizations were required. Due to known

birefringent behavior of the AC stark shift phases, we allowed for this possibility for all

AC stark shift phase systematic errors. We measured ∂ωNE/∂Enr for both k̂ · ẑ = ±1,

but the ΩNEr systematic error was only discovered after the k̂ · ẑ = +1 dataset and hence

∂ωNE/∂ΩNEr was only monitored during the k̂ · ẑ = −1 dataset. The ΩNEr systematic error

during the k̂ · ẑ = +1 dataset was determined from auxiliary measurements of the AC

Stark shift phase. As described in section 6.2, Enr(x) exhibits significant spatial variation

along the beam-line axis, x. However the Enr that was intentionally applied to determine

∂ωNE/∂Enr was spatially uniform, and hence these measurements were insensitive to the

difference (Enr(xprep)−Enr(xread)) between the state preparation laser beam at xprep and the

state readout beam at xread. For this reason, we deduced the systematic error proportional

to the difference (Enr(xprep)−Enr(xread)) from auxiliary measurements of the AC Stark shift

phase parameters, αnr
∆,i.

In summary, the systematic errors proportional to Enr and ΩNEr that were evaluated and

subtracted from ωNE to report a measured value of ωNET can be expressed as

ωNEEnr =

(
∂ωNE

∂Enr

)
1

2
(Enr(xprep) + Enr(xread))

+
1

τ
(αnr

∆,prep − αnr
∆,X − αnr

∆,Y )
1

2
(Enr(xprep)− Enr(xread)) (3.11)

ωNEΩNEr
=





1
τ

∑
i∈{prep,X,Y } β

nr
dΩr,i

(
ΩNEr
Ωnr

r

)
(k̂ · ẑ) = +1

(
∂ωNE

∂ΩNEr

)
ΩNEr (k̂ · ẑ) = −1

(3.12)

where (∂ωNE/∂Enr) and (∂ωNE/∂ΩNEr ) were monitored by Intentional Parameter Varia-

tions (see section 2.2) throughout the dataset used for our reported result, and Enr(xprep),

Enr(xread), dΩNEr , αnr
∆,i, and βnr

dΩr,i
were obtained from auxiliary measurements. These two

systematic errors account for almost all of the systematic offset that was subtracted from

ωNE to obtain ωNET as described in section 3.6.1.
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3.3 Zeeman spin precession systematic errors

Previous electron EDM measurements have often been limited by a variety of systematic

errors that would have produced an Ẽ-correlated phase precession frequency in our exper-

iment, ωE [49, 92, 118, 141], such as Ẽ-correlated leakage currents, geometric phases, and

motional magnetic fields. Our ability to spectroscopically reverse the molecular orientation

through a choice of Ñ distinguished these effects from an electron EDM-generated phase. In

addition, the aforementioned effects scale with the magnitude of the applied electric field,

which was orders of magnitude smaller in our experiment than previous similar electron

EDM experiments due to the high polarizability of ThO [141]. Also, because the molecular

polarization was saturated, the electron EDM phase should have been independent of the

magnitude of the applied field. We also note that any shifts from leakage currents and

motional magnetic fields coupled through the magnetic dipole moment, which is near-zero

in the H-state of ThO. Thus we expected ωE to be substantially suppressed, and that it

should not enter ωNE at any significant level.

The reversal of Ñ did not, however, entirely eliminate an electron EDM-like phase due

to ωE . As discussed in section 2.3.2, there was a small and E-field dependent difference

between the g-factors of the two Ñ levels [21, 135], which meant that a systematic error

in the ωE channel showing up in ωNE at a level given by ωNE
ωE

= (ηE/g1)ωE . verified this

relation by intentionally correlating a 1.4 mG component of our applied magnetic field with

Ẽ . This deliberate BE resulted in a large shift in the value of ωE and a ∼1000-times smaller

offset of ωNE , as illustrated in figure 3.4.

The intentionally applied BE was the only experimental parameter that was observed to

produce a measurable shift in ωE . Even large (∼20 mG) magnetic fields components along

x̂ and ŷ, which exaggerate the effect of motional magnetic fields, did not shift ωE (this

is expected, since the large tensor Stark shift in |H,J = 1〉 dramatically suppresses the

effect of motional magnetic fields [136]). For our electron EDM data set, ωE was consistent

with zero. We included a contribution from ωE in our error budget for ωNE by multiplying

the mean and uncertainty of the extracted ωE by our measured |E|-dependent suppression

factors ηE/g1.
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Figure 3.4: Illustration of the ∼1000-fold suppression of systematic errors associated with
ωE provided by the Ñ switch. Large values of ωE occur when there is a component of Bz
correlated with Ẽ , BE . In previous electron EDM experiments, this would have corresponded
to a systematic error. In our experiment a much smaller shift in ωNE results from the small
difference in magnetic moments between the two Ñ levels. Error bars for the ωE data are
significantly smaller than the data points. Data were taken with E = 142 V/cm and the
measured ratio of the slopes, (∂ωNE/∂BE)/(∂ωE/∂BE) = (2.8 ± 0.8) × 10−3 is consistent
with the expected value ηE/g1 = (2.5± 0.1)× 10−3.
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3.4 Searching for correlations in the electron EDM data set

In addition to performing systematic error checks for possible variations of ωNE with various

experimental parameters, we searched for statistically nonzero values within the set of 1536

possible correlations with the block and superblock switches. This analysis was performed

for our primary measured quantities ω, C, and F and for a wide range of auxiliary mea-

surements such as laser powers, magnetic field, room temperature, etc. We also examined

the switch-parity channels of ω, C, and F as a function of time within the molecule beam

pulse, and as a function of time within the polarization switching cycle. We used the Pear-

son correlation coefficient to look for correlations between the aforementioned switch-parity

channels and used the autocorrelation function to look for signs of time variation of the

mean within those channels. Figure 3.5 illustrates data from such a search with a subset of

the previously described quantities.

In this search, we looked at 4390 quantities and we set the significance threshold at

4σ which corresponds to a probability of p ≈ 0.25 that there will be one or more false

positives above that threshold. We represented the significance of each of these quantities

with a gray scale pixel. Each pixel that was significant at the 4σ level is marked with a

symbol corresponding to a known explanatory physical model, or a red dot if the signal is

not yet explained. The fact that we understand most of the significant signals present in

our experiment, combined with the fact that the statistical distribution of the remaining

signals below the significance threshold is consistent with a normal distribution, gives us

added confidence in our models of the experiment and our reported electron EDM result.

Channels/correlations marked with symbols are significantly nonzero due to known

mechanisms as follows:

• Green stars: Correlations due to the nonzero and drifting signal in the ωN channel

described in section 3.5.

• Light blue squares: Signals in ωNEB channels due to the B̃-odd AC stark shift phase

coupling to ΩNEr as described in section 3.2.

• Orange triangles: Correlations due to contrast or asymmetry coupling to ΩNEr . Con-

trast correlations arise simply because there is a linear dependence of total contrast

on Rabi frequency, and the asymmetry correlation is described in section 4.3.6.
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Figure 3.5: Over 4,000 switch-parity channels (left) and correlations between switch parity
channels (upper right) computed from the electron EDM data set. The deviation of each
quantity from zero in units of the statistical uncertainty is indicated by the gray scale
shading. We set a significance threshold of 4σ above which there is a probability of p = 25%
of finding at least 1 false positive. We mark each significant channel/correlation with a
symbol corresponding to a model known to produce a signal in that channel. The quantities
below this threshold exhibit a normal distribution, shown in the lower right.
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• Brown diamond: Correlations in CN and related contrast channels due to nonzero

Rabi frequency correlations ΩNr and ΩNPr . These arise due to laser power correlations

with the Ñ and P̃ switches and due to Stark mixing between rotational levels in

H and C, which create Ñ - and P̃-correlated transition amplitudes on the H → C

transition as described in section 4.2.3.

• Red dot: Signals above our significance threshold for which we have been unable to

find a plausible explanation. Even if these quantities arise from real physical effects,

they would need to couple to other correlated quantities to contribute to ωNE and

there is no evidence for this in the electron EDM dataset.

3.5 Loose ends and peculiarities

Correlations due to experimental switch configuration

Early during ACME I we measured a large correlation of the magnetic field with our Ñ
reversal, BBN using the fluxgate magnetometers that were embedded in the experiment.

We were able to determine that we were observing this correlation because at the beginning

of each block, the magnetic field had not yet finished settling after the first experiment

state. Given that we began each block with the same Ñ = +1 state, this state repeatably

experienced a smaller magnetic field magnitude compared to the following state Ñ = −1

resulting in a systematic error shift in the ωNB measurement. After making this observation

we modified the switching sequence such that the first Ñ state during a given block is

randomly selected. This selection of which Ñ state was selected first could also be treated

as a switch in the analysis to identify what kind of systematic errors may be resulting from

this effect. This anecdote serves as a cautionary tale regarding the choice of the experiment

switching sequence. The more randomness that is introduced into the switching sequence,

the less likely it is that fluctuations in parameters over time will manifest themselves as

apparent correlations with experiment switches. This was the motivation for the creation

of a new software program that could generate more randomness in the experimental switch

sequences in ACME II compared to that used in ACME I [77]
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Unexplained ωN and what we learned

We discovered a nonzero, time-dependent signal in ωN which was associated with an Ñ -

correlated laser pointing, k̂N ≈ 5 µrad. An investigation into the mechanism behind this

effect was inconclusive. We found that the pointing correlation appeared downstream of the

AOMs that created the rapid polarization switching and improved alignment was able to

reduce the effect. We also found that the observed pointing was in some way correlated with

the seed power and input angle of incidence into the high-power fiber amplifier immediately

upstream of the polarization switching, despite the fact that pointing out of the amplifier did

not fluctuate. Since we used four different sets of AOMs to perform the Ñ and P̃ switches

before the amplifier, we observed laser pointing correlated with both of these switches.

By matching the characteristics of these four beam paths we were able to suppress k̂N to

< 1 µrad.

The effect of k̂N on ωN was studied by exaggerating the former with piezoelectrically

actuated mirrors. Examining ∂ωN /∂k̂N showed significant fluctuations in its value. We

were unable to identify the mechanism by which k̂N affected ωN .

We had no evidence that the effect causing the observed variation in ωN also caused a

systematic error in ωNE , but to be cautious we included an associated systematic uncertainty

in our systematic error budget (section 3.6.1). Assuming a linear relationship between ωNE

and ωN , we extracted ∂ωNE/∂ωN from a combination of data taken under normal conditions

and with an exaggerated ωN induced by an exaggerated k̂N . We then placed an upper limit

on a possible systematic error ωNE
ωN

based on the value of ωN obtained under normal running

conditions. The resulting systematic uncertainty was four times smaller than our statistical

uncertainty.

Unexplained correlation between BN and ωNEB

In section 3.4, we examined a large array of quantities correlated with the experiment

switches and correlations between these measurements as they vary over time . One of

the few unexplained signals that was observed to be significantly non-zero was a correla-

tion coefficient of about r(BN , ωNEB) ≈ .04. If this is indicative of a linear relationship

between these two parameters, then it could be characterized by a slope ∂ωNEB/∂BN ≈
15 mrad/s/µG. Additionally, from the monitoring magnetometers, we have measurements
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of BN ≈ .1 − .4 µG that is unexplained, consistently non-zero, large, drifting in time, and

appears to be vary with electric field magnitude. However, it is not clear what is causing this

fluxgate reading correlation. If this were a magnetic field component it should have induced

Zeeman spin precession ωN ≈ µBgH,J=1B
N ≈ 4 − 16 mrad/s and should have dominantly

resulted in a large correlation between ωN and BN which was not observed to be non-zero.

As discussed in section 3.5, we did observe an unexplained and large drifting ωN whose

value varied with k̂ · ẑ and |E|, and it is possible that these two phenomena are related, but

the data does not seem to support a simple relationship between the two phenomena at

this time. If BN is not caused by a magnetic field, then what could it be caused by? One

plausible explanation is pick-up in the magnetometers from the RF radiated into the room

from the AOMs that do the Ñ switching. That RF amplitude and frequency is correlated

both with Ñ and |E|, and could maybe be picked up by the magnetometers and converted

to DC, and could plausibly be interacting with the molecules resulting in fluctuations in

the ωNEB measurement.

Given the measured correlation between BN and ωNEB with the magnitude described

above, then the existence of a non-zero BNB (by which I mean a signal from the same

source as BN which has opposite parity with respect to B̃) could couple to this relationship

to lead to a non-zero systematic error in the electron EDM channel, ωNE , with approximate

magnitude given by,

ωNEBNB =
∂ωNEB

∂BN B
NB. (3.13)

Note that a contribution to BNB from the same source as the BN is not hard to imagine

because we know that BN is drifting fairly significantly in time, and if it is drifting sig-

nificantly over the course of a block, we can obtain a contribution to BNB since B̃ is the

longest timescale switch within a block. Indeed, we did at one point measure a non-zero

BNB ≈ .02µG which was marginally statistically significant, which could result in a sys-

tematic error of ωNEBNB ∼ .3 mrad/s. This is small compared to our statistical uncertainty

in ACME I, but is not small compared to our individual contributions to the systematic

uncertainty in ACME I, and is comparable to the projected statistical sensitivity of the

ACME II measurement. However, BNB appears to have been consistent with zero for the

electron EDM run overall, suggesting that this systematic error, if present, is significantly
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smaller than the previous estimate.

3.6 ACME I result

3.6.1 Systematic Error Budget

Table 3.2: Systematic shifts and uncertainties for ωNE , in units of mrad/s. Total uncer-
tainties are calculated by summing the individual contributions in quadrature. Note that
ωNE ≈ 1.3 mrad/s corresponds roughly to 1× 10−29 e · cm for our experiment.

Class Parameter Shift Uncertainty

A Enr correction −0.81 0.66
A ΩNEr correction −0.03 1.58
A ωE correlated effects −0.01 0.01
B ωN correlation 1.25
C Non-reversing B-field (Bnr

z ) 0.86
C Transverse B-fields

(
Bnr
x ,Bnr

y

)
0.85

C B-field gradients 1.24
C Prep./read laser detunings 1.31

C Ñ correlated detuning 0.90
C E-field ground offset 0.16

Total Systematic −0.85 3.24

Statistical Uncertainty 4.80

Total Uncertainty 5.79

The method used for construction of a systematic uncertainty varies from experiment to

experiment (see for example [14,152]), and it is ultimately a subjective quantity. Even if in-

dividual contributions are derived from objective measurements, their inclusion or exclusion

in the systematic uncertainty is subjective. Furthermore, the systematic uncertainty can-

not possibly be a measure of the uncertainty in all systematic errors in the experiment, but

rather only those which were identified and searched for. Although we work hard to identify

all significant systematic errors in the measurement, we cannot rule out the possibility that

some were missed.

Our criteria for including a given quantity in the systematic uncertainty consist of three

classes of systematic errors in order of decreasing importance of inclusion:

A If we measured a nonzero correlation between ωNE and some parameter which had an

ideal value in the experiment, we performed auxiliary measurements to evaluate the

corresponding systematic error and subtract that error from ωNE to obtain ωNET .
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The statistical uncertainty in the shift made to ωNE contributed to the systematic

uncertainty.

B If we observed a signal in a channel that we deemed important to understand, and it

was not understood, but was not observed to be correlated with ωNE , we set an upper

limit on the shift in ωNE due to a possible correlation between the two channels. Since

such a signal represented a gap in our understanding of the experiment, we added this

upper limit as a contribution to the systematic uncertainty.

C If a similar experiment saw a nonzero, not understood correlation between their mea-

surement channel and some parameter with an ideal experimental value, but we did

not observe an analogous correlation, we set an upper limit on the shift in ωNE due

to this imperfection. Since this signal may have signified a gap in our understand-

ing of our experiment, we added this upper limit as a contribution to the systematic

uncertainty.

Table 3.2 contains a list of the contributions to our systematic error, grouped by inclusion

class, with the corresponding shifts and/or uncertainties. Accounting for class A systematic

errors was obligatory, and the removal of these errors from ωNE can be viewed as a redefi-

nition of the measurement channel to ωNET which does not contain those unwanted effects.

These systematic errors consisted of those that depended on the parameters Enr, ΩNEr , and

ωE as described in sections 3.2 and 3.3, and as such our reported measurement of the T -odd

spin precession frequency is defined as ωNET = ωNE − ωNEEnr − ωNEΩNEr
− ωNE

ωE
. The class B

and class C systematic errors were included in the systematic uncertainty to lend credence

to our result despite unexplained signals and unexplained systematic errors in experiments

similar to ours. All uncertainties in the contributions to the systematic error were added in

quadrature to obtain the systematic uncertainty.

With reference to the class B criterion, we deemed the following channels as important

to understand: ωN , ωE , ωEB, and ωNEB. Signals were initially not expected in any of these

channels and could be measured with the same precision as ωNE . The ωnr, ωB and ωNB

channels were not included in our systematic error since the Zeeman spin precession signals

present in these channels had non-stationary means and additional noise due to drift in the

molecule beam velocity. Only one of these channels, ωN , described in section 3.5, met the

class B inclusion criterion.

57



Chapter 3. Systematic Error Search and Characterization

With reference to the class C criterion, we defined the set of experiments similar to

ours to include other electron EDM experiments performed in molecules: the YbF ex-

periment [82] and the PbO experiment [49]. The PbO experiment observed unexplained

systematic errors coupling to stray magnetic fields and magnetic field gradients , and the

YbF experiment observed unexplained systematic errors proportional to detunings and a

field plate ground voltage offset . Thus we included the systematic uncertainty associated

with the aforementioned effects in our budget.

After having accounted for the systematic errors and systematic uncertainty, we reported

ωNET , the contribution to the channel ωNE induced by T -odd interactions present in the H

state of ThO, as

ωNET =2.6± 4.8stat ± 3.2syst mrad/s (3.14)

=2.6± 5.8 mrad/s (3.15)

where the combined uncertainty is defined as the quadrature sum of the statistical and

systematic uncertainties, σ2 = σ2
stat + σ2

syst. This result is consistent with zero within 1σ.

Since σsyst is to some extent a subjective quantity, its inclusion should be borne in mind

when interpreting confidence intervals based on σ. Nevertheless, this inclusion decision does

not have a large impact on the meaning of the resulting confidence intervals since σ is only

about 20% larger than σstat.

3.6.2 Confidence interval construction

In ACME I, we chose to present the result of the experiment as a Feldman-Cousins confi-

dence interval [58], at a 90% confidence level, for the absolute value of the electron’s EDM.

This is a frequentist confidence interval insofar as its interpretation - that given a fixed

true value of the electron’s EDM, µ = |ωNET,true|, if we were to repeat our measurement

of x = |ωNET,meas| a large number of times and the confidence interval were constructed in

the same way, then the confidence interval would contain the true value a fraction of the

time equivalent to the stated confidence level p. If the probability distribution governing

the observation of x given a true value µ is P (x|µ), then the frequentist confidence band
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(x1(µ), x2(µ)) (this is the inverse of the confidence interval (µ1(x), µ2(x))), must satisfy

p =

∫ x2(µ)

x1(µ)
P (x|µ)dx, (3.16)

for all µ. As described in section 2.3.4 the measurements of ωNET,meas were consistent with

being normally distributed, so we model its absolute value, x, with the folded normal

distribution. However, the Feldman-Cousins approach is not strictly a Neyman frequentist

confidence interval construction because it uses an ordering principle for which values of x

with a higher likelihood ratio L(µ|x)/L(µmax(x)|x), where L(µ|x) = P (x|µ) and µmax(x) =

argmaxµL(µ|x), are preferentially included in the confidence band; the Neyman construction

strictly forbids such a comparison between alternate hypotheses for µ [22].

Since no statistically significant electron EDM has yet been observed, the recent custom

has been for experiments to report an upper limit at the p = 90% confidence level [82,141].

However, before we had unblinded our result, we imagined that if we observed a non-zero

electron EDM, we would have liked to present a two-sided confidence interval. If we had

naively decided to change our confidence interval construction method contingent on the

result, the resulting confidence intervals would under-cover the stated confidence level (the

fraction of time that the constructed confidence interval contains the true value would be less

than p). Hence, we selected the Feldman-Cousins confidence interval construction because

it produces the desired behavior with appropriate coverage (i.e. the frequentist confidence

interval interpretation is still valid); it produces an upper limit if x is close to zero and

produces a two sided confidence interval if x is far from zero.

However, there are several possible confidence interval constructions that could have

been used that would have produced the desired behavior. Figure 3.6.2 shows a comparison

of several Neyman confidence interval constructions and the Feldman-Cousins construction

for the folded normal distribution at 90% confidence. This includes an upper limit, a lower

limit, a symmetric area interval (defined such that
∫ xm(µ)
x1(µ) P (x|µ)dx =

∫ x2(µ)
xm(µ) P (x|µ)dx =

p/2, where xm(µ) is the median of the distribution), and a symmetric likelihood interval

(defined by P (x1(µ)|µ) = P (x2(µ)|µ)). Indeed, we can see that the Feldman-Cousins, the

symmetric likelihood, and the symmetric area intervals all produce the desired behavior

of transitioning from one-sided to two sided confidence intervals with increasing x. One

downside to using frequentist confidence interval constructions is that they can frequently
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produce empty set confidence intervals, in which case you can be sure that your reported

confidence interval does not contain the true value. For the folded normal distribution,

the symmetric area construction always produces empty set intervals for sufficiently small

values of x, for all confidence levels; the Feldman-Cousins construction produces empty set

intervals for sufficiently small values of x, for confidence levels p < 68%; and the symmetric

likelihood construction does not produce empty set intervals. For this reason, if we were to

choose our confidence interval construction method today, I would choose the symmetric

likelihood construction. However, for frequentist constructions, we should choose the confi-

dence interval construction method before making the measurement so that we may ensure

that the outcome of the measurement does not affect how we made that decision. In ACME

I we chose to present our result using the Feldman-Cousins construction before unblinding

the result. Furthermore, we may not want to switch confidence interval constructions be-

tween ACME I and ACME II so that we may make a more direct comparison between our

results.

x (σ)

µ (σ)

1

x
(σ

)

µ
(σ

)

1

Figure 3.6: Comparisons of different frequentist confidence interval constructions for the
folded normal distribution at a 90% confidence level. Here x is the measurement value
in units of the statistical uncertainty σ, and y is the true value in units of the statistical
uncertainty σ. The constructions include the upper limit, lower limit, symmetric area,
symmetric likelihood, and Feldman-Cousins. The vertical dotted line shows the ACME I
measurement.

From equation (3.15), we find x = 0.46σ with σ = 5.79 mrad/s. For this measurement,

our confidence interval construction produces an upper bound of |ωNET | < 1.9σ = 11 mrad/s
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at a 90% confidence level. We believe that the confidence intervals that were presented for

previous electron EDM measurements [68, 82, 141] were likely Bayesian credible intervals

conditioned on a uniform prior for µ, rather than the frequentist upper limit presented in

figure 3.6.2 . These intervals do not satisfy equation 3.16, but rather over-cover for small

values of µ [58]. The Feldman-Cousins confidence interval that we are presenting here

produces a 7% larger limit than the limit than the limit that we would have produced if we

had used the Bayesian credible interval upper limit approach.

3.6.3 Interpretation of the result

Under the most general interpretation, our experiment is sensitive to any P - and T -violating

interaction that produces an energy shift ωNET . The electron EDM is not the only such pre-

dicted interaction for diatomic molecules [98], and in particular a P - and T -odd electron-

nucleon interaction would also manifest as a Ñ Ẽ-odd spin precession frequency in our mea-

surement. Thus, we interpret the measurement as having possible contributions from these

two effects,

ωNET = −deEeff −WSCS, (3.17)

where WS is a calculated molecule specific constant [47,48,153,154] and CS is the constant

characterizing the strength of the T -violating electron-nucleon coupling.

We can use our measurement to set an upper limit on de by assuming that CS = 0 and

that ωNET is therefore entirely attributable to the electron EDM. Taking the effective electric

field to be the unweighted mean of the two most recent calculations of this quantity [61,154],

Eeff = 78.4 GV/cm, we can interpret our result in equation (3.15) as:

de = (−2.2± 4.8)× 10−29 e · cm (3.18)

⇒ |de| < 9.3× 10−29 e · cm (90% C.L.), (3.19)

where the second line is obtained by appropriately scaling the upper bound on |ωNET | derived

above.

If, instead, we assume that de = 0, our measurement of ωNET in ThO can be restated

as a measurement of CS. Using the most recent calculation of the interaction coefficient,
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WS = 1.81× 106 rad/s [47,154], we obtain:

CS = (−1.4± 3.2)× 10−9 (3.20)

⇒ |CS| < 6.1× 10−9 (90% C.L.), (3.21)

which, at the time, was an order of magnitude smaller than the existing best limit set by the

199Hg EDM experiment [161], and is still a factor of 2 smaller than the recently improved

limit from the same group [67].
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Chapter 4

Models for Understanding

Systematic Errors

Most people don’t believe something
can happen until it already has. That’s
not stupidity or weakness, that’s just
human nature.

Max Brooks, World War Z

In the process of understanding and interpreting the data that we took during the ACME

I systematic error search, and in anticipation of possible new systematic errors that might

appear when we operate with improved sensitivity in ACME II, we have developed a library

of analytic models that serve to describe and estimate the size of possible systematic errors

in the experiment. In this chapter, I will focus less on the experiments that were performed

to understand and characterize the systematic errors that we previously observed, and focus

more on compiling a theoretical framework for understanding systematic errors that we both

have and have not yet experimentally observed. My hope is that this chapter will serve as

a reference for understanding signals observed in the experiment in the future, and I hope

that others will add to this library as our understanding of our system becomes even more

detailed.

In section 4.1 I provide a framework within which we can describe changes in the

molecule state and derive how these changes in the molecule state contribute the spin

precession measurement signals. In section 4.2 I explore an array of mechanisms by which

interference in the state preparation and state read-out transitions can result in correla-

tions in the Rabi frequency describing the strength of the coupling and correlations in the
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molecule state that is prepared or read-out in the spin precession measurement. In section

4.3 I provide a list of mechanisms that can result in changes to the measured phase Φ(∆,Ωr)

that depend on the laser detuning ∆ or Rabi frequency Ωr while the molecule state evolves

in the state preparation and read-out lasers. Finally, in section 4.4 we explore how electro-

magnetic fields in the spin precession region can affect the molecule state. In each section

I discuss how these various effects could result in systematic errors in the electron EDM

measurement channel, ωNE , and provide order of magnitude estimates of the size of these

effects that we might expect. This chapter also includes interwoven discussions on how

these various systematic errors may manifest themselves in ACME II and efforts that we

have made to suppress them. To the set the scale for the estimates of the systematic errors

to come, the statistical resolution of the phase measurement ACME I was approximately

5 µrad and ACME II is projected to have a sensitivity of .1− .5 µrad.

4.1 Phase measurement with polarization offsets

4.1.1 Idealized Measurement Scheme with Polarization Offsets

As described in section 2.1, in the ACME I experiment the molecules initially enter the

state preparation laser beam in an incoherent mixture of the two states |±, Ñ 〉. The

bright state |B(ε̂prep), Ñ , P̃prep〉 is then optically pumped away through |C, P̃prep〉 leav-

ing behind the dark state |D(ε̂prep), Ñ , P̃prep〉 as the initial state for the spin precession.

The molecules then undergo spin precession by angle φ evolving to a final state |ψf 〉 =

U(φ)|D(ε̂prep), Ñ , P̃prep〉 where U(φ) =
∑
± e
∓iφ|±, Ñ 〉〈±, Ñ | is the spin precession opera-

tor. The molecules then enter the state readout laser that optically pumps the molecules

with alternating polarizations ε̂X and ε̂Y (which are nominally linearly polarized and or-

thogonal) between |±, Ñ 〉 and |C, P̃read〉. For each polarization, the optical pumping results

in a fluorescence count rate proportional to the projection of the state onto the bright state,

FX,Y = fN0|〈B(ε̂X,Y ), Ñ , P̃read|ψf 〉|2 where f is the photon detection efficiency, and N0

is the number of molecules in the addressed Ñ level. We then compute the asymmetry,

A = (FX − FY )/(FX + FY ), dither the linear polarization angles in the state readout laser

beams to evaluate the fringe contrast, C = (∂A/∂φ)/2 ≈ −(∂A/∂θread)/2, and extract the
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measured phase, Φ = A/(2C) + qπ/4.1 We then report the result of the measurement in

terms of an equivalent phase precession frequency ω = Φ/τ where τ ≈ 1 ms is the spin

precession time, which was measured for each block as described in section 2.3.2. This

description of the phase measurement pertains to ACME I. In ACME II, as described in

section 2.20 we changed the state preparation scheme such that a pair of STIRAP laser

beams prepare an initial spin state and then a refinement laser beam reprojects the initial

spin state to suppress systematic errors caused by the STIRAP state transfer scheme. For

the purpose of this discussion, the refinement laser beam in ACME II plays the same role

as the state preparation laser beam in ACME I apart from effects discussed in section 4.3.5.

Let us first consider the idealized case in which all laser polarizations are exactly linear,

Θi = π/4 for each laser i ∈ {prep, X, Y }, the angle between the state preparation laser

polarization (prep) and state readout basis (X,Y ) is π/4, θread − θprep = −π/4, and the

accumulated phase is small, |φ| � 1 (i.e. no magnetic field is applied). Under these condi-

tions, the measured phase Φ is equal to the accumulated phase φ. Now consider the effect

of adding polarization offsets d~εi to each of the three laser beams such that ε̂i → ε̂i + λd~εi,

where λ = 1 is a perturbation parameter. It is useful to cast the polarization imperfec-

tions in terms of linear angle imperfections, θi → θi + λdθi and ellipticity imperfections,

Θi → Θi + λdΘi where Si = −2dΘi is the laser ellipticity Stokes parameter; these are

related by
ẑ · (ε̂i × d~εi)

ε̂i · ε̂i
= dθi − idΘi. (4.1)

Note that laser polarizations can have a nonzero projection in the ẑ direction, but we assume

in the discussion above that ε̂i represents a normalized projection of the laser polarization

onto the xy plane.2 With these polarization imperfections in place, the measured phase Φ

gains additional terms:

Φ = φ+ λ(dθprep −
1

2
(dθX + dθY ))− λ2P̃prepP̃readdΘprep(dΘX − dΘY ) +O

(
λ3
)
, (4.2)

up to second order in λ. In the electron EDM measurement, we switch between two values

1. Recall q is chosen to be an integer which depends on the size of the applied magnetic field as mentioned
in section 2.20

2. The z-component of the polarization can only drive ∆M = 0 transitions, which are far off resonance
from the state preparation/readout lasers.
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of P̃ ≡ P̃read, the parity of the excited state addressed during state readout, and we set

P̃prep = +1, the parity of the excited state addressed during state preparation. It is worth

dwelling on equation 4.2 for a moment. A rotation of all polarizations by the same angle

leaves the measured phase unchanged: dθi → dθi+dθ =⇒ Φ→ Φ, as expected. A deviation

in the relative angle between the state preparation and readout beams, dθprep → dθprep +dθ

and dθX,Y → dθX,Y −dθ, enters into the phase measurement as Φ→ Φ + 2dθ, but is benign

so long as dθ is uncorrelated with the expected electron EDM signal. The laser ellipticities

affect the phase measurement only when the state readout beams differ in ellipticity, and

this contribution to the phase can be distinguished from the others by switching the excited

state parity, P̃. This last term is particularly interesting because it allows for multiplicative

couplings between polarization imperfections in the state preparation and state readout

beams to contribute to the measured phase.

Although the polarization imperfection terms in equation 4.2 are uncorrelated with

the Ñ Ẽ and hence do not contribute to the systematic error, we will see in later sections

that additional imperfections can lead to changes in the molecule state that is prepared or

read-out that are equivalent to correlations dθNEi and dΘNEi . The framework of equation

4.2 is useful for understanding how these correlations result in systematic errors in the

measurement of ΦNE ,

ΦNE =φNE + λ(dθNEprep −
1

2
(dθNEX + dθNEY ))

− λ2P̃prepP̃read

{
dΘnr

prep(dΘNEX − dΘNEY ) + dΘNEprep(dΘnr
X − dΘnr

Y ) + . . .
}

+ . . . (4.3)

In this expression for ΦNE , I have included the second order terms of the form dΘnr
i dΘNEj ,

which consist of a multiplicative coupling between the ellipticity of the light in laser i and

an Ñ Ẽ correlated spin ellipticity generated in laser j, but I have not explicitly written other

possible second order terms, for example ones like dΘNi dΘEj or dΘBj dΘNEBj , that can also,

in principle, generate electron EDM systematic errors.

4.1.2 Suppressing Second Order Phase Shifts with Polarization Control

In the following sections, we discuss several mechanisms that can generate a correlated spin

state rotation, dθNEi , or a correlated spin state ellipticity, dΘNE during the state preparation

or state read-out processes and both correlations can contribute to systematic errors in the
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Figure 4.1: Schematic of state preparation and state readout optics set-up with improved
polarization control relative to ACME I. A λ/2 and λ/4 waveplate on a rotate-able stepper
motor mount is present on each beam path to finely tune the polarization to eliminate
ellipticity in the region where the molecules interact with the laser beam.

electron EDM experiment as in equation 4.3. For some of these mechanisms, dθNEi is

proportional to the ellipticity dΘnr
i in that laser beam. As in equation 4.3, dΘNEi couples to

the ellipticity in a different laser beam, dΘnr
j , to result in a systematic error. Hence, both

of these classes of systematic errors could be suppressed if the ellipticities of all of the laser

beams were suppressed.

During ACME I we believe that the ellipticities of the state preparation and state read-

out laser beams were on the order of S ∼ 2%3and the linear polarization angle offsets were

around dθ ∼ 1 mrad. In this section we explore the possibility of suppressing the ellipticities

further in ACME II by adding additional polarization control to aid in suppressing a large

group of systematic errors that can depend on these quantities. In particular, we consider

fine tuning of the angles of a λ/4 waveplate and a λ/2 waveplate that the beams could be

sent through before entering into the apparatus in order to minimize the ellipticity.

Lets assume that in the state read-out region, we start with polarizations X̂0 and Ŷ0 that

are combined on a polarizing beamsplitter (PBS). Recall that the state read-out scheme

3. We do not have direct measurements of the ellipticity during ACME I because our polarimetry was
limited by systematic errors in measuring ellipticity more precisely than about |S| < 2% [77]. During a
spin precession experiment in which we varied Sprep we were able to estimate that SX − SY ≈ 4% from a
measurement of ∂ΦP/∂Sprep ≈ −4(SX − SY ).
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consists of alternating between addressing the molecules with nominally orthogonal and

linearly polarized laser beams, so only one of these beams is incident on the PBS at a time.

Here, X̂0 and Ŷ0 correspond closely to the laboratory axes, x̂ and ŷ and only deviate to the

extent that the PBS lets polarization imperfections through or generates new polarization

imperfections. Then we send these laser beams through a λ/4 waveplate with fast-axis

angle θλ/4 with a possible small retardance error Γλ/4. Then the light passes through a λ/2

waveplate with fast axis at angle θread/2 (where θread is the nominal read-out polarization

basis angle), with a possible small retardance error Γλ/2. Then the light travels into the

vacuum chamber and some of the glass that the light travels through may be slightly bire-

fringent with small retardance Γg and fast axis θg. These operations result in polarizations

X̂ and Ŷ in the detection region that interact with the molecules,


 X̂

Ŷ


 =M (λΓg, θg)M

(
π

2
+ λΓλ/2,

θread

2

)

×M
(π

4
+ λΓλ/4, λθλ/4

)

 X̂0

Ŷ0


 , (4.4)

where I use the notation M (Γ, θ) to denote phase retarder operation with retardance Γ and

fast axis angle θ with respect to the xy plane. Here λ = 1 is a label that I use to mark

small quantities and can be used as a parameter in a perturbative expansion. The resulting

polarizations have imperfections at first order in λ given by:

1

2
(dθX + dθY ) =− 1

2
(dΘX0 − dΘY 0)− θλ/4 (4.5)

1

2
(dθX − dθY ) =− 1

2
(dΘX0 + dΘY 0) (4.6)

1

2
(dΘX + dΘY ) =− 1

2
(dθX0 − dθY 0) (4.7)

1

2
(dΘX − dΘY ) =− 1

2
(dθX0 + dθY 0) + θλ/4

+ Γλ/2 sin θread + Γg sin(2(θread − θg)) (4.8)

Equation 4.8 indicates that by tuning the angle θλ/4 of the λ/4 waveplate we can com-

pensate for excess birefringence from the λ/2 waveplate or from birefringent elements down-
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stream and tune the difference in ellipticity in the state readout region, dΘX−dΘY , to zero.

In practice this tuning can be performed by varying the ellipticity in the state preparation

region, performing the spin precession measurement to extract the phase sensitivity to ellip-

ticity dΦP/∂dΘprep = − (dΘX − dΘY ), and feeding back on the angle of the λ/4 waveplate

angle in the state readout laser beam path, θλ/4, read → θλ/4, read + 1
2∂ΦP/∂Sprep. The el-

lipticity in the state preparation region can be varied by rotating the λ/4 waveplate that is

placed in that laser beam’s path. In a completely analogous way, we can feedback on the

ellipticity in the state readout region by varying the λ/4 waveplate angle in the state read-

out laser path, measuring the phase sensitivity to ellipticity dΦP/ (dΘX − dΘY ) = −dΘprep,

and rotating the state preparation λ/4 waveplate by θλ/4, prep → θλ/4, prep + 1
2∂ΦP/∂Sread.

However after optimizing the λ/4 waveplate angles in the state preparation and state

readout beam paths to tune dΘprep and 1
2(dΘX − dΘY ) to zero, the average ellipticity,

1
2 (dΘX + dΘY ) remains – the size of this experimental imperfection depends only on the

non-orthogonality of the linear polarizations on the output of the beamsplitter as indicated

by equation 4.7.

To get an idea of what kind of polarization imperfections we might expect on the output

of a polarizing beamsplitter, lets consider a very simple model of a PBS in which it passes

light of x̂ polarization and suppresses and phase shifts light of ŷ polarization by a factor
√
ξeiψ, where ψ is some phase shift and ξ ≈ 10−5 is the extinction ratio4. Assuming linearly

polarized input light at angle θ with respect to the xy plane, the output polarization im-

perfections from ideal are given by dθ− idΘ ≈ √ξeiψ tan θ. So depending on the phase shift

ψ and the input polarization θ, which is likely close to zero, the polarization imperfections

could be in the range of dθ0 ∼ dΘ0 ∼ 3×
(
10−4 − 10−3

)
. If the phase shift is small ψ � 1

such that dθ0 � dΘ0, then adding the λ/4 along the beam path can swap imperfections

between dΘ and dθ as specified in equations 4.6 and 4.7 to improve the average ellipticity

between the two state read-out lasers and hence reduce systematic errors, such as those in

section 4.3.4 that are proportional to that particular combination of ellipticities.

4. Polarizing beamsplitters are specified by an “extinction ratio” which is the ratio of the lowest intensity
to the highest intensity of light observed on the output while varying the polarization on the input. Typical
extinction ratios for a commercial PBS fall in the range of 10−3 − 10−5. In ACME I we used a Glan-Laser
PBS with an extinction ratio of about 10−5.
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4.1.3 Three level Hamiltonian and useful basis expansions

In the next few sections, we will skip between a few representations of the three level

system that we address on in the state preparation and state read-out regions. In this

section we define the dressed state eigenvectors and the dressed state Hamiltonian for future

convenience in description of various mechanisms that result in shifts in the measured phase

Φ.

Consider a three level system consisting of the bright |B(ε̂), Ñ , P̃〉 and dark |D(ε̂), Ñ , P̃〉
states and the lossy excited state |C, P̃〉 with decay rate γC . For simplicity, assume that

there is no applied magnetic field for the time being. In this system, the instantaneous

eigenvectors (depicted in figure 4.2C) are

|B±〉 ≡ ± κ±|C, P̃〉+ κ∓|B(ε̂), Ñ , P̃〉, |D〉 ≡ |D(ε̂), Ñ , P̃〉, (4.9)

and the instantaneous eigenvalues are

EB± =
1

2

(
∆±

√
∆2 + Ω2

r

)
, ED = 0, (4.10)

such that the mixing amplitudes κ± are given by

κ± =
1√
2

√
1± ∆√

∆2 + Ω2
r

. (4.11)

The effect of the decay of the excited state (which occurs almost entirely to states outside

of the three level system) may be taken into account by adding an anti-Hermitian operator

term in the Schrodinger equation, |ψ̇〉 = −i(H − i1
2Γ)|ψ〉, where Γ = γC |C, P̃〉〈C, P̃| is the

decay operator. This formulation is equivalent to the Lindblad master equation,

ρ̇ =− i [H, ρ]− 1

2
{Γ, ρ} , (4.12)

that governs the time evolution of the density matrix ρ = |ψ〉〈ψ|. In practice, we implement

this decay term by calculating the time evolution of the system according to H, and then

making the substitution ∆→ ∆− iγC/2 before calculating squares of amplitudes.

It is useful to work in the dressed state basis, |D〉, |B±〉, (basis C in figure 4.2) because

these are nearly stationary states and have simple time evolution in the case that laser
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polarization and Rabi frequency are stationary. If we allow the laser polarization to vary in

time, then the dressed state basis varies in time, and the system evolves according to the

Hamiltonian,

H̃ =UHU † − iUU̇ †, (4.13)

where U is the transformation from time independent basis A to time dependent basis C

(from figure 4.2), UHU † is diagonal, and −iUU̇ † is a fictitious force term that arises because

we are working in a non-inertial frame when the laser polarization is time dependent [28].

Assuming that the polarization is nearly linear, Θ ≈ π/4, but allowing the polarization

to rotate slightly, and allowing for a nonzero two photon detuning due to the Zeeman shift

δ = −µBgH,J=1BzB̃, the Hamiltonian in the dressed state picture is:

H̃ =




0 −iχ̇∗κ+ −iχ̇∗κ−
iχ̇κ+ EB− − i

2
Ω̇r∆−Ωr∆̇

∆2+Ω2

iχ̇κ−
i
2

Ω̇r∆−Ωr∆̇
∆2+Ω2

r
EB+




|D〉
|B−〉
|B+〉

(4.14)

where χ̇ = Θ̇ − i(θ̇ + δ) can be considered to be a complex polarization rotation rate, Ω̇r

is the rate of change of the Rabi frequency, and ∆̇ is the rate of change of the detuning.

Note that this Hamiltonian implies that the effect of a two photon detuning arising from

the Zeeman shift is equivalent to that of a linear polarization rotating at a constant rate.

4.2 Interference in state preparation and read-out

4.2.1 Stark interference between plane wave multipole transition ampli-

tudes

In an applied electric field, opposite parity levels are mixed, allowing both odd parity (E1,

M2,...) and even parity (M1, E2,...) electromagnetic multipole amplitudes to contribute

when driving an optical transition. These amplitudes depend on the orientation of the

electric field relative to the light polarization ε̂ and the laser pointing direction k̂. This

Stark interference (S.I.) effect forms the basis of precise measurements of weak interactions

through parity non-conserving amplitudes in atoms and molecules [26,43,175]. However, it

can also generate a systematic error in searches for permanent electric dipole moments which
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|B+(ε̂i, Ñ , P̃)〉
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Figure 4.2: Energy level diagrams depicting the Hamiltonian when the three-level H → C
transition is addressed by the state preparation or readout lasers in three different bases.
Solid double-sided blue arrows denote strong laser couplings between H and C. Wiggly
red arrows denote spontaneous emission from C to states outside of the three level system.
Dashed orange lines denote weak couplings induced by laser polarization rotation. Basis A
is useful for describing the spin precession phase induced by the Zeeman and electron EDM
Hamiltonians. Basis B is useful for describing the states that are prepared and read-out
in the spin precession measurement. Basis C is useful for evaluating the AC Stark Shift
phases induced by laser polarization rotations.

look for spin precession correlated with the orientation of an applied electric field. These

Stark interference amplitudes have been calculated and measured for optical transitions in

Rb [31,79] and Hg [100,107], and have been included in the systematic error analysis in the

Hg EDM experiment [68,161].

In this section, we consider Stark interference as a source of systematic errors in the

ACME experiment. There are two important differences between molecular and atomic

systems. First, molecular states such as the H3∆1 state in ThO can be highly polarizable

and opposite parity states can be completely mixed by the application of a modest lab-

oratory electric field. Second, molecular selection rules can be much weaker than atomic

selection rules: the H3∆1 → C3Π1 transition that we drive is nominally an E1 forbidden

spin-flip transition (∆Σ = 1, where Σ is the projection of the total electron spin S = 1

onto the intermolecular axis), but these states have significant subdominant contributions

from other spin-orbit terms [133], between some of which the E1 transition is allowed. Both

of these effects significantly amplify the effect of Stark interference in molecules relative to

atoms. In this section we will derive the effect of Stark interference on the measured phase

Φ in ACME I and make anticipate the effect in ACME II.
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Multipole matrix elements on the H → C transition

Consider a plane wave vector potential ~A with real amplitude A0, oscillating at frequency ω,

that is resonant with a molecular optical transition |g〉 → |e〉, with wave vector ~k = (ω/c) k̂,

and complex polarization ε̂:

~A (~r, t) =A0ε̂e
i~k·~r−iωt + c.c. (4.15)

The interaction Hamiltonian Hint between this classical light field and the molecular system

is given by:

Hint (t) =−
∑

a

ea

ma
~A (~r a, t) · ~pa (4.16)

where a indexes a sum over all of the particles in the system with charge ea, mass ma,

position ~r a and momentum ~pa. Typically we apply the multipole expansion on the transition

matrix element between states |g〉 and |e〉; the matrix element can then be written as

M≡ 〈e|Hint|g〉 = iA0ωeg

∞∑

λ=1

〈e|ε̂ · ~Eλ + (k̂ × ε̂) · ~Mλ|g〉, (4.17)

where ~Eλ describes the electric interaction of order O((~k · ~r)λ−1) and ~Mλ describes the

magnetic interaction of order O(α(~k · ~r)λ−1) (where α is the fine structure constant) such

that

~Eλ =
(i)λ−1

λ!

∑

a

ea~r a
(
~k · ~r a

)λ−1
, (4.18)

~Mλ =
(i)λ−1

(λ− 1)!

∑

a

(
ea

2ma

)

×
[(
~k · ~r a

)λ−1
(

1

λ+ 1
~La +

1

2
ga~Sa

)
+

(
1

λ+ 1
~La +

1

2
ga~Sa

)(
~k · ~r a

)λ−1
]
,

where La is the orbital angular momentum, Sa is the spin angular momentum, and ga is

the spin g-factor for particle of index a (see e.g. [143]). For typical atomic or molecular

optical transitions, if all moments are allowed, we expect the dominant corrections to the

leading order E1 transition moment to be on the order of M1/E1 ∼ α ∼ 10−2–10−3 and

E2/E1∼ ka0 ∼ 10−3–10−4, where a0 is the Bohr radius. In this work we neglect the higher
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order contributions beyond E2, though the effects may by evaluated by using the expansion

above.

〈
e
∣∣Hint

(
Oλ
)∣∣ g
〉

= iA0ωeg
[
ε̂∗+1

〈
e
∣∣T λ+1

(
Oλ
)∣∣ g
〉

+ ε̂∗−1

〈
e
∣∣T λ−1

(
Oλ
)∣∣ g
〉]
· ~V
(
Oλ
)

+ . . .

Term
Tensor

Molecular Operator, Oλ Light Vector, ~V
(
Oλ
)

rank, λ

E1 1 Σae
arai ε̂

M1 1 Σa
ea

2ma (Lai + gaSai ) k̂ × ε̂
E2 2 ω

2c

∑
a e

arai r
a
j

i√
2

[
ε̂(k̂ · ẑ) + k̂(ε̂ · ẑ)

]

M2 2 ω
cΣa

ea

2ma

{
rai ,

1
3L

a
j + 1

2g
aSj

}
i√
2

[
k̂((k̂ × ε̂) · ẑ) + (k̂ × ε̂)(k̂ · ẑ)

]

Table 4.1: Only spherical tensor operators T λq with projection q = ±1 contribute to the
|H〉 → |C〉 transition amplitude. With this simplifying assumption, we can write the matrix
element for each multipole operator in the form shown at the top of this table, which
factors the molecule properties and the light properties (where ε̂± = ∓ (x̂± iŷ) /

√
2 are

the spherical basis vectors, and ẑ is the direction of the electric field). Here, the molecular
operators Oλ and the corresponding light vectors ~V

(
Oλ
)

are listed for the E1, M1, E2, and
M2 operators.

During the state preparation and readout of the molecule state, transitions are driven

between the state |g〉 =
∑
± d±|±, Ñ 〉 and |e〉 = |C, P̃〉, where d± are state amplitudes that

denote the particular superposition in |H〉 that is being interrogated. The particular d±

combination that results in M = 0 describes the state that is dark, and the orthogonal

state is bright and is optically pumped away.

It is convenient to expand the Hamiltonian Hint in terms of spherical tensor operators.

Furthermore, the laser is only resonant with ∆M = ±1 transitions, so the spherical tensor

operators with angular momentum projections other than ±1 can be reasonably omitted.

In table 4.1, we factor the first 4 multipole operators into products of molecule and light

field operators and express the molecular operators in terms of spherical tensors T λ±1 of

rank λ = 1, 2. The E1 and M1 terms consist of vector operators with λ = 1. The E2

and M2 operators are rank 2 Cartesian operators which can have spherical tensor operator

contributions for λ = 0, 1, 2. The rank λ = 0 components of the E2 and M2 operators,

and the λ = 1 component of the E2 operator, vanish. The rank λ = 1 component of the

M2 operator does not vanish, but the light field angular dependence of this operator is
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equivalent to E1, so we may treat it as such.

Using well-known properties of angular momentum matrix elements [27], we may write

the transition matrix element in the following form,

M =iA0ωegcE1
1√
2

[
(−1)J+1 P̃

](1−Ñ Ẽ)/2 (
ε̂∗−1d+ + P̃ (−1)J

′
ε̂∗+1d−

)
· ~εeff , (4.19)

such that ~εeff is the “effective E1 polarization” (i.e. including the effects of interference

between multipole transition matrix elements is equivalent to an E1 transition with this

polarization) with the form

~εeff =ε̂− aM1in̂× (k̂ × ε̂) + aE2(P̃)i(k̂(ε̂ · n̂) + ε̂(k̂ · n̂)) + . . . (4.20)

where n̂ = Ñ Ẽ ẑ is the orientation of the internuclear axis in the laboratory frame, aE2(P̃) =

cE2(P̃)/(
√

2cE1) and aM1 = cM1/cE1 are real dimensionless ratios describing the strength of

the M1 and E2 matrix elements relative to E1, and the c coefficients are matrix elements,

cE1 =
〈
C, J,M = 0,Ω = 1 |E1|H,J ′,M = 1,Ω = 1

〉
(4.21)

cM1 =
〈
C, J,M = 0,Ω = 1 |M1|H,J ′,M = 1,Ω = 1

〉
(4.22)

cE2(P̃) =
〈
C, J,M = 0,Ω = 1 |E2|H,J ′,M = 1,Ω = 1

〉
+

P̃ (−1)J
〈
C, J,M = 0,Ω = 1 |E2|H,J ′,M = 1,Ω = −1

〉
, (4.23)

where ‘E1, M1, E2’ refer to the corresponding molecular operators in table 4.1. It is useful

to define the Rabi frequency Ωr = |M| ∝
√
|~ε|2 − |~ε · ẑ|2 as the magnitude of the amplitude

connecting to the bright state, and the unit vector ε̂eff corresponding to the projection of

~εeff onto the xy plane,

ε̂eff =
~εeff − (~εeff · ẑ)ẑ√
|~εeff |2 − |~εeff · ẑ|2

. (4.24)

This completely determines the bright and dark states, which have been previously defined

in equations 2.5 and 2.6 for solely E1 transition matrix elements.

The odd parity E1 and even parity M1 and E2 contributions to the effective polarization

differ by a factor of Ñ Ẽ , which is correlated with the expected electron EDM signal. Expand-

ing the effective E1 polarization in terms of switch parity components, ε̂eff = ε̂nr
eff +Ñ Ẽd~εNEeff ,
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and evaluating the effective Ñ Ẽ correlated polarization imperfections using equation 4.1,

we find that the bright and dark states have effective polarization correlations given by:

ẑ · (ε̂nr
eff × d~εNEeff )

ε̂nr
eff · ε̂nr

eff

≈ dθNEeff − idΘNEeff (4.25)

≈− i(aM1 − aE2(P̃))(ε̂ · ẑ)((k̂ × ε̂) · ẑ). (4.26)

Analogously, the correlated component of the Rabi frequency that results from this

interference is given by

ΩNEr

Ωnr
r

=Re
(
~ε∗eff · δ~εNEeff

)
= 0, (4.27)

which vanishes for plane wave multiple interference.

Estimate of the Size of the Interference Coefficients

Given the Stark Interference systematic error mechanism that has been expressed in equa-

tion 4.26, we would like to estimate the size of the interference coefficients aM1 and aE2 so

that we may estimate the size of the resulting systematic error. At the most coarse level

of approximation, we might generally assume that if E1, M1, and E2 transitions are all

allowed, then the coefficients would be on the order of aM1 ∼ α ∼ 10−2, where α is the fine

structure constant, and aE2 ∼ ka0 ∼ 5 × 10−4 where a0 is the Bohr radius and k is the

wave-vector for an optical transition. Since we would expect that aM1 � aE2, we prioritize

estimating the size of aM1 over aE2.

At a slightly better level of approximation we can make use of measured transition

electric dipole moments, Dij , extracted from measurements in combination with crudely

estimated transition magnetic dipole moments µBgij based on calculated spin orbit contri-

butions to the electronic states in ThO provided in references [99,133], which are reproduced

in table 4.2.1 for convenience. These transition dipole matrix element estimates are provided

in table 4.2.1.

The estimate for the H → C transition electric dipole moment comes from optical

pumping saturation measurements in ACME I in the state preparation and state readout

region [158]. The estimate for the X → C transition electric dipole moment comes from

a combination of estimates of the branching ratio bXC which is discussed in section 5.2 in
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combination with the measured lifetime of the C state, γ ≈ 1/(500 ns) [77], assuming that

the entirety of the X → C decay occurs via E1, bXCγ = 4
3α

ω3
XC
c2
D2
XC . Estimates of the

I → H transition electric dipole moment were measured indirectly in reference [96] and

more directly in an optical pumping saturation measurement in section 5.5.2.

The estimates for the E1/M1 interference coefficients, aM1, that result from the estimates

in table 4.2.1 indicate that the H → C transition likely has the largest coefficient and it

could be as large as aM1..1 and that this interference coefficient is likely to be smaller by

10×−100× smaller on the H → I transition.

State Spin Orbit Make-up

X (0.999, 0.995)1 Σ+
0 + (0, .002)3 Π0 + . . .

H (.005, .001)1Π1 + (.011, .006)3 Π1 + (.984, .989)3 ∆1 + . . .

C (.775, .679)1 Π1 + (.195, .132)3 Π1 + (.015, .002)3 ∆1 + . . .
I ?

Table 4.2: Spin-orbit contributions to electronic states in ThO from calculations in refer-
ences [99,133]. These are squares of amplitudes and signs are omitted.

H → C X → C H → I

D (.01− .02) ea0 (.4− .5) ea0 (.28− .38) ea0

g (.05− .10) (.7− 1.0) (.03− .12)
aM1 = αea0g/D (20− 70)× 10−3 (10− 20)× 10−3 (.6− 3)× 10−3

Table 4.3: Estimates for the molecule frame transition electric dipole moment DAB, transi-
tion magnetic dipole moment µBgAB, and ratios of the magnetic to electric dipole moments
aM1for electronic transitions A→ B for states A,B of interest for the experiment.

Stark Interference in ACME I

It is useful to use a particular parameterization of the laser pointing k̂ and polarization ε̂

to expand the expression in equation 4.26 in terms of pointing and polarization imperfec-

tions. The state preparation laser k̂-vector is aligned along (or against) the ẑ direction in

the laboratory, so it is convenient to parameterize the pointing deviation from normal by

spherical angle ϑk, and the direction of this pointing imperfection by polar angle ϕk in the

xy plane, such that:

k̂ = cosϕk sinϑkx̂+ sinϕk sinϑkŷ + cosϑkẑ. (4.28)

77



Chapter 4. Models for Understanding Systematic Errors

We may use a parameterization for the polarization ε̂ that is similar to that in equation 2.7,

but a slight modification is required to ensure that k̂ · ε̂ = 0:

ε̂ =Nε

(
−e−iθ cos Θε̂+1 + eiθ sin Θε̂−1 + εz ẑ

)
(4.29)

εz =− 1√
2

tan θk

(
e−i(θ−ϕk) cos Θ + ei(θ−ϕk) sin Θ

)
(4.30)

where Nε is a normalization constant that ensures that ε̂∗ · ε̂ = 1. With these parame-

terizations in place, and expanding about small ellipticities dΘ such that Θ = π/4 + dΘ,

and small laser pointing deviation, ϑk � 1, we find that the Ñ Ẽ-correlated effective laser

polarization imperfections are given by:

dθNEeff ≈−
1

2
(aM1 − aE2(P̃))ϑ2

k S cos(2(θ − ϕk)) (4.31)

dΘNEeff ≈−
1

2
(aM1 − aE2(P̃))ϑ2

k sin(2(θ − ϕk)) (4.32)

where Si = −2dΘi describe the laser ellipticities. Hence, following equation 4.2, there is a

systematic error in ωNE ,

=
1

τ

1

4

(
aM1 − aE2

(
P̃
))
× (4.33)

[
ϑ2
k,prep

(
−2Sprepcprep + P̃sprep (SX − SY )

)
+ (4.34)

ϑ2
k,X

(
SXcX + P̃SprepsX

)
+ ϑ2

k,Y

(
SY cY − P̃SprepsY

)]
(4.35)

where ci ≡ cos (2(θi − ϕi,k)) and si ≡ sin (2(θi − ϕi,k)) describe the dependence of the

systematic error on the difference between the linear polarization angle θi and the pointing

angle ϕi,k in the xy plane. Note that, in this particular case, the first and second order

terms in equation 4.3, have roughly the same size contributions to this systematic error

because dθNEeff is smaller than dΘNEeff by an ellipticity factor.

The electron EDM channel, ωNE , was defined in ACME I to be even under the su-

perblock switches (including P̃), hence those terms proportional to P̃ in the equation above

do not contribute to our reported result. Additionally, the G̃ and R̃ switches rotate the

polarization angles for each laser by roughly θi → θi + π/2 periodically and the resulting

ωNE signal is averaged over these states. Provided that the pointing drift is much slower

than the timescale of these switches, and to the extent that the laser polarizations consti-
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tuting the R̃ and G̃ states are orthogonal, then these systematic errors should dominantly

contribute to the ωNEG and ωNER channels which were found to be consistent with zero

(see Figure 3.5).

An indirect limit on the size of the systematic error due to Stark interference, ωNES.I. , may

be estimated by assuming a reasonable suppression factor by which the effects in ωNER

and ωNEG may “leak” into ωNE . We monitored the pointing drift on a beam profiler and

observed pointing drifts up to dϑk ∼ 50 µrad throughout a full set of superblock states.

The absolute pointing misalignment angle was not well known but was estimated to be

larger than ϑk & 0.5 mrad. Hence we may estimate a conservative suppression factor

dϑk/ϑk . 1/10 by which pointing drift may contaminate ωNE from ωNER and ωNEG . The

two R̃ states are very nearly orthogonal, but the G̃ states deviate sufficiently from orthogonal

such that the leakage from ωNEG → ωNE will dominate the systematic error; we estimate

a suppression factor of about cnr
p /c

G
p ∼ snr

p /s
G
p ∼ 1/5. Based on the upper limits on the

measured values for ωNER and ωNEG combined with leakage from ωNER and ωNEG into

ωNE due to pointing drift, and leakage from ωNEG into ωNE due to non-orthogonality of the

two G̃ states, we estimate the possible size of the systematic error to be ωNES.I. . 1 mrad/s,

corresponding to ΦNES.I. . 10−6 rad.

Note that the mechanism for this systematic error was not discovered until after the

publication of our result [6] and hence was not included in our systematic error analysis

there. Furthermore, since we did not observe this effect, this systematic error does not

match any of the inclusion criteria outlined in section 3.6.1 and hence is not included in

the systematic error budget in the result publication. Since we did not understand the

mechanism for this systematic error while running the apparatus, we were not able to place

direct limits on the size of this systematic error. We estimate that the absolute pointing

deviation from ideal was at most 5 mrad and the ellipticity of each laser was no more than

Si ≈ 5%. The E1/M1 interference coefficient is estimated to be aM1 . 0.1 for the H → C

transition as estimated in table 4.2.1. This gives an estimate of ωNES.I. . 0.1 mrad/s before

suppression due to the R̃ and G̃ switches. Hence, we do not believe that this systematic

error significantly shifted the result of our measurement.

This estimated upper limit on the size of the systematic error in ACME I was well below

that measurements sensitivity, but is comparable to the projected ACME II sensitivity.

However, we have made a few modifications to the ACME II apparatus that should suppress

79



Chapter 4. Models for Understanding Systematic Errors

this systematic error even further. First, we plan to optically pump on the H → I transition

with the refinement beam and the state read-out beams, for which we have estimated

that the coefficient aM1 is likely at least a factor of 10× smaller relative to that on the

H → C transition. Also, the procedure described in section 4.1.2 should aid in suppressing

the ellipticity of the laser light by effectively making polarization measurements with the

molecules.

Furthermore, we have introduced a new scheme for aligning the laser pointing with the

electric field direction [170]. In this scheme, we assume that the normal vector to electric

field plate ITO surface is parallel with the electric field. The laser reflection off of that

surface is sent back into the optical fiber from which that light came, and is separated

from the rest of the laser light on the other side of that fiber by the rejection port of

an optical isolator. The pointing of the beam can be varied to maximize the intensity of

light propagating back into the fiber, and the spatial filtering provided by the fiber offers

improved precision in alignment. The combination of these three improvements in ACME

II will likely suppress the effect of this systematic error in the refinement beam and state

read-out beams such that its size will be below the resolution of the experiment.

Enhanced sensitivity to Stark interference with STIRAP lasers

In ACME II we are using a pair of laser beams that are propagating along the ŷ direction

to perform state preparation from |X, J = 0,M = 0〉 to |H,J = 1,M, Ñ 〉 via the excited

state |C, J = 1〉 using a STIRAP process. There are two reasonable schemes by which we

can perform this transfer that are depicted in figure 4.2.1:

1. ẑ polarized X → C laser, x̂ polarized C → H laser, connecting via |C, J = 1,M =

0, P̃ = −1〉 state

2. x̂ polarized X → C laser, ẑ polarized C → H laser, connecting via |C, J = 1,M, Ñ 〉
states

Whereas in the ACME I state preparation scheme the initial spin precession state was

determined by the polarization of the state preparation laser, in ACME II, the state prepared

by STIRAP is determined by the polarization of the laser with nominal x̂ polarization.

Lets assume that the laser with nominal x̂ polarization is propagating along k̂ = ŷ and

has polarization,
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Figure 4.3: Illustration of two possible schemes for performing STIRAP on the |X, J =
0,M = 0〉 → |C, J = 1〉 → |H,J = 1,M, Ñ 〉 transition. Here, the dotted red lines illustrate
scheme 1, and the solid red lines illustrated scheme 2, referring to STIRAP schemes defined
in the text.

ε̂ =
1√
2

{
e−iθ cos Θ [x̂− iẑ] + e+iθ sin Θ [x̂+ iẑ]

}
, (4.36)

which is expressed in analogy to equations 2.7 and 4.29, where θ is the linear polarization

angle in the xz plane, where θ = 0 corresponds to x̂ polarization, and Θ ≈ π/4 + dΘ where

S ≈ −2dΘ is the ellipticity of the light in the xz plane. With this parameterization of the

polarization, the Stark interference systematic error given in equation 4.26 can be expressed

as

dθNE − idΘNE ≈− i(aM1 − aE2)(dθ − idΘ), (4.37)

where we have expanded to first order in the polarization imperfections dθ and dΘ. Here

we see that ellipticity of this STIRAP laser beam with nominal x̂ polarization results in

a spin alignment correlation dθNE which is a systematic error in the measurement of the

electron’s EDM. Assuming an ellipticity of this laser beam of about S ≈ 2% and using

estimated aM1 coefficients from table 4.2.1 we would expect a systematic error of dθNE ∼
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1 mrad in scheme 1 in which the spin state is being set on the H → C transition or

dθNE ∼ .3 mrad in scheme 2 in which the spin state is being set on the X → C transition.

This possible systematic error is more than a factor of 103× the sensitivity of the ACME

II measurement and would obstruct an improved measurement of the electron’s EDM if

this issue were not directly addressed. To suppress this systematic error we decided to

introduce the refinement laser beam which is sent with laser propagation direction k̂ ≈ ẑ

immediately after the STIRAP state preparation and serves to reproject the spin state so

that the Stark interference that occurs in the STIRAP beams does not significantly affect

the spin precession measurement. Estimates of the attenuation of this systematic error by

the refinement laser beam are provided in section 4.3.5, and measurements presented there

are consistent with a suppression factor . 10−3 as required.

We might consider which of these two schemes is preferable for use in the experiment.

In terms of the size of the likely Stark interference systematic error, scheme 2 may be

preferable. In terms of the technical implementation, however, scheme 2 requires frequency

switching of both STIRAP lasers synchronously to perform the Ñ switch, whereas scheme

1 requires only the H → C laser to undergo frequency switching. For this reason, we have

implemented STIRAP with scheme 1, but if the Stark interference systematic error becomes

an issue, scheme 2 may be explored in the future. Another factor to keep in mind is that

in scheme 2, the transition matrix element is larger on the H → C transition; since the

STIRAP efficiency is limited by the available laser power in the H → C laser beam [129],

better inefficiencies may be possible with scheme 2.

Given that the effect of Stark interference is greatly enhanced when the laser propa-

gation direction is perpendicular to the electric field compared to the case in which they

are nominally parallel, we should be able to reconfigure the spin precession measurement to

precisely measure the interference coefficients, (aM1−aE2), that we estimated in table 4.2.1.

Such measurements would enable us to make more accurate estimates of the Stark inter-

ference systematic error in the electron EDM experiment, and could serve as an additional

benchmark for assessing the validity and accuracy of calculations of molecular wavefunc-

tions in ThO. Such comparisons between theory and experiment could aid in improving

the computational methods required to make even more precise calculations of the electron

EDM sensitivity, Eeff in molecules with heavy nuclei.
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This experiment could be performed rather simply to assess these coefficients for the

H → C and X → C transitions by implementing either STIRAP scheme 1 or scheme 2

respectively, blocking the refinement beam, and then performing the electron EDM mea-

surement while dithering the ellipticity for the laser that is nominally x̂ polarized. For this

measurement, the interference coefficient is given by ∂ΦNE/∂dΘ ≈ −(aE1 − aE2). A mea-

surement of the Stark interference coefficient on the H → I transition may also be assessed

by moving the refinement beam such that it is propagating along the ŷ direction, and per-

forming the same measurement as previously described except with the ellipticity dither on

the refinement beam. To reduce the complexity of this second proposed experiment, and to

eliminate possible systematic errors due to reprojection phases, discussed in section 4.3.5,

the H-state could alternatively be populated with the 943 nm H → A state transfer laser

that was used in ACME I before being addressed by the refinement beam.

4.2.2 Interference Due to Opposite Parity Excited State

In the previous section we modeled the state preparation and state read-out with a 3-

level Λ system resonantly addressed with a laser field. In this section, we include the

off-resonant opposite parity excited state, |C ′〉 ≡ |C, J = 1,M = 0,−P̃〉, as part of a 4-level

system in combination with multipole Stark interference. Since the bright ground state

superpositions that correspond to each of the two opposite parity states are not orthogonal

when the ellipticity of the laser beam is non-zero, the off-resonant coupling can mix the

bright and dark ground states leading to a phase shift in the electron EDM measurement.

Lets first consider the case where we have a time independent Hamiltonian, H, while the

laser is on (a flat top intensity beam). Including the opposite parity state |C ′〉 modifies the

dark state |D〉 to |D′〉 which is no longer completely dark, but is nevertheless the “darkest”

system eigenstate (i.e. it’s decay rate is much slower than the other system eigenstates

during optical pumping and is not significantly pumped away while the laser is on). At

second order in time-independent perturbation theory, the darkest state |D′〉 is given by

|D′〉 =|D〉+
∑

±
aB± |B±〉, (4.38)
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where the bright state amplitudes, aB± are given by

aB± =
〈B± |H|C ′〉 〈C ′ |H|D〉

(ED − EB±)(ED − EC′)
. (4.39)

Here, |B±〉 are the bright state eigenstates given in equation 4.9 and EC′ = −P̃∆C,J=1 is

the detuning of the opposite parity state, where ∆C,J=1 is the omega doublet splitting in

|C, J = 1〉.
If the laser then turns off non-adiabatically, the remaining population in the excited

state will decay away leaving behind the state:

∣∣D
(
ε̂′
)〉

= |D (ε̂)〉+ a |B (ε̂)〉 (4.40)

ε̂′ =ε̂+ aiẑ × ε̂∗ (4.41)

where the coefficient a is given by

a = Σ±κ∓aB± = P̃
(
iγ − 2∆

∆C

)
(ε̂− · ε̂+)(iẑ · (ε̂∗− × ε̂+)), (4.42)

where ε̂+ ≡ ε̂(P̃) is the on-resonant effective E1 polarization and ε̂− ≡ ε̂(−P̃) is the off-

resonant effective E1 polarization. The distinction is fairly minor because only rank 2

tensor operators and higher can contribute is such a way that depends on P̃, so in most

cases we can approximate ε̂+ = ε̂− = ε̂. Under this approximation, and assuming laser

beams approximately propagating along ẑ, this effect results in a change in the state that

is prepared or read out as

dθ′ − idΘ′ ≈− P̃
(
γ + 2i∆

∆C

)
(2dΘ) (4.43)

where dΘ′ is the shift to the ellipticity of the state, and dΘ is the ellipticity of the laser.

Here, systematic errors can arise from a non-reversing electric field,∆NE and an ellipticity

in both the state preparation and readout lasers. Given ellipticity S ∼ 2% and a non

reversing electric field, ∆NE ∼ 2π× 5 kHz, this systematic error is likely to be smaller than

the resolution of both ACME I and ACME II, ΦNE ∼ 5× 10−8.
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Intended Transition

Transverse Magnetic Field + Imperfect Pointing

Stark Rotational Mixing

Imperfect Molecule Alignment
or Electric or Magnetic �eld Gradient
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J=1
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Figure 4.4: Energy level diagram showing interference mechanisms on the H → C transition
in the presence of electric and magnetic fields. The transition that we intend to drive
is depicted with solid dark blue lines. Unintended pathways that can interfere with the
intended transition are depicted with dashed lines. The red dashed lines account for first
order transverse magnetic field mixing, the light blue dashed lines account for first order
Coriolis (omega doublet) mixing. The green dashed lines account for first order rotational
Stark mixing.
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4.2.3 Interference due to first order Stark and Zeeman mixing

In the previous sections we describe the mechanism by which interference between the first

few plane wave multipoles and multipole couplings can result in correlations in the state

that is either prepared or read-out. In this section, we explore how the inclusion of other

states beyond the three-state model and the inclusion of Stark and Zeeman mixing between

these levels can result in additional correlations that we can detect in the spin precession

measurements. Figure 4.4 illustrates these additional interference mechanisms which include

Zeeman mixing with a magnetic field component perpendicular to the electric field, Coriolis

mixing accounting for the extent to which the molecule is not fully aligned in the laboratory

frame, and rotational Stark mixing. Before accounting for these interactions, the energy of

each of these states can reasonably be approximated by

E
(
A, J,M 6= 0, Ñ

)
=BR, AJ (J + 1)− Ñ |MDAE|

J (J + 1)
(4.44)

E
(
A, J,M = 0, P̃

)
=

(
BR, A + (−1)J

1

2
P̃∆A

)
J (J + 1) (4.45)

where BR, A is the rotational constant, DA is the molecule fixed electric dipole moment,

and ∆A is the omega-doubling constant for electronic state A5. The E1 transition dipole

matrix element on the H → C transition is then modified at first order in perturbation

theory to the following expression,

5. Sometimes we refer instead to the omega doublet splitting given by ∆A,J = ∆AJ (J + 1), or the electric
dipole moment for the state |A, J〉, given by DA, J = DA/J (J + 1).
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〈
C, J = 1, P̃ |ε̂ · r̂|H,J = 1,M, Ñ

〉
≈ (4.46)

+
〈
C, J = 1,M = 0, P̃ |ε̂ · r̂|H,J = 1,M,Ω

〉
(4.47)

+

〈
C, J = 1,M = 0, P̃ |ε̂ · r̂|H,J = 1,M,Ω

〉
〈H,J = 1,M,−Ω |H∆|H,J = 1,M,Ω〉

E
(
H,J = 1,M, Ñ

)
− E

(
H,J = 1,M,−Ñ

) (4.48)

+

〈
C, J = 1,M = 0, P̃ |ε̂ · r̂|H,J = 2,M,Ω

〉
〈H,J = 2,M,Ω |−D · E|H,J = 1,M,Ω〉

E
(
H,J = 1,M, Ñ

)
− E

(
H,J = 2,M, Ñ

) (4.49)

+

〈
C, J = 1,M = 0, P̃ |−D · E|C, J = 2,M = 0,−P̃

〉〈
C, J = 2,M = 0,−P̃ |ε̂ · r̂|H,J = 1,M,Ω

〉

E
(
C, J = 1,M = 0, P̃

)
− E

(
C, J = 2,M = 0,−P̃

)

(4.50)

+

〈
C, J = 1,M = 0, P̃ |−µ · B|C, J = 1,M,Ω

〉
〈C, J = 1M,Ω |ε̂ · r̂|H,J = 1,M,Ω〉

E
(
C, J = 1,M = 0, P̃

)
− E

(
C, J = 1,M, Ñ

) (4.51)

+ . . . (4.52)

As we did previously, we can then reinterpret this matrix element in terms of an effective

E1 polarization vector ~εeff which describes the E1 polarization that would be needed, in

the absence of the perturbations to the states due to Coriolis, Zeeman and Stark mixing,

to simulate those effects. This effective E1 polarization is given approximately by,

~εeff ≈
[
1− Ñ P̃ ∆H

DH |E|
+ Ñ |E| 1

20

(
DC

BR, C
− 3

2

DH

BR, H

)]
ε̂− iÑ

(
µCB
DC |E|

)
(n̂ · ε̂)

(
n̂× B̂

)
.

(4.53)

Note that the Coriolis mixing and the rotational Stark mixing simply varies the size of the

Rabi frequency, and the transverse magnetic field mixing can contribute both to the size of

the Rabi frequency and to spin state that is prepared or read-out, in the case that the laser

pointing deviates from ideal. The Rabi frequency is proportional to the magnitude of the

effective E1 polarization,
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Ωr ∝
√
~ε∗eff · ~εeff =1− Ñ P̃ ∆H

2DH |E|
+ Ñ |E| 1

20

(
DC

BR, C
− 3

2

DH

BR, H

)
(4.54)

+
1

2
Ñ
µC

[
i(ε̂× ε̂∗) ·

(
B̂ −

(
B̂ · n̂

)
n̂
)]

DC |E|
+ . . . (4.55)

Note that i(ε̂ × ε̂∗) is real and is the ellipticity of the laser light measured relative to the

propagation axis k̂ which is slightly different from S, which we have previously defined as

the ellipticity measured with respect to the ẑ laboratory axis. Hence, we expect that the

Rabi frequency has correlations of approximate size,

ΩNr
Ωnr

r

≈ 1

20

(
DC |E|
BR, C

− 3

2

DH |E|
BR, H

)
∼




−3.5× 10−4 |E| ≈ 36 V

cm

−1.5× 10−3 |E| ≈ 141 V
cm

(4.56)

ΩNPr

Ωnr
r

≈− ∆H

DH |E|
∼




−2.5× 10−3 |E| ≈ 36 V

cm

−6.5× 10−4 |E| ≈ 141 V
cm

(4.57)

Both of these correlations were observed in ACME I and contributed to the correlated

contrast, CN and CNP , as can be seen in figure 3.5. The transverse magnetic field mixing

term also contributes to ΩNr when interfering with E1 and can contribute to ΩEr when

interfering with M1, but both of these contributions are estimated to be incredibly small,

< 10−9 and hence were neglected in the above calculation.

The additional interference terms in equation 4.53 also introduces the possibility of

correlations in the prepared spin state. Just as one example, there are contributions to ΦN

with spin spate imperfections,

dθN − idΘN ≈− i
(
µCB
DC |E|

)(
ẑ ·
(
ε̂×

(
ẑ × B̂

)))
(ε̂ · n̂) (4.58)

which could have plausibly been as large as ∼ 10−7 rad, below the level of sensitivity of

the ACME I experiment, and well below the size of the not-understood signal in the ωN

channel described in section 3.5.
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4.2.4 The persistent ΩNEr mystery

As described in section 3.2, during the course of ACME I, we observed a couple pieces

of evidence that pointed to the existence of a Rabi frequency correlation ΩNEr /Ωnr
r ≈

(−8.0± 0.8)× 10−3(k̂ · ẑ) that reversed with the propagation direction of the laser beams,

k̂ · ẑ, and there was no strong evidence for ΩNEr varying with any of the other experiment

parameters that we routinely varied, within the resolution of the experiment. These ob-

servations motivated the development of the Stark interference model described in section

4.2.1. If we allow for the coefficients aM1 and aE2 to be complex, then the Stark interference

results in a Rabi frequency correlation,

ΩNEr

Ωnr
r

≈− Im [aM1 + aE2] (k̂ · n̂), (4.59)

which provides the same functional behavior as that observed in the experiment. Further-

more, the estimates for aM1 in table 4.2.1 suggest that it may be as small as the measured

ΩNEr /Ωnr
r (in magnitude), and on the higher end it could plausibly be up to a factor 10×

larger. Despite the apparent similarities between the Stark interference model and the

observed Rabi frequency correlation, for a single plane wave aM1 is distinctly real which

implies that the Rabi frequency correlation vanishes, as stated in equation 4.27. Neverthe-

less, this model still seems plausibly viable for explaining the measurement if an additional

complication is introduced that effectively applies a phase shift of the M1 amplitude relative

to E1.

As a proof of principle of my claim that we can conceive of some effect that mimics an

imaginary component of aM1, consider the interaction of the molecule with both a plane

wave propagating in the forward k̂ ≈ ẑ direction, and its reflection off of the far electric

field plate with reflection amplitude r and backward propagation direction k̂′ ≈ −k̂. The

amplitudes of these two plane waves add resulting in an effective E1 polarization that takes

into account both waves and the E1 and M1 transitions,

~εeff =(eikz + re−ikz)ε̂− iaM1(eikz − re−ikz)n̂× (k̂ × ε̂), (4.60)
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which results in a correlated Rabi frequency,

ΩNEr

Ωnr
r

≈− aM1Im

[
1− re−2ikz

1 + re−2ikz

]
(k̂ · ẑ), (4.61)

Given that the reflectivity off of the field plates is about |r|2 ∼ 0.1, the magnitude of the

Rabi frequency correlation would be around ∼ 10−2, comparable to that which we observed

in the experiment. However, the value oscillates spatially over the scale of the wavelength

of the light, which is much smaller than the scale of the molecule beam, and hence should

average out to zero in the spin precession measurement. So, although this mechanism

does not explain the measured ΩNEr /Ωnr
r , it lends credence to the possibility that the Stark

interference could still be part of the generating mechanism.

4.3 AC Stark shift phases
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Figure 4.5: Schematic of the EDM spin precession measurement including effects from AC
Stark induced phases ∆Φprep and ∆Φread from non-adiabatic polarization rotations after
the state preparation and before the state read-out lasers respectively. Top: illustration of
the spin state evolution in time by plotting the relative phase between |Ñ ,M = ±1〉 as an
angle in 2d space, and by illustrating the state norm by the length of the line segment. The
spin state is initially incoherent in ACME I, but the state preparation laser depletes half
of the molecules resulting in a coherent state. Bottom: The Rabi frequency as seen by the
molecules as a function of time is shown in red, and the polarizations of these laser beams
in the xy plane is shown in purple.
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4.3.1 Polarization gradients and Zeeman mixing

In this section we describe contributions to the measured phase Φ that depend on the AC

Stark shift induced by the state preparation and readout lasers. We describe mechanisms

by which such phase contributions may arise, and we describe mechanisms by which Ñ Ẽ
correlated experimental imperfections may couple to these phases to result in electron EDM-

mimicking phases. Concise descriptions of some of the effects described here can be also be

found in [77,86,158].

During our search for systematic errors as described in section 3.1, we empirically found

that there was a contribution to the measured phase dΦ(∆,Ωr) that had an unexpected

linear dependence on the laser detuning, ∆, a quadratic dependence on laser detuning ∆ in

the presence of a nonzero magnetic field, and a linear dependence on small changes to the

magnitude of the Rabi frequency, dΩr/Ωr, in the presence of a nonzero magnetic field,

dΦ (∆,Ωr) =
∑

i

[
α∆,i∆i + α∆2,i∆

2
i + βdΩr,i

(dΩr,i/Ωr,i) + . . .
]
. (4.62)

where i ∈ {prep, X, Y } indexes the state preparation and readout lasers. The coefficients

we measured were α∆ ∼ 1 mrad/(2π × MHz), α∆2 ∼ 1 mrad/ (2π ×MHz)2 and βdΩr ∼
10−3. We performed these measurements by independently varying the laser detunings ∆i

across resonance using AOMs or modulating the laser power using AOMs and extracting

the measured phase Φ. Examples of such measurements are given in figure 4.3.1. Such

phases can couple to observed correlations in the detuning, ∆NE ≈ 2π · 5 kHz, and the

Rabi frequency, ΩNEr /ΩNEr ≈ 8× 10−3, to result in systematic errors that are expressed in

equations 3.9 and 3.10.

We determined that this behavior can be caused by mixing between bright and dark

states, due to a small non-adiabatic laser polarization rotation or Zeeman interaction present

during the optical pumping used to prepare and read out the spin state. The mixed bright

and dark states differ in energy by the AC Stark shift, which leads to a relative phase

accumulation between the bright and dark state components that depends on the laser

parameters ∆ and Ωr. We shall now derive an AC Stark shift phase that reproduces the

behavior described in equation 4.62, under simplifying assumptions amenable to analytic

calculations.

We may apply first order time-dependent perturbation theory in this picture to deter-
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mine the extent of bright/dark state mixing due to χ̇ in the time evolution of the three level

system under the Hamiltonian in equation 4.14. If we parameterize the time-dependent

state as

|ψ (t)〉 =cD (t) |D〉+ cB+ (t) |B+〉+ cB− (t) |B−〉, (4.63)

then in the case of a uniform laser field Ω̇r = 0, of duration t and with a constant detuning

∆̇ = 0, the time evolution of the coefficients is given at first order by:

cD (t) =cD (0)−
∑

±

∫ t

0
χ̇∗
(
t′
)
κ∓
(
t′
)
e−iEB±t

′
cB± (0) dt′ (4.64)

cB± (t) =e−iEB±tcB± (0) + e−iEB±t
∫ t

0
χ̇
(
t′
)
κ∓
(
t′
)
eiEB±t

′
cD (0) dt′. (4.65)

In ACME I the molecules begin in an incoherent mixture of the states |B(ε̂prep), Ñ , P̃〉
and |D(ε̂prep), Ñ , P̃〉 and then enter the state preparation laser beam. In the ideal case of

uniform laser polarization, molecules that were in the bright state are optically pumped

out of the three level system, and molecules that are in the dark state remain there; this

results in a pure state, |D(ε̂prep), Ñ , P̃〉. However, if there is a small polarization rotation

by amount dχ ≡
∫ t

0 χ̇ (t′) dt′ ≡ dΘ − i(dθ − gH,J=1µBB̃Bzt), such that |dχ| � 1, then the

dark state obtains a bright state admixture that may not be completely optically pumped

away before leaving the laser beam.6 In this case, the final state can be written as

|D(ε̂′prep), Ñ , P̃〉 =|D(ε̂prep), Ñ , P̃〉+ dχΠ|B(ε̂prep), Ñ , P̃〉 (4.66)

where ε̂′prep is the effective polarization that parameterizes the initial state in the spin

precession region,

ε̂′prep =ε̂prep + dχΠiẑ × ε̂∗prep, (4.67)

and Π is a complex amplitude that accounts for the AC Stark shift phase and the time

6. This is most liable to occur just before a molecule leaves the laser beam, such that complete optical
pumping does not occur.

92



Chapter 4. Models for Understanding Systematic Errors

dependent dynamics of the non-adiabatic mixing during the polarization rotation,

Π =
∑

±
(κ∓)2e−iEB±t

∫ t

0
dt′

χ̇ (t′)

dχ
eiEB±t

′
. (4.68)

The deviations between the effective polarization and the actual laser polarization can be

viewed as effective polarization imperfections,

dθprep,eff =− dΘprepImΠ + (dθprep − g1µBBzB̃t)ReΠ, (4.69)

dΘprep, eff =− dΘprepReΠ− (dθprep − g1µBBzB̃t)ImΠ, (4.70)

that lead to shifts in the measured phase Φ as described in equation 4.2. For definiteness,

consider the simple case in which the polarization rotation rate χ̇(t′) = (dχ/t)(0 ≤ t′ ≤ t)

is a constant for the duration of the optical pumping pulse t. In this case,

Π =
∑

±
(κ∓)2e−iEB±t/2sinc(EB±t/2). (4.71)

This function has the property that ImΠ is an odd function in ∆ that can take on

values up to order unity across resonance (a frequency range that spans the larger of the

excited state decay rate, γC , and the Doppler width, ∆D) and is exactly zero on resonance.

ReΠ is an even function, quadratic in ∆ about resonance, and depends linearly on small

changes in the Rabi frequency on resonance. If the laser beam intensity reduces quickly

as the molecule leaves the laser beam then most of the AC Stark shift phase arises from

the last Rabi flopping period before the molecule exits the laser beam (provided that χ̇ is

nonzero during that time). If the intensity reduces slowly, the AC Stark shift phase can

be exacerbated since the bright state amplitude is not as effectively optically pumped away

while Ωr < γC . Nevertheless, beam shaping tests [158] and numerical simulations indicate

that Π is not very sensitive to the shape of the spatial intensity profile of the laser beam or

the shape of the spatial variation of the polarization.

If we consider only the first order contribution to the shift in the measured phase in

equation 4.2, dθprep,eff , and neglect the second order shift that arises due to dΘprep,eff , then

we can relate the parameters in equation 4.62 to the amplitude Π accounting for the AC
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Stark shift phase and the complex polarization rotation dχ, by

α∆,prep ≈−
∂ImΠ

∂∆prep
dΘprep (4.72)

α∆2,prep ≈
∂2ReΠ

∂∆2
prep

(
dθprep − gµBBzB̃t

)
(4.73)

βdΩr,prep ≈Ωr
∂ReΠ

∂Ωr

(
dθprep − gµBBzB̃t

)
. (4.74)

We can interpret these results as follows. The linear dependence of the measured phase on

detuning, α∆,prep, comes from a spatially varying ellipticity in the x direction coupling to

the AC Stark shift phase. Similarly, the quadratic dependence of Φ on ∆, α∆2,prep, and the

dependence of Φ on a relative change in Ωr, βdΩr,prep, come from either a spatially varying

linear polarization in the x direction or a Zeeman shift, each coupling to the AC Stark shift

phase.

Here, we only analyzed the phase shift that results from AC Stark shift effects in the

state preparation laser beam, but there is an analogous phase shift in the state readout

beam, which is approximately given as the average phase shift measured by the ε̂X and

ε̂Y read-out laser beams. Since these two laser beams are nominally orthogonal, if the

polarization gradients in the laser beams are generated by a birefringent mechanism, such

at that described in section 4.3.3, then the contributions to the phase shifts in the ε̂X and ε̂Y

laser beams have opposite signs resulting in cancellation of the effect in the spin precession

signal.

There are several other subdominant effects that also contribute to the AC Stark shift

phase behavior described in equation 4.2 in the presence of polarization imperfections. The

opposite parity excited state |C,−P̃〉 couples strongly to the dark state, but the mixing

between these two states is weak because the transition frequency is off-resonant by a

detuning ∆Ω,C,J=1 ≈ 2π × 51 MHz � γC . In the case that an optical pumping laser has

nonzero ellipticity, the bright state gains a weak coupling to the opposite-parity excited

state proportional to this ellipticity. Then, two-photon bright-dark state mixing ensues in

such a way that the mixing amplitude, and hence the measured phase, depends on the laser

detuning. This mechanism is described in detail in section 4.2.2 above.

The rapid polarization switching of the state readout beam can also introduce AC Stark

shift-induced phases in the absence of a polarization gradient, if the average ellipticity
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between the two polarizations is non-zero. Suppose a particular molecule is first excited by

the ε̂X polarized beam. The two bright eigenstates |B±〉 are mostly optically pumped away,

resulting in a fluorescence signal FX . The population remaining in the bright eigenstates

acquires a phase relative to the dark state, due to the AC Stark shift. Then the molecules

are optically pumped by the ε̂Y polarized beam. If there is a nonzero average ellipticity, ε̂Y

is not quite orthogonal to ε̂X and the new bright eigenstates that give rise to the fluorescence

signal FY are superpositions of the former bright and dark states that acquired a relative

AC Stark shift phase. This results in a fluorescence signal, and hence measured phase

component, that depends linearly on laser detuning ∆. This mechanism is described in

detail in section 4.3.4.

In ACME I, we used Acousto-optic modulators in both the state preparation and state

read-out beam paths to independently vary the detuning and laser intensity of each beam.

We then performed spin precession measurements while scanning across several values of

∆ and Ωr, allowing us to measure the phase dependence Φ(∆,Ωr). We would switch the

magnetic field direction, B̃, so that we could distinguish between AC Stark shift phases

caused by polarization imperfections and the Zeeman interaction. We also switched P̃,

R̃ so that we could distinguish phases from contributions to the asymmetry induced by

differences in power, laser intensity profile, pointing, or polarization imperfections of the

two state read-out beams. These “asymmetry effects” are described in more detail in section

4.3.6

Example data, taken between the two k̂ · ẑ = ±1 measurements in ACME I, of the AC

Stark shift phases is presented in figure 4.3.1. This data clearly shows a non-zero αnr
∆ in

both the state preparation and state read-out region of approximately the same magnitude

but opposite sign, which could have been caused by an ellipticity gradient, amongst other

possible causes. Nonzero αnr
∆2 and βnr

dΩr
were not observed within the resolution of these

experiments, which indicates the absence of a significant linear polarization gradient. AC

Stark shift phases due to the Zeeman interaction, αB∆2 and βBdΩr
, were observed and had

coefficients that are roughly consistent with those which are expected.
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Figure 4.6: Measured AC Stark shift phases Φ(∆,Ωr) = Φnr + B̃ΦB and their dependence
on the laser parameters ∆ and Ωr for both the State Preparation beam (red) and the State
Read-out beam (blue), obtained from laser detuning and power scans. The points with
1σ errorbars are data taken from the experiment and the solid lines are ±1σ confidence
intervals for quadratic fits to the measurements. For each of these plots the offset phase
under normal operating conditions, ∆ = 0, Ωr/Ω

nr
r = 1, has been subtracted.
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Figure 4.7: Here is an illustration of the 6 models that are considered analytically for
evaluating the AC stark shift induced phase shifts in the state preparation laser beam for
different spatial profiles of the Rabi frequency, Ωr(t), and polarization rotation rate, χ̇.
The top row illustrates models with a uniform intensity laser beam, Ωr (t) = Ωr(t < τ),
and the bottom row illustrates models with an exponentially decaying intensity laser beam,
Ωr (t) = Ωre

−t/τ . The columns correspond to the 3 models for the polarization rotation rate
function χ̇ (t), the Dirac impulse, the Gaussian impulse, and the constant rotation rate.

4.3.2 Comparison of analytic models for the AC Stark shift phase factor

Π

Uniform Rabi frequency

In the previous section, we derived the dependence of the phase on the AC Stark shift

phase factor, which we parameterized as Π in equation 4.68 in the case of a uniform Rabi

frequency. I stated previously, without proof, that Π is not very sensitive to the shape of

the spatial intensity profile of the laser beam or the shape of the spatial variation of the

polarization. In this section, we will explore a few analytic models of the AC Stark shift

phase from polarization gradients for different functional forms of the spatial variation of

the polarization gradient and the Rabi frequency to justify this claim.

In the case that the laser Rabi frequency is uniform and shuts off non-adiabatically at

time t = τ , Ωr(t) = Ωr(t ≤ τ), we can evaluate the function Π using equation 4.68. Lets

consider 3 spatial profiles of the polarization rotation χ̇(t),

1. Dirac impulse: an instantaneous polarization rotation at t = 0, χ̇ (t) = dχ δ (t) .

2. Gaussian impulse: a slightly more gradual polarization rotation (possibly a reasonable
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model of effects from two overlapping laser beams with slightly different polarization).

The polarization occurs around t = 0 with a timescale of T such that T < τ , χ̇ (t) =

dχ e−t
2/2T 2

/
√

2πT 2.

3. Constant: a uniform polarization rotation rate from time t = 0 to t = τ when the

laser beam shuts off, χ̇ (t) = (dχ/τ) (0 ≤ t ≤ τ).

These three models are illustrated at the top of figure 4.3.2. Table 4.3.2 shows explicit

expressions for the Π function for each of the three model χ̇ functions described above in

terms of κ±, EB±, and τ . Recall that the effect of the decay is included in this function

by making the substitution ∆ → ∆ − iγ/2 in the definitions of EB± and κ± in equations

4.11 and 4.9. As described earlier, the bright state admixture dχΠ will be exponentially

suppressed by ∼ exp (−γt/2) if polarization rotation mostly occurs in the center of the laser

beam where the optical pumping is taking place such that Ωrτ � 1 and γτ � 1. Since

the AC Stark shift phase will be dominated by polarization rotation near the falling tail

of the spatial intensity profile, we do not explicitly consider this limit. We also do not

consider the limit in which optical pumping does not significantly take place, Ωrτ � 1 and

γτ � 1, because optical pumping is required for the measurement scheme. The dominant

contributions to Π come from polarization rotation that occurs during the last Rabi flop

such that Ωτ ≤ π, in which case Π approaches 1. Hence there are two limits that we would

like to understand well, which are:

1. Ωrτ � 1, γτ � 1, this is the case where the polarization rotation occurs very close to

the edge of a laser beam with a spatial intensity profile that falls off very abruptly.

2. Ωrτ � 1, γτ � 1, this is the case where the polarization rotation occurs within a

weak field tail of a laser beam with a spatial intensity profile that falls of gradually

so that the Rabi flopping is slow, but the decay of the excited state is still rapid.

In both of these limits, it will be useful to express Π as a Taylor expansion in ∆τ and Ωrτ

for easier comparison between measured experiment coefficients in equation 4.62. In the

limit that Ωrτ � 1, γτ � 1, it is useful to use an expansion in Ωrτ and i∆τ ,
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Π =
∞∑

n,m=0

αnm (i∆τ)n (Ωrτ)m (4.75)

=1 + α02 (Ωrτ)2 + iα12 (∆τ) (Ωrτ)2 − α22 (∆τ)2 (Ωrτ)2 + . . . (4.76)

which is practically useful up to around Ωrτ ∼ π. It is also notable that the largest

sensitivity of Π to Ωr and ∆ occurs in the regime of γτ � 1 with Ωrτ ∼ π and ∆τ ∼ π.

In the limit of Ωrτ � 1, γτ � 1, it is illustrative to express Π as a Taylor expansion in

Ωrτ and 1/ (i∆τ + γ/2) which shows explicitly the resonant behavior of the Π function as

a function of detuning in this limit,

Π =
∞∑

n,m=0

βnm
(Ωrτ)m

(i∆τ + γτ/2)n
(4.77)

=1− iβ12
(Ωrτ)2

(∆τ − iγτ/2)
− β22

(Ωrτ)2

(∆τ − iγτ/2)2 + . . . (4.78)

Table 4.3.2 lists the first three nontrivial αnm coefficients for the three models described

in both the Ωrτ � 1, γτ � 1 limit the first 2 nontrivial βnm coefficients in the Ωrτ � 1

and γτ � 1 limit. Notice that the model coefficients vary with respect to each other by

factors of about 1×−4× and that the coefficients typically decrease in size (as required for

convergence) with higher order.

Dirac Impulse Gaussian Impulse Constant

χ̇ (t) = dχδ (t) dχ√
2πT 2

exp
(
−1

2
t2

T 2

)
(dχ/τ) Θ (t) Θ (τ − t)

Π =
∑
± κ

2
∓e
−iEB±τ

∑
± κ

2
∓e
− 1

2
E2
B±T

2−iEB±τ ∑
± κ

2
∓e
−i 1

2
EB±τ sinc

(
1
2EB±τ

)

γτ � 1
α02 −1/8 −1

8

(
1 +

(
T
τ

)2
+ . . .

)
−1/24

α12 +1/24 + 1
24

(
1 + 3

(
T
τ

)2
+ . . .

)
+1/96

α22 −1/96 − 1
96

(
1 + 6

(
T
τ

)2
+ . . .

)
−1/480

γτ � 1
β02 −1/4 −1/4 + . . . −1/8
β22 +1/4 +1/4 + . . . +1/4

Table 4.4: Analytic models for the AC Stark shift phase accumulation in the tail of the State
Preparation laser, ∆Φprep ≡ dχΠ, in the case of a uniform Rabi frequency, Ωr (t) = Ωr(t ≤
τ). The top shows the analytic expressions for the χ̇ (t) functions that are assumed and the
Π functions that are derived. The bottom shows the expansion coefficients corresponding
to the definitions in equation 4.76 for the Π functions in the limit that Ωrτ � 1 for both
both γτ � 1 and γτ � 1 limits.
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Exponentially decreasing Rabi frequency

In reality laser beams almost always have low intensity tails that fall off gradually. Since

we expect that the AC Stark shift phase comes dominantly from non-adiabatic polarization

rotation in these low intensity tails, we would prefer a model that takes this behavior into

account. However, a significant gradient in Rabi frequency can lead to non-perturbative

mixing between the two bright states in the dressed state picture which makes the adia-

batic perturbation theory approach, that we have used up to this point, impractical. In

this section we will explore a model in which can accommodate such a time varying Rabi

frequency.

For this model, we work in a quasi dressed state picture with a basis set consisting of

the|D〉, |B〉, and |C〉 states for which the Hamiltonian can be written as

H̃ =




∆ 1
2Ωr 0

1
2Ωr 0 iχ̇

0 −iχ̇∗ 0




|C〉
|B〉
|D〉

(4.79)

where χ̇ = (Θ̇ − i(θ̇ − µBgH,J=1B̃Bz)) and Ωr and χ̇ are possibly time dependent. The

state |ψ〉 = cD |D〉 + cB |B〉 + cC |C〉 evolves according to the Schrodinger equation, and

assuming that the effect of the polarization rotation results in a small change to the dark

state amplitude, then to a good approximation, we can evaluate |ψ〉 up to first order in

χ̇. If we perturbatively expand the state coefficients in powers of dχ, ci =
∑∞

n=0 dχ
nc

(n)
i ,

then to zeroth order the state coefficients are stationary and equal to the initial conditions,

c
(0)
D = 1 and c

(0)
B = c

(0)
C = 0. The first order coefficient for the dark state vanishes, c

(1)
D = 0,

and the coefficients c
(1)
B and c

(1)
C are determined by a two state Schrodinger equation that

is externally driven by polarization rotation from the dark state,


 ċ

(1)
C

ċ
(1)
B


 =− i


 ∆ 1

2Ωr

1
2Ωr 0




 c

(1)
C

c
(1)
B


+


 0

χ̇/dχ


 , (4.80)

with the initial condition that c
(1)
B (−∞) = 0, c

(1)
e (−∞) = 0. Since we would only like to

evaluate dχ c
(1)
B (∞) = dχΠ, then it is useful to convert this into a second order differential
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equation for only c
(1)
B (t),

c̈
(1)
B + ċ

(1)
B

(
i∆− Ω̇r

Ωr

)
+ c

(1)
B

(
1

4
Ω2

r

)
=

χ̇

dχ

(
i∆− Ω̇r

Ωr

)
+

χ̈

dχ
, (4.81)

with the initial conditions c
(1)
B (−∞) = ċ

(1)
B (−∞) = 0. This is a differential equation that

is rather difficult to solve with a general time dependent Rabi frequency, Ωr (t) . However,

there is an analytic solution for the Greens function of the homogeneous differential operator

in the case of a Rabi frequency that decreases exponentially with time, Ωr (t) = Ωre
−t/τ .

This laser intensity model should be fairly good for determining the effects of a polarization

rotation in the weak field laser tail. In this case, we can derive the Π function as an integral

over the analytic Green’s function and the polarization rotation function,

Π =

∫
dt 0F1

(
;
3

2
+ i

∆τ

2
+
γτ

4
;−
(

Ωrτ

4

)2

e−2t/τ

)
1

dχ

[
χ̇ (t) +

χ̈ (t) τ

1 + i∆τ + 1
2γτ

]
(4.82)

≈ 1− 1

24

(Ωrτ)2

1 + 1
3 i∆τ + 1

6γτ

∫
dt e−2t/τ 1

dχ

(
χ̇ (t) +

χ̈ (t)

1 + i∆τ + 1
2γτ

)
+O (Ωrτ)4 (4.83)

where 0F1 (; a; z) is a hypergeometric function. Performing an integral analytically over this

hypergeometric function is probably not possible for must functions χ̇ (t) (except for the

special case where χ̇ (t) = 2dχ e−2t/τ/τ), but this integral reduces to a nice exponential

integral in the limit of Ωrτ � 1 which can be analytically integrated over for all of our χ̇ (t)

model functions shown in the bottom of figure 4.3.2. The resulting coefficients for these

models corresponding the expansions in equations 4.76 and 4.78 are listed in table 4.3.2.

Notice that the coefficients in the exponentially decreasing Rabi frequency model are of a

similar order of magnitude to those from the class of models with a uniform Rabi frequency,

and the effect of a polarization rotation that lasts for time that is comparable to or longer

than the decay time of the laser leads to an exponential enhancement of the expansion

coefficients.

In figure 4.3.2, we compare the functional form of the AC Stark shift phase factor

Π(∆,Ωr) for two fairly different models that we have considered, 1.) the model with a

uniform Rabi frequency and constant polarization rotation rate is shown in blue and 2.)

a model with an exponentially decreasing Rabi frequency an instantaneous polarization

impulse, χ̇ = dχδ (t) is shown in red. These plots show that the AC Stark shift phase model
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does not qualitatively depend too much on the details of the spatial profile of χ̇ and Ωr.

These plots also show how the AC Stark shift phases oscillate and are slowly suppressed by

improved optical pumping with larger Ωrτ .

Dirac Impulse Gaussian Impulse Constant

χ̇ (t) = dχδ (t) dχ√
2πT 2

exp
(
−1

2
t2

T 2

)
dχ
T

(
−T

2 ≤ t ≤ T
2

)

Π ≈ 0F1

(
; 3

2 + i∆τ
2 + γτ

4 ;−
(

Ωrτ
4

)2)
1− 1

24
(Ωrτ)2

1+i∆τ+ γτ
2
e2(Tτ )

2

1− 1
24

(Ωrτ)2

1+ 1
3
i∆τ+ 1

6
γτ

sinch
(
T
τ

)

γτ � 1
α02 −1/24 − (1/24) e2(Tτ )

2

− (1/24) sinch
(
T
τ

)

α12 +1/72 + (1/24) e2(Tτ )
2

+ (1/72) sinch
(
T
τ

)

α22 −1/216 − (1/24) e2(Tτ )
2

− (1/216) sinch
(
T
τ

)

γτ � 1
β02 −1/8 − (1/24) e2(Tτ )

2

− (1/8) sinch
(
T
τ

)

β22 +3/8 + (1/24) e2(Tτ )
2

+ (3/8) sinch
(
T
τ

)

Table 4.5: Analytic models for the A.C. Stark shift phase accumulation in the tail of the
State Preparation laser, ∆Φprep ≡ dχΠ, in the case of an exponentially decreasing Rabi
frequency, Ωr (t) = Ωre

−t/τ . The top shows the analytic expressions for the χ̇ (t) functions
that are assumed and the Π functions that are derived. The bottom shows the expansion
coefficients corresponding to the definitions in equation 4.76 for the Π functions in the
limit that Ωrτ � 1 for both both γτ � 1 and γτ � 1 limits. Here, I am defining
sinch (x) = sinh (x) /x in analog to the sinc (x) = sin (x) /x function.

4.3.3 Sources of polarization gradients

Thermal stress-induced birefringence

The AC Stark shift phases described in the previous sections can be induced by polarization

gradients in x̂ across the state preparation and readout laser beams. In this section we

describe a known mechanism by which these arose in ACME I. Recall that these laser beams

passed through transparent, ITO-coated electric field plates. For an absorbance α and laser

intensity I, the rate of heat deposition into the plates is Q̇ (x, y) = α I (x, y). The laser

beam profile is stretched in the y direction to ensure that all molecules are addressed. For

simplicity we assume that the heating distribution, Q̇ (x, y) = Q̇ (x), is completely uniform

in the y direction. We also assume that there are no shear stresses, i.e. local expansion of

the glass is isotropic. Under these assumptions, the relationship between the heating rate,

Q̇, and the internal stress tensor σij (where i, j are Cartesian indices) is

∂2σyy
∂x2

=
EαV
κ

Q̇ (x) , (4.84)
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Figure 4.8: Illustration of the Π (∆,Ω) behavior for two of the analytic models considered in
the text. In blue: A uniform Rabi frequency, Ωr (t) = Ωr(t ≤ τ) and a constant polarization
rotation rate, χ̇ (t) = (dχ/τ)(0 ≤ t ≤ τ). In red: An exponentially decreasing Rabi
frequency, Ωr (t) = Ωre

−t/τ and an instantaneous polarization impulse, χ̇ = dχδ (t). Each
of the large plots has three curves of the same color which correspond to γτ = .1, 1, 10 with
the curve of the largest magnitude corresponding to γτ = .1, and the curve of the smallest
magnitude corresponding to γτ = 10. Each of small inset plots have a single curve of each
color corresponding to γτ = 1 (and Ωrτ = π and ∆τ = 0 where when those parameters are
not varied). The small insets show the behavior of the Π function, and the large plots show
the behavior of derivatives of the Π function.
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where E, αV and κ are the Young’s modulus, coefficient of thermal expansion, and thermal

conductivity, respectively [12]. Unit vectors x̂ and ŷ correspond to the principal axes of the

stress tensor due to the symmetry of the heating function, hence the off-diagonal (shear)

elements are zero, σxy = 0, in this basis. The other diagonal component, σxx, is uniform

across the plates, and equal to σyy far away from the laser. The stress-optical law states that

the birefringence and stress are linearly proportional along the principal axes of the stress

tensor [38]. The difference between the indices of refraction in the x and y directions is then

∆n = K(σxx−σyy), where K ≈ 4×10−6 MPa−1 is the stress-optical coefficient for Borofloat

glass [150]. The retardance of an incident laser beam of index i is Γi = 2π∆n (t/λ), where

t is the thickness of the field plates (in the z direction), and λ is the wavelength of light.

Hence, in this limit, the retardance due to thermal stress-induced birefringence is related

to the laser intensity by
∂2Γ

∂x2
= η

t

λ
I (x) , (4.85)

where η = 2πKEαV α/κ ≈ 26 × 10−6 W−1 is a material constant of Borofloat glass [150].

The ellipticity imprinted on the nominally linearly polarized laser beam is given by

Si = Γi(x) sin(2(θi − φΓ,i)), (4.86)

where θi is the linear polarization angle and φΓ,i is the orientation of the fast axis of the

birefringent material (nominally x̂ in our case).

Assuming the laser has total power P , a Gaussian profile in x with 1σ intensity with

wx, and a top-hat profile in y with half width wy, the intensity is given by

I (x) =
P√

8πwxwy
e
− x2

2w2
x (−wy ≤ y ≤ wy), (4.87)

where we assume that 2wy � wx. There is then an analytic solution to equation 4.85 from

which we extracted a retardance gradient in the laser tail, x ≈ wx, of

∂Γ

∂x
(x = wx) ≈ erf(1/

√
2)Pκt

4wyλ
≈ 0.03 rad/mm (4.88)

for a nominal laser power of ≈ 2 W. Similar results were obtained from numerical finite

element analysis. Thermal stress-induced birefringence has been observed in similar systems

such as in UHV vacuum windows [155], laser output windows [53], and Nd:YAG rods [95].
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Figure 4.9: Measurement of the ellipticity, S, as a function of position along x within the
state readout laser beam. A fit to the thermo-elastic model, which assumes a Gaussian laser
profile and has the amplitude and offset in S as free parameters, is overlaid.

The estimates of the ellipticity gradient agree well with measurements of the polarization

of the beam, as shown in figure 4.9. These polarimetry measurements were adapted from

the procedure described in [19]; a polarimeter was constructed consisting of a rotating

quarter-wave plate, fixed polarizer, and fast photodiode. The use of a fast photodetector

allows for polarimetry of the probe beam during the 100 kHz polarization switching. The

resolution of the system was such that we could quickly measure the normalized circular

Stokes parameter, S, to a few percent, which is sufficient to measure typical birefringence

gradients of ∼ 10% across the beam. Additional details regarding the polarimetry that was

done during ACME I can be found in reference [77].

A couple changes to the apparatus in ACME II to reduce the size of the thermal stress-

induced birefringence have been implemented. We replaced the ACME I Borofloat electric

field plates with 200 nm conductive ITO coating, with Corning 7980 electric field plates

with 20 nm conductive ITO coating. The Corning 7980 has a 5× smaller thermal expan-

sion coefficient than Borofloat [37, 86, 150] and similar other material properties, resulting

in a significant reduction in the thermal stress-induced birefringence in the bulk glass. Ad-

ditionally, we believe that a significant fraction of the light absorbed by the electric field

plates in ACME I was caused by the 200 nm ITO coating. We reduced the thickness of
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this coating on the ACME II plates by a factor of 10× relative to ACME I to reduce the

absorption of light by the electric field plates. Polarimetry that was performed on both sets

of electric field plates with the same incident laser power, beam shape, and wavelength in-

dicated that the thermal stress-birefringence is smaller by more than a factor of 10× in the

ACME II electric field plates relative to the ACME I electric field plates [11]. Furthermore,

we have changed out detection transition from the H → C to the H → I, which has a much

stronger transition electric dipole moment (see table 4.2.1) and hence requires much less

laser power incident on the electric field plates. Whereas we used about 2 W of 1090 nm

laser light incident on the electric field plates in ACME I, we plan to use up to around 100

mW of 703 laser light incident in the ACME II refinement and state read-out laser beams.

Guoy phase in a focused Gaussian laser beam

We were able to reduce the size of polarization gradients from technical effects such as those

discussed in the previous section. However Maxwell’s equations require that all Maxwell-

Gaussian laser beams have polarization gradients [55, 62] at some level. Lets suppose that

we have a Maxwell-Gaussian laser beam with nominal x̂ polarization that is propagating

in the ẑ direction with Raleigh range zR, such as the state preparation and state read-out

laser beams in ACME I. The field strength for such a beam is

u (x, y, z) =
1√

qx (z) qy (z)
exp

(
−1

2
ik

(
x2

qx (z)
+

y2

qy (z)

))
, (4.89)

where the complex beam parameters for the x and y directions are given by qi (z) = z+izR,i

where zR,i is the Raleigh range for direction i. The Raleigh range is set by the width of the

1σ intensity width of the laser beam at the focus, wi, given by zR,i = 2πw2
i /λ, where λ is

the wavelength of the light and can be different for the two orthogonal transverse directions.

The spatial profile of the amplitude for the electric field vector across this laser beam is

then given by

~E ∝u (x, y, z) x̂+
1

2k2

∂2u

∂x∂y
ŷ + i

1

k

∂u

∂x
ẑ, (4.90)
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which results in a polarization structure given by

ε̂ =x̂− xy

qx (z) qy (z)
ŷ +

x

qx (z)
ẑ. (4.91)

If the location of interaction between the molecules and the laser beam occurs at a position

that is at the beam waist, z � zR,i, then the polarization gradient at up to second order in

quantities like (rλ/w2) is

ε̂ ≈ x̂+

(
λ

2π

)2 xy

w2
xw

2
y

ŷ − i
(
λ

2π

)
x

w2
x

(
1− λz

2πw2
x

)
ẑ + . . . (4.92)

For laser beam parameters like those used for state preparation and state readout in ACME

I, λ = 1090 nm, wy ∼ 1 cm, wx ∼ 2 mm, there is a linear polarization rotation in the xy

plane that varies across the molecule beam in the y direction,

∂θ

∂x
≈
(
λ

2π

)2 y

w2
xw

2
y

∼ 10−9

(
rad

mm

)( y

cm

)
, (4.93)

which is incredibly small and would not have significantly contributed to the AC Stark shift

phases that we observed in ACME I.

On the other hand, in ACME II, we have implemented highly focused STIRAP laser

beams with which we can perform state preparation, and these have a laser propagation

direction along ŷ instead of ẑ. Hence in the STIRAP H → C laser, with λ = 1090 nm,

wx ≈ 150µm, wy ≈ 2 cm, we would expect polarization gradients in the xy plane given

approximately by

∂Θ

∂x
≈ λ

2πw2
x

≈ 8
mrad

mm
(4.94)

∂θ

∂x
≈
(
λ

2π

)2 y

w4
x

≈ .5
(

mrad

mm

)( y

cm

)
. (4.95)

which are larger than any polarization gradients that we observed in ACME I and could

generate substantial AC Stark shift phases. This is one of the reasons that we decided

to implement the refinement beam in ACME II which reprojects the spin state to remove

variations in the spin state that is prepared by the STIRAP beams.
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4.3.4 AC Stark shift phases from polarization switching

In the discussion above we have considered various effects that can modify the molecule

state and then ideal perfect read-out of the spin angle of that state as described in section

4.1.1. However, there are a number of observable effects in the experiment that result from

deviations from ideal in the state read-out laser beams that cannot be analyzed in this

way. The state read-out scheme consists of two nominally linearly polarized laser beams

with orthogonal polarizations ε̂X and ε̂Y that have the same spatial intensity profile, laser

power, and laser pointing. These lasers alternate in addressing the molecules by rapidly

turning these laser beams on and off with AOMs. A particular molecule arriving in the

detection region may first see that the ε̂X laser beam is turned on for a time t = 3.8 µs

during which optical pumping occurs, then both lasers are kept off for a dead-time of

δt = 1.2 µs during which population remaining in the excited state decays away, and then

the ε̂Y laser beam is turned on for a time t during which optical pumping of the molecule

state is for the most part completed, followed by another dead-time of duration δt. This

pulse train continues indefinitely and depending on the time of arrival of molecules in the

detection region they have approximately equal likelihood of encountering an ε̂X or ε̂Y pulse

first. This polarization switching read-out scheme serves to normalize the measurement to

molecule number fluctuations and to boost the signal size by a factor of 2 relative to an

alternative measurement scheme in which only one of these lasers is used.

This polarization switching read-out scheme can also introduce AC Stark shift phases

in the absence of a polarization gradient, if the two read-out polarizations are not quite

orthogonal. In particular suppose a molecule is first optically pumped by the ε̂X beam –

the projection of the input state onto the bright eigenstate is mostly optically pumped away

resulting in a fluorescence signal FX and the remaining bright amplitude acquires a phase

due to the A.C. Stark shift. Then the molecules are then optically pumped by the ε̂Y beam.

If ε̂Y is not quite orthogonal to ε̂X , then the new bright eigenstate that is optically pumped

away, resulting in fluorescence signal FY , is a superposition of the former bright and dark

states that acquired a relative AC Stark shift phase. In this section, we work out a simple

analytic model to describe this phenomenon.

The initial state that is prepared by the state preparation laser is |ψ(t = 0)〉 =|D(ε̂p), Ñ , P̃〉 ≡
|Dp〉. After entering into the ε̂X polarized state readout beam in the state readout region,
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with bright and dark states |BX〉, |DX〉, the laser turns on non-adiabatically and the pro-

jection of the initial state onto the bright state undergoes optical pumping for a time t.

The laser then turns off non-adiabatically, and during a dead-time period of duration δt,

the population in the excited state decays away out of the three level system leaving behind

the state

|ψ (t = τ + δτ)〉 ≈〈DX |Dp〉|DX〉+ ΠX〈BX |Dp〉|BX〉, (4.96)

where ΠX =
∑

X±(κX∓)2e−iEBX±t is an optical pumping factor. Then, the process repeats,

but this time with a different laser with ε̂Y polarization. To a reasonable approximation,

assuming that optical pumping goes nearly to completion during each of the two optical

pumping pulses, the laser induced fluorescence that is detected during the ε̂i polarized laser

pulse is proportional to the square of the projection of the bright state onto the state that

enters the optical pumping beam,

FX ≈|〈BX |ψ(t = 0)〉|2 (4.97)

≈|〈BX |Dp〉|2 (4.98)

FY ≈|〈BY |ψ(t = τ + δt)〉|2 (4.99)

≈|〈DX |Dp〉〈BY |DX〉|2 + 2Re [ΠX〈Dp|DX〉〈DX |BY 〉〈BY |BX〉〈BX |Dp〉] . (4.100)

Since molecules have an equal chance of seeing either the ε̂X or ε̂Y pulses first, then we can

obtain a better approximation to the measured signal by symmetrizing the signals in this

regard (e.g. FX (X,Y )→ FX (X,Y ) + FY (Y,X)),

FX ≈
1

2

{
|〈BX |Dp〉|2 + |〈DY |Dp〉〈BX |DY 〉|2 + 2Re [Π〈Dp|DY 〉〈DY |BX〉〈BX |BY 〉〈BY |Dp〉]

}

(4.101)

FY ≈
1

2

{
|〈BY |Dp〉|2 + |〈DX |Dp〉〈BY |DX〉|2 + 2Re [Π〈Dp|DX〉〈DX |BY 〉〈BY |BX〉〈BX |Dp〉]

}
,

(4.102)

where I have made the approximation that Π = ΠX ≈ ΠY .

In actuality, the molecules see varying pulse durations depending on when they enter the

laser beam with respect to the pulse sequence, the molecules see different Rabi frequencies
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since the spatial intensity profile of the laser beams is not flat, and the detunings are

significantly different amongst the molecules due to the transverse Doppler shift. In a

more realistic model of the AC Stark shifts, we might want to average over probability

distributions for each of these parameters to extract FX and FY . However, for our purposes,

the expressions above should be sufficient for extracting the general behavior of this AC

Stark shift phase.

In data analysis we construct the asymmetry, A = (FX − FY )/(FX + FY ), and then we

measure the sensitivity of the measurement to phase, C = −(1/2)∂A/∂θread, and extract the

measured phase, Φ = A/2C under conditions in which state preparation laser polarization

is at about 45 degrees with respect to the readout polarization. In this case the measured

phase is approximately,

Φ ≈dθprep −
1

2
(dθX + dθY )− λ2P̃dΘprep (dΘX − dΘY ) (4.103)

+ Im(Π)
1

2
(dΘX + dΘY ) + P̃Im(Π)dΘprep (dθX − dθY ) + . . . , (4.104)

and the contrast is

C =P̃
[
1 + P̃λRe(Π) (dφX − dφY )− λ2

(
2dΘ2

prep + dΘ2
X + dΘ2

Y + . . .
)

+ . . .
]
, (4.105)

where I defined P̃ ≡ P̃prepP̃read is the relative parity of the excited states that are used to

prepare and read-out the state. This indicates that the AC Stark shift phase factor Im (Π)

contributes to the measured phase Φ when the two readout laser polarizations are not

orthogonal, coupling either to the average ellipticity between the two beams, dΘX + dΘY ,

or the deviation in the difference in the linear polarization angles from π/2, dθX − dθY .

Just as the AC Stark shift phase factors in the section 4.3.1, ImΠ is of order unity across

resonance and is linearly proportional to detuning, ∆. Note that ReΠ does not contribute

to the measured phase, but rather enters into the contrast. This means that although

this effect can contribute to the Enr systematic error, it does not contribute to the ΩNEr

systematic error. Note that if we did not make the assumption that the population in the

excited state decays away entirely during the dead-time, then we can obtain an additional

AC Stark shift phase term which couples to input state ellipticity [122].
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4.3.5 Refinement beam suppression and phases

As previously discussed in sections 4.2.1 and 4.3.3, we anticipate that the AC Stark shift

phases and the effect of Stark interference could have a larger effect in the STIRAP state

preparation beams in ACME II compared to those effects in the state preparation or state

read-out beams present in ACME I. For that reason, in ACME II we decided to add an opti-

cal pumping beam called the refinement beam, which serves to reproject the molecule state

immediately after STIRAP state preparation and serves a similar role to state preparation

laser that was present in ACME I – provided that the suppression of input state imperfec-

tions is great enough, then the systematic errors that are caused in the refinement beam

in ACME II should be equivalent to the systematic errors caused in the state preparation

beam in ACME I. In this section, we derive an analytic expression for the refinement beam

suppression factor in a simplified system and show that if the refinement beam does not

drive optical pumping to completion and the suppression factor is poor, then the refinement

beam serves as a new source of AC Stark shift phases. We also show some experimental

data that was taken immediately following ACME I in which we demonstrate reprojection

of a spin state misalignment.

After the molecules leave the STIRAP laser beam, the molecules are prepared in the

state |Ds〉 = |D(ε̂s), Ñ , P̃〉 which is equivalent to the state that would have been prepared

in ACME I using a state preparation laser polarization ε̂s
7. We approximate the refinement

laser as a square optical pumping pulse of Rabi frequency Ωr and duration t, which is

amenable to simple analytical calculations. The molecule state evolves in this laser pulse

to the state |D′r〉 = |D(ε̂′r)〉 where ε̂′r is the effective polarization of the refinement beam

which is equivalent to the actual polarization in the case of perfect input state reprojection,

and where |Dr〉 = |D(ε̂r)〉 and |Br〉 = |B(ε̂r)〉 are the dark/bright state eigenstates in the

refinement beam with actual polarization ε̂r. The molecule state is assumed to undergo non-

adiabatic transfer into the refinement beam, undergoes optical pumping, and then exits the

laser beam non-adiabatically. The remaining population in the excited state decays out of

7. If the polarization of the H → C STIRAP laser is ε̂STIRAP, then the prepared state is approximately
|B(ε̂STIRAP)〉 = |D(ẑ × ε̂∗STIRAP )〉, so the equivalent polarization that I defined is related to the actual
polarization by ε̂s = ẑ × ε̂∗STIRAP.
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the three level system, leaving behind the state

|D(ε̂′r)〉 ≈〈Dr|Ds〉
{
|Dr〉+ Π

〈Br|Ds〉
〈Dr|Ds〉

|Br〉
}
, (4.106)

where Π is a factor that depends on the details of the time evolution of the optical pumping,

and in this simple case,

Π =
∑

±
(κ∓)2e−iEB±t. (4.107)

The effective polarization ε̂′r deviates from ε̂r by the misalignment between ε̂r and ε̂s, sup-

pressed by the complex optical pumping factor Π,

ε̂′r = ε̂r + Π

[
ẑ · (ε̂r × ε̂s)
ε̂∗r · ε̂s

]
ẑ × ε̂∗r . (4.108)

If we assume that ε̂p and ε̂s are linearly polarized and in the xy plane, but can deviate

slightly from each other by their angles in the xy plane, then we can reasonably define a

suppression factor A of the misalignment angle of the initial state given by the ratio of the

misalignment angle between ε̂′r and ε̂r over the misalignment angle between ε̂s and ε̂r,

A =Re

[
ẑ · (ε̂′r × ε̂r)
ε̂′r · ε̂r

]
/Re

[
z · (ε̂s × ε̂r)
ε̂r · ε̂r

]
≈ Re [Π] . (4.109)

Additionally, the refinement beam contributes AC Stark shift phases if the optical pumping

is not driven to completion, given by

dθ′r − idΘ′r =Π [(dθs − dθr)− i(dΘs − dΘr)] . (4.110)

Note that these AC Stark shift phases provide expressions that are nearly equivalent to

those derived in equations 4.69 and 4.70 in the case where we analyzed the effects of a

continuously rotating polarization. The way in which we treated this problem is nearly

equivalent to a rapid polarization rotation in the middle of a single optical pumping pulse.

Also, note that the molecule state may undergo Zeeman precession between the STIRAP

and refinement lasers and so we may require a different refinement laser polarization to be
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set for each magnetic field value at which we operate the experiment in order to minimize the

effect of AC Stark shift phases. Note that this means that we will likely want intentionally

correlate the refinement beam polarization with B̃, which will result in a systematic error

in the measurement of the overall Zeeman precession frequency.
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Figure 2: Data taken with a state preparation and refinement beam. We measured the suppression of an intentionally
applied θE by looking at φE/θE . We observe that as we increase the power of the clean-up beam, the attenuation
factor changes sign, and appears to approach zero from below as the power in the clean-up beam increases. For
equal powers in the state preparation and clean-up beams, we were able to put an upper limit of about 1/300 on
observed the attenuation factor, which is consistent with zero. The red lines are double exponential fits to the data.
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Figure 4.10: Demonstration of suppression of molecule state imperfections by optical pump-
ing with a refinement beam. We measured the suppression factor A of an intentionally
applied dθEs by looking at the ratio A = ΦE/dθEs . We observe that as we increase the power
of the clean-up beam, the attenuation factor changes sign, and appears to approach zero
from below as the power in the clean-up beam increases. For equal powers in the state
preparation and clean-up beams, we were able to put an upper limit of about A < 1/300
on observed the attenuation factor, which is consistent with zero. The red lines is a fit to
the data consisting of the sum of two exponential functions which was empirically moti-
vated. The red points were taken with dθEs ≈ 35 mrad, and the black points were taken
with dθEs ≈ 105 mrad.

Immediately after the ACME I experiment, we performed a test to ensure that we

could achieve reasonable suppression of a spin state misalignment using a refinement beam.

In this test, we split the state preparation beam into two beam paths using a half-wave

plate followed by a polarizing beamsplitter so that we could control the fraction of power

appropriated to each laser beam. The upstream beam performed state preparation that was

equivalent to ACME I, except a half waveplate was placed in the beam path enabling us

to apply an intentional correlated spin state misalignment, dθEs . We chose to correlate the

misalignment with Ẽ solely because the measurement channel ωE did not have any detected
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background facilitating a high signal to noise measurement. The downstream beam played

the role of the refinement beam. Both of these lasers had widths in the x direction of about

δx = 5 mm, were separated by about 1 cm and were stretched in the y direction by about

1.5 cm. The maximum intensity, achieved when all of the power was in one of the beams,

was about 4 W/cm2.

We then performed the spin precession measurement while varying the fraction of power

allocated to the state preparation beam and the refinement beam. We observed that as we

increased the laser power in the refinement beam, the measured suppression factor of the

initial misalignment, A = ΦE/dθEs , decreased, then crossed zero, and then approached zero

from the negative side, as displayed in figure 4.3.5. The reversal of sign of the suppression

factor A with increasing power is a signature of the AC Stark shift phase in the refinement

beam. When the refinement beam is weak, the misaligned component of the molecule state

undergoes Rabi flopping which can result in a reversal of the sign of that state component

relative to the aligned component as observed in the experiment.

4.3.6 Asymmetry effects

In addition to the dependence of the measured phase on laser detuning and Rabi frequency,

we observed dependence of the asymmetry A (as defined in section 2.3.1) on the laser

parameters ∆read and Ωr,read, due to differences between the properties of the X and Y read-

out laser beams. The laser-induced fluorescence signal F (∆,Ωr) varies quadratically with

detuning (for small detuning) and linearly with Rabi frequency. Under normal conditions,

the signal sizes from X and Y are comparable, FX ≈ FY ≈ F . If the X and Y beams have

different wavevectors, ~kX,Y = ~knr ± ~kXY , and ~kXY has some component along x̂, then the

two beams will acquire different Doppler shifts. This leads to a linear dependence of the

asymmetry on detuning, which in turn can couple to ∆NE to result in a contribution to

ANE ,
ANE ≈ 1

F

∂2F

∂∆2
read

(~kXY · 〈~v〉)∆NE . (4.111)

Similarly, if the two readout beams differ in Rabi frequency, Ωr,X/Y ≈ Ωnr
r ± ΩXY

r , the

asymmetry becomes linearly dependent on Rabi frequency, which in turn can couple to
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ΩNEr to result in a contribution to ANE ,

ANE ≈ −
(

1

F

∂F

∂Ωr

)2

ΩXY
r ΩNEr . (4.112)

However, these asymmetry effects are very distinguishable from spin precession phases

and polarization misalignments. Since the P̃ and R̃ switches effectively swap the role of

the X and Y readout beams, the ANE effects described above do not contribute to ωNE

when averaged over these switches. Additionally, asymmetry effects, once converted to an

equivalent frequency or phase, depend on the sign of the contrast, C, unlike true phases. In

the Bz ≈ 20 mG configuration, sgn(C) = sgn(Bz), but sgn(C) is independent of sgn(Bz) for

Bz ≈ 1, 40 mG. Hence asymmetry correlations ANE are mapped onto frequency correlations

ωNEPR or ωNEBPR depending on the magnetic field magnitude.

If the pointing or Rabi frequency differences between the X and Y beams drift on

timescales comparable to or shorter than the P̃ or R̃ switches, these effects can occasionally

“leak” into the “adjacent” channels ωNEP , ωNER, ωNEBP , ωNEBR; however, we have not

seen any evidence of these effects contributing to the ωNE channel itself, and hence did not

include systematic error contributions due to these effects in our systematic error budget

in ACME I.

A simple and frequently useful model of the optical pumping lineshape F (∆,Ωr) is to

consider the bright and excited states as a two level system which is driven by a flat laser

pulse with Rabi frequency Ωr, detuning ∆, and duration t. In this case, the optical pumping

lineshape takes the form

F (∆,Ωr) =1− |
∑

±
(κ∓)2e−iEB±t|2. (4.113)

This lineshape can be convolved with the distribution of Doppler shifts to obtain a more

realistic shape, or the Schrodinger equation or Master equation may be integrated with

a more realistic spatial intensity profile of the lasers and those numeral solutions may be

convolved with the distribution of Doppler shifts to obtain an even more realistic optical

pumping lineshape. However, equation 4.113 provides a very convenient analytic expression

for modeling the lineshape.
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4.4 Zeeman spin precession

4.4.1 Static electric and magnetic fields

The Zeeman shifts ∆E(M, Ñ ) imparted on the state |H,J = 1,M, Ñ 〉 can be fairly well

described by the following effects that have been well studied:

• Assuming that the molecule is fully aligned by an applied electric field, ∆H,J=1 �
DH,J=1E � BR,H , the magnetic field along the electric field axis, Bz can contribute

to a linear Zeeman shift. The H state of ThO is nearly entirely described by the 3∆1

spin orbit term for which the g-factor contributions from the spin and orbital angular

momenta nearly perfectly cancel. The residual g−factor in |H,J = 1,M, Ñ 〉 has been

measured to be about gH,J=1 = .0044± .0001 [93,164,166] .

• The Zeeman interaction is modified by first order rotational Stark mixing which de-

pends on the molecule orientation, Ñ [70, 71]. Measurements that we performed in

ACME I, described in reference [135], revealed that the spin-uncoupling interaction

leads to an admixture of 3∆2 character in |H,J = 2,M, Ñ 〉 that contributes sig-

nificantly to this effect due to the relatively large 3∆2 g-factor, despite the small

mixing coefficient. This effect is described by an electric field dependent g−factor,

ηH,J=1 = −0.79± .01 nm/V.

• Magnetic fields transverse the axis of the applied electric field, B⊥, can also contribute

to the energy shifts in |H,J = 1,M, Ñ 〉. However, this effect enters in second order in

perturbation theory suppressed by the relatively large Stark shift. Additionally, the

transverse magnetic fields only contribute to the relative Zeeman shift between the

M = ±1 levels if there is also a magnetic field component along the electric field axis,

Bz.

These three effects contribute to the Zeeman energy shifts ∆E(M, Ñ ) to the state |H,J =

1,M, Ñ 〉 (where I have dropped terms that do not depend on the sign of M),

∆E(M, Ñ ) =−MµBgH,J=1B̃Bz
{

1 + Ñ ηH,J=1

gH,J=1
|E| − 1

2

(
µBgH,J=1B⊥
DH,J=1E

)2

+ . . .

}
,

(4.114)
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which can lead to contributions to the ωNE and ωE spin precession frequency measurements,

ωNE =− µBηH,J=1

(
EnrBnr

z + |E|BEz
)

(4.115)

ωE =− µBgH,J=1BEz .

The first systematic error term in ωNE above is well below the resolution of ACME I

or ACME II, contributing to phase accumulation of around 5× 10−11 rad, assuming Bnr
z ∼

.1 mG, Enr ∼ 10 mV/cm, τ ≈ 1 ms, and is accounted for when we characterize systematic

errors proportional to Bnr and Enr.

The second term requires the existence of a component of the magnetic field that

molecules experience that is correlated with the applied electric field, BE . Such a quantity

can arise due to the motional magnetic field due to the molecule moving through applied

electric field, ~BE⊥ = ~v × ~E ≈ .3 µG ŷ. However, this quantity is strictly orthogonal to the

electric field and hence contributions to the overall Zeeman shift are highly suppressed by

the relatively large Stark shift. A BEz can also arise due to leakage current between the

two electric field plates, if this current changes with the reversal of the electric field. Such

leakage currents measured in ACME I were very small, around 1.2 pA [158], capable of gen-

erating BEz . 1 pG. Regardless of the source of a BEz , it should contribute to Zeeman spin

precession in the ωE measurement at a level that is a factor of gH,J=1/ηH,J=1 |E| ≈ 102−103

times larger than the contribution to the ωNE measurement. Hence the systematic error

can be precisely characterized using the measurement of ωE and can be subtracted from the

from the EDM measurement channel, ωNE .

4.4.2 Time varying electric and magnetic fields

Just as static electric and magnetic fields can lead to Stark and Zeeman shifts as discussed

in the previous section, oscillatory electric and magnetic fields can also contribute to time

average energy shifts, commonly referred to as AC Stark and AC Zeeman shifts. These

effects are completely analogous to the static effects, described in the previous section,

in a rotating reference frame. These effects, also referred to as geometric phases, are also

documented in references [134,163,164], but I have included this discussion for completeness

of this systematic error model compilation.

Lets suppose that a system is described by the sum of a time dependent and time
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independent Hamiltonian, H = H0 +H1 (t), and states |a〉 and |b〉 are eigenstates of H0 with

energies Ea and Eb respectively. H1 (t) can couple these two states and is purely oscillatory

such that the matrix element can take the form 〈b|H1(t)|a〉 = hbae
−iωt. Assuming that ω is

far off resonant with the transition ∆ba = Eb −Ea, then the state |a〉 time evolves to state

|ã〉 which is given at first order in perturbation theory by

|ã〉 =|a〉 − ie−i∆bat|b〉
∫ t

0
hbae

+i(∆ba−ω)t′dt′, (4.116)

resulting in a first order energy shift of this state |a〉 due to H1 (t) given by

〈a |H1 (t)| ã〉 ≈ − |hba|2
∆ba − ω

+ O
(
eiωt
)
. (4.117)

Here, we are neglecting oscillatory terms that may average out over the phase measurement

if the duration of the phase measurement is long compared to the period of oscillation,

ωτ � 1.

Given the result in equation 4.117, we may evaluate the energy shift due to different types

of oscillating fields on the states |H,J = 1,M, Ñ 〉 in which we perform the spin precession

measurement. Lets first consider a rather perverse scenario in which there are components

of the electric and magnetic field that are parallel with each other, perpendicular to the

applied static electric field, and rotating with the same frequency in phase. This scenario

is described by the Stark and Zeeman interactions in the time dependent Hamiltonian,

H1 (t) =− (D · E⊥ + µ · B⊥) (x̂ cosωt+ ŷ sinωt) (4.118)

=
1√
2

(D · E⊥ + µ · B⊥)
∑

q=±1

qε̂qe
−iqωt (4.119)

This Hamiltonian couples the states |H,J = 1,M, Ñ 〉 with the |H,J = 1,M = 0, P̃〉 states

with matrix element

〈
H,J = 1,M, Ñ |H1 (t)|H,J = 1,M = 0, P̃

〉
=

1

4

(
δΩ+ − P̃δΩ−

)
(ΩDHE⊥ + µHB⊥) e+iMωt,

(4.120)

where Ω = MÑ Ẽ as usual. Following equation 4.117, and summing over the interactions

with both P̃ = ±1 states, the energy shift due to these oscillating fields, ωAC(M, Ñ ) in the
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state |H,J = 1,M, Ñ 〉 is approximately,

ωAC(M, Ñ ) ≈1

4

(DHE⊥)2 + 2MÑ ẼDHE⊥µHB⊥ + (µHB⊥)2

ÑDH |E|+M(µHBz − ω)
. (4.121)

There are not any clear systematic error terms that are proportional to MÑ Ẽ , as most

of the terms contribute to the energy shift correlated with Ñ , like the Stark shift, or to

the energy shift correlated with M , like the Zeeman shift. Amar had done a calculation

like this one and concluded that the omega doublet structure of ThO affords us protection

from geometric phase effects that have contributed to electron EDM experiments in the

past [163,164].

Similarly, we may also consider the case in which we have electric and magnetic fields

that are oscillating with the same frequency ω, and the same phase, along the electric field

direction, which is described by the Stark and Zeeman Hamiltonian,

H1 (t) =− (D · E= + µ · B=) cos (ωt) ẑ. (4.122)

This Hamiltonian can couple adjacent rotational levels, mixing |H,J = 1,M, Ñ 〉 with

|H,J = 2,M, Ñ 〉 with matrix element,

〈
H,J = 2,M, Ñ |H1 (t)|H,J = 1,M, Ñ

〉
= −

√
3

20
(DHE= + µHΩB=)

1

2

(
eiωt + e−iωt

)
.

(4.123)

This mixing consists of two waves with different frequencies ±ω, which can both contribute

the energy shift,

ωAC(M, Ñ ) =− 3

160BR,H

[
(DHE=)2 + 2MÑ ẼµHB=DHE= + (µHB=)2

]
+O

(
ω

BR,H

)2

,

(4.124)

where I have expanded about small oscillation frequency with respect to the rotational

splitting, ω � BR,H . Here there is a term that contributes directly to a systematic error,

ωNEAC =− 3

80BR,H
µHBnr

=DHEnr
= = −1

2
µBηH,J=1Enr

= Bnr
= , (4.125)
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which is directly analogous to the first term in equation 4.115 in an off-resonant the ro-

tating frame, and is estimated to be similarly negligible in size. Here, I have substituted

ηH,J=1 = (3/40) gHDH/BR,H so that we may directly compare this result with equation

4.115. However, as we discovered in ACME I, the estimate of ηest
H,J=1 = −1.4 nm/V that

is obtained from this expression does not agree well with the measured value, ηmeas
H,J=1 =

−.79 nm/V. The value for ηH,J=1 is significantly modified by the spin-uncoupling interac-

tion between the 3∆1 and 3∆2 states in the |H,J = 2,M, Ñ 〉 states which is described in

detail in references [86,135].
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Chapter 5

Statistical Upgrades to the

Apparatus

She pressed her tongue hard against
her lower front teeth. One moved
slightly, activating her microchannel
amps; the random bounce of photons
through the darkness was converted to
a pulse of electrons, the concrete
around her coming up ghost-pale and
grainy. “Okay, honey. Now go out to
play.”

William Gibson, Neuromancer

5.1 Overview

Although the ACME I experiment achieved its goal of making a measurement of the elec-

tron’s EDM with greater precision than previous experiments, we determined that signif-

icant improvements could be made to the apparatus and the measurement scheme that

could enable a subsequent measurement, that we denote by ACME II, which could have

more than a factor of 10× more sensitivity to the electron’s EDM. In this chapter, I will

provide descriptions of the experimental apparatus used in ACME I and ACME II, which

are shown in figure 5.1 with an emphasis on those aspects that changed between the two.

For more complete descriptions of the ACME I apparatus, I refer the reader to the following

references [77,86,158,164].

The upgrades that we implemented in order to increase the statistical sensitivity of the
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Figure 5.1: Schematic of the experimental apparatus that was used in ACME I (top) and
ACME II (bottom), provided in the same figure so that the upgrades may be easily identi-
fiable.
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measurement include:

1. Beamline Geometry Optimization: By reducing the length of the molecule beam

line between the beam source and the detection region and by widening the collimators

that select the molecules that enter the spin precession region we were able to increase

the detected flux of molecules by a factor of 8×.

2. Efficient Spin State Preparation: ACME I transferred molecules from the ground

state into the initial spin state in H via a lossy two stage optical pumping scheme. By

switching to a STImulated Rapid Adiabatic Passage (STIRAP) state transfer scheme

by which molecules are adiabatically transferred between two quantum states we were

able to increase the number of molecules in the detected state by a factor of 12×.

3. Improved Molecule Detection: We changed our detection transition to one that

provides more emitted photons per molecule and these emitted photons are at a dif-

ferent wavelength at which we were able to find higher quantum efficiency PMTs.

Additionally, improvements were made to the collection optics so that more of the

emitted photons would arrive at the PMTs. These improvements increased the num-

ber of detected molecules by a factor of 5×.

In total, based on the demonstrated improvements made to ACME II, we anticipate that the

number of detected molecule signal will be a factor of 250−800× larger than that observed

in ACME I. Assuming that the measurement is still photo-electron shot-noise limited, we

anticipate that these improvements will enable a 15×−30× improvement in sensitivity to

the electron’s EDM. Assuming that we do not encounter any unforseen systematic errors,

this improved sensitivity should enable a measurement of the electron’s EDM with better

than a factor of ten improvement in precision relative to ACME I. Additionally, in chapter

4, we discussed methods to reduce the size of known systematic errors in ACME II.

5.2 Beam Source and Rotational Cooling

ThO molecules are produced via pulsed laser ablation of a ThO2 ceramic target. This takes

place in a cryogenic neon buffer gas cell, held at a temperature of ≈ 16 K, at a repetition

rate of 50 Hz. The resulting molecular beam is collimated and has a forward velocity

v‖ ≈ 200 m/s. In the state readout region the molecular pulses have a temporal (spatial)
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Improvement Signal Gain Section

Rotational Cooling 1− 1.5× 5.2
Beamline Optimization 7− 9× 5.4.1

Efficient State Preparation 10− 13× 5.3
Detection Improvements 3.5− 4.5× 5.5

All Improvements 250− 750×
Initial Observation [127] ∼ 300×

Table 5.1: Summary of anticipated detected molecule gain compared with initial mea-
surements of the actual signal gain from the statistical upgrades made for the ACME II
experiment.

length of around 2 ms (40 cm). As I neither specialized in work on the buffer gas beam

source and since the source is not planned to change during ACME II, I refer the reader to

detailed descriptions of the beam source in the following references [86–88].

After leaving the buffer gas source, the molecules have a velocity distribution and rota-

tional level populations that are reasonably consistent with a Maxwell-Boltzmann distribu-

tion at a temperature of ≈ 4 K. This was lower than the cell temperature, and the cooling

is attributed to isentropic expansion of the gas into the high vacuum region, which enhances

the number of usable ThO molecules in the relevant rotational states. At this temperature

the resulting fractions of molecules in the J = 0 − 3 levels were estimated to be 0.1, 0.3,

0.3 and 0.2 respectively. Further rotational cooling was provided via optical pumping (and

additionally microwave mixing in ACME I) in order to condense the population in X before

transfer of molecules from X → H to increase the population of molecules in H.

As described in section 2.1, in ACME I we sought to transfer as much of the initial

ground state population as possible into |H,J = 1〉 which is populated via spontaneous

emission when optical pumping on the |X,J = 1,M = ±1〉 → |A, J = 0〉. To enhance the

population which was transferred, we accumulated population in a single rotational level

|X, J = 1〉 of the ground state before state preparation. The scheme used to achieve this,

which we refer to as rotational cooling, is illustrated schematically at the top of figure 5.2

and is discussed in detail in [158].

The first stage of the process, which is common to ACME I and ACME II was the

optical pumping of molecules out of |X, J = 2, 3〉 via |C, J = 1, 2〉 from which spontaneous

emission preferentially populates the |X, J = 0, 1〉 states respectively using laser light at

690 nm. Since these J → J − 1 optical pumping schemes have more states in the ground

state compared to the excited state, dark states that are not optically pumped are present
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Figure 5.2: Schematic of ACME I and ACME II rotational cooling schemes with target states
highlighted in green. Both schemes begin with polarization switched optical pumping on the
|X, J = 3〉 → |C, J = 2〉 and |X, J = 2〉 → |C, J = 1〉 transitions in the absence of an electric
field to increase the population in |X, J = 0, 1〉. The ACME I scheme then equalizes the
populations between |X,J = 0,M = 0〉 , |X, J = 1,M = 0〉 using a long microwave pulse
in an applied electric field to enhance the population in the target state |X, J = 1〉. The
ACME II scheme then performs polarization switched optical pumping on the |X, J = 1〉 →
|C, J = 1〉 transition in an applied electric field to enhance the population in the target state
|X, J = 0〉.
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in the ground state. This situation is similar to that encountered when laser cooling and

slowing of molecules [85]. In order to ensure that all molecules in the ground state are

optically pumped, we non-adiabatically alternate the polarization of light so that states

that are dark with respect to a given polarization of light are optically pumped by the

following polarization of light. Laser beams with linear polarization alternating between x̂

and ŷ were achieved by directing around 10 passes of the beam, offset in x, through the

vacuum chamber, passing through a quarter-wave plate twice in each pass, over a distance

of around 2 cm.

The natural linewidth of the X → C transition is ≈ 2π × 0.3 MHz, however the usable

molecules had a ≈ 0.7 m/s transverse velocity spread, corresponding to a 1σ Doppler width

of ≈ 2π × 1.5 MHz at 690 nm. Because the lasers linewidths (. 1 MHz) and natural

linewidth were less than the Doppler width, driving optical pumping to completion required

a combination of power broadening and extended interaction time compared to the C state

lifetime. Optical pumping occurred in a magnetically unshielded region where a background

field B ∼ 500 mG was present; however, the magnetic moment of X and C states are ∼ µN
and ≈ µB/J (J + 1) respectively, where µN is the nuclear magneton and µB is the Bohr

magneton, which led to a Zeeman shift of ∼ 2π×400 Hz and 2π×400 kHz such that the M

sublevels were not resolved by the optical pumping. The |C, J = 1〉 state has an Ω−doublet

splitting of ∆C,J=1 ≈ 2π × 51 MHz [52]. This splitting scales as ∆C,J ∝ J (J + 1), which

implies that we can spectroscopically resolve the opposite parity states for all |C, J〉 states

that we addressed. In addition, having no E-field present meant that the M -sublevels of C

and X remained unresolved and the energy eigenstates remained parity eigenstates.

The lasers used rotational cooling, and for all other applications unless otherwise noted,

are extended cavity diode lasers (ECDLs) and are frequency-stabilized using a scanning

transfer cavity with a computer-controlled servo [69]. Frequency-doubled light at 1064 nm

from a frequency-stabilized Nd:YAG laser, locked to a molecular iodine line via modulation

transfer spectroscopy [57], provides the reference for the transfer cavity.

For an approximate calculation of the transfer efficiency of this first rotational cooling

step, lets assume an initial Maxwell-Boltzmann distribution of the rotational population in

X,

P 0
J =

1

Z
(2J + 1) exp

(
−J (J + 1)

BR
kBT

)
(5.1)
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where Z is the partition function that ensures that
∑

J P
0
J = 1, T ≈ 4 K is the rotational

temperature, and BR is the rotational constant for the X state. Here the subscript is an

index that denotes the stage of rotational cooling and the subscript denotes the rotational

level. Assuming that optical pumping is driven to completion, a simple calculation of the

populations P 1
0 and P 1

1 in |X,J = 0, 1〉 after optical pumping respectively shows

P 1
0 =P 0

0 + P 0
2

(
3
5b

1− 2
5b

)
≈ .3 (5.2)

P 1
1 =P 0

1 + P 0
3

(
2
3b

1− 1
3b

)
≈ .4 (5.3)

where b ≈ .7 is the branching ratio from |C, ν = 0〉 → |C, ν = 1〉 1

In ACME I we sought to concentrate the population in the |X, J = 1,M〉 states from

which we later drove optical pumping on |X,J = 1,M = ±1〉 → |A, J = 0〉 resulting in

spontaneous decay to the target state |H,J = 1〉. Hence, since there was considerably more

population in |X, J = 0〉 after the first round of optical pumping compared to any of the

individual states in |X, J = 1〉, we applied a continuous microwave field, resonant with

the |X,J = 0,M = 0〉 → |X, J = 1,M = 0〉 transition; a sufficiently high microwave power

combined with the inherent velocity dispersion of the molecule beam led to an equilibration

of population between the coupled levels [158]. In this second stage of rotational cooling it

was empirically observed that applying an electric field to lift the M sublevel degeneracy was

necessary to obtain the increased population in |X, J = 1〉. Also note that the state to which

we drove population, |X, J = 1,M = 0〉 is not adiabatically connected to the states from

which we later drove the population, |X, J = 1,M = ±1〉, however, we empirically observed

that the population was scrambled amongst the M -sublevels by some non-adiabatic process

between the rotational cooling region and the interaction region – this was likely caused by

large electric field gradients that the molecules see as they approach the sharp conducting

blades of the fixed collimator at the start of the interaction region. Hence the population

in the target rotational state after rotational cooling P 2
1 , the population that was addressed

1. This branching ratio number is fairly uncertain but current estimates suggest that the branching from
|C, ν = 0〉 → |X, ν = 0〉 is in the range of .65 − .8. The bulk of the remaining population likely decays to
|X, ν 6= 0〉 and |Q〉 with branching ratios to these states in the range of .1− .15. Estimates of these branching
ratios come from a combination of crude evidence from optical pumping experiments, measured [169] and
estimated [120] Franck-Condon factors, and estimates of the spin-orbit state contributions [109] to the various
relevant electronic states.
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by the state transfer scheme in the interaction region after optical pumping PACME I, and

the molecule gain achieved by using rotational cooling gACME I
RC are approximately:

P 2
1 ≈

1

2
P 1

0 +
5

6
P 1

1 ≈ .45 (5.4)

PACME I
RC ≈2

3
P 2

1 ≈ .3 (5.5)

gACME I
RC ≈P

2
1

P 0
1

≈ 1.7× (5.6)

Indeed, these calculations are reasonably consistent with the observed factor 1.5 − 2.0×
increase in the molecule fluorescence signal F in the state readout region when including

rotational cooling. This gain factor was observed to vary slowly over time, possibly due

to variations in the rotational temperature of the molecule beam, with significant changes

sometimes observed when the ablation target was changed, and also with slow drift in the

rotational cooling laser frequencies which were periodically tuned to maximize the signal in

the detection region.

In ACME II, as described in section 5.3 below, we changed the state transfer and

preparation scheme from an optical pumping scheme to an adiabatic state transfer scheme

using the STIRAP scheme between |X, J〉 → |C, J〉 → |H,J = 1〉. We had some choice of

rotational levels from which and via which we could perform the state transfer. We decided

to perform STIRAP starting from the |X,J = 0,M = 0〉 with
∣∣∣C, J = 1,M = 0, P̃ = −1

〉

as the intermediate state so that we could maximize the transition dipole moments to

maximize our chances of satisfying adiabaticity.

So, prior to ACME II we investigated alternative rotational cooling schemes that will

maximize the population in the new target state |X, J = 0,M = 0〉 and we implemented

the scheme shown in the bottom of figure 5.2. This scheme has the same first step as in

ACME I, but has a different second step in which the population is optically pumped on

the |X, J = 1〉 →
∣∣∣C, J = 1,M = ±1, Ñ

〉
transition in the presence of a small electric field,

which results primarily in spontaneous decay to the target state |X, J = 0〉, but also results

in some lost population to |X, J = 2〉. The electric field is used to mix the parities of the

excited states such that the E1 transition dipole matrix element on the driving transition

is sufficiently large that we can drive optical pumping to completion. However, this mixing

should be minimized so as to prevent too much unwanted spontaneous emission on the
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∣∣∣C, J = 1,M = ±1, Ñ
〉
→ |X,J = 1〉 transition. Population that decays here has more

chances to be lost to states other than the target state, and hence has lower efficiency of

transfer. So, we can express the population |X, J = 1〉 after this second stage of rotational

cooling as:

PACME II
RC =P 2

0 = P 1
0 + P 1

1

(
2
3aη+

1− a (1− η+)

)
≈ .3− .45 (5.7)

gACME II
RC =

P 2
0

P 0
0

= 2.5− 4× (5.8)

where η± = 1
2

(
1± 1/

√
1 +

(
2DCE
∆C

)2
)
∈ (0, 1) describes the degree of polarization of the C

state where η+ = 1 is unpolarized (perfect parity eigenstates) and η+ = 0 is fully polarized,

DC is the electric dipole moment of |C, J = 1〉, and ∆C is the parity doublet splitting in

|C, J = 1〉. This is in reasonable agreement with measured rotational cooling gains of about

gACME II
RC ≈ 2.7× [103].

Although the use of rotational cooling is more critical in ACME II since gACME II
RC >

gACME I
RC , the gain in number of detected molecules, gRC from implementing this rotational

cooling scheme is of order unity,

gRC =
PACME II

RC

PACME I
RC

≈ 1− 1.5× . (5.9)

However, it is notable that if we were to replace some of the 690 nm rotational cooling

lasers resonant with the X → C transition with 512 nm lasers resonant with the X →
I transition, we could achieve an improvement in gRC since the branching ratio a from

|I, ν = 0〉 → |X, ν = 0〉 has been measured to be larger, a ≈.91 [96] which suggests that if

all three rotational cooling lasers were replaced, we could achieve populations on the order

of PACME II
RC ≈ .35 − .6 and gains relative to ACME I on the order of gRC ≈ 1.2 − 2.0×.

Such a laser has been under development and could be implemented for this purpose in the

future.
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5.3 Efficient State Preparation

One of the primary ways in which we significantly increased our detected molecule signal

in the ACME II apparatus relative to ACME I was a change in the method of populating

the initial state prepared for the spin precession measurement in |H,J = 1,M, Ñ 〉 given a

rotationally cooled beam of ground state molecules in |X, J = 0,M = 0〉. ACME I used

two stages of optical pumping to prepare this state, with an efficiency of approximately 6%.

Using the technique of STImulated Raman Adiabatic Passage (STIRAP), we demonstrated

an increase in the population of the desired state by a factor of 12 ± 1, corresponding to

a state transfer efficiency of 75 ± 5%. The measurements of this first demonstration of

STIRAP are detailed in reference [129]. In this section I describe some of the formalism

that we used in order to model the STIRAP state transfer and then later to understand the

peculiarities in the STIRAP signals that we observed.

5.3.1 STIRAP Hamiltonian

For the discussion here, we will consider the three level system consisting of the states

|X〉 ≡ |X, J = 0,M = 0〉, |C〉 ≡ |C, J = 1,M = 0, P̃ = −1〉, and |H〉 ≡ |B(ε̂s), Ñ , P̃ = −1〉,
where |H〉 is a superposition of the |H,J = 1,M, Ñ 〉 states which is determined by the

polarization ε̂s of the H → C laser beam as per equation 2.5. In the STIRAP state

preparation scheme, the goal is to transfer all of the population from |X〉 to |H〉, and this

population transfer occurs as follows:

• We first turn on a laser coupling on the |H〉 → |C〉 transition such that in the dressed

state picture the dark state in this three level system is |X〉.

• We adiabatically turn on a laser coupling between |X〉 → |C〉 while adiabatically

turning off the coupling between |H〉 → |C〉, such that the dark state adiabatically

evolves from |X〉 to |H〉 [17].

• We turn off the |X〉 → |C〉 coupling, and the population that was initially in |X〉 is

now in |H〉.
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If we parameterize the two transition Rabi frequencies as

ΩHC =Ωre
−iθ cos Θ

ΩXC =Ωre
+iθ sin Θ,

then the STIRAP state transfer takes place while the angle Θ adiabatically evolves from

0 to π/2. Ωr =
√
|ΩHC|2 + |ΩXC|2 is the total Rabi frequency, and θ is a relative phase

between the two laser couplings; laser phase noise can contribute to a time dependent phase

θ. Each of these two couplings can also have different detunings, which we can parameterize

as

∆HC =∆ + δ

∆XC =∆− δ

where ∆ is referred to as the “one-photon detuning”, and δ is referred to as the “two-photon

detuning”. With these definitions in place, the Hamiltonian describing the time evolution

of this three level system can be expressed as,

H =




∆ 1
2Ωre

+iθ cos Θ 1
2Ωre

−iθ sin Θ

1
2Ωre

−iθ cos Θ −δ 0

1
2Ωre

+iθ sin Θ 0 +δ




|C〉
|H〉
|X〉

.

However, it is usually more useful to work in the dressed state basis |D〉, |B±〉, described

previously in equation 4.9 in a different context, where we can then treat the effects of the

two photon detuning δ, and the time derivatives of the coupling angles θ̇, Θ̇ as perturbations

to this system under the assumption that these quantities are small compared to the AC

Stark shifts EB± which are on the order of the Rabi frequency, Ωr. In this frame, the

Hamiltonian can be re-expressed as,

H̃ =




ξ −iκ+χ̇∗ −iκ−χ̇∗

iκ+χ̇ EB− − ξκ2
+ −κ+κ−ξ

iκ−χ̇ −κ+κ−ξ EB+ − κ2
−ξ




|D〉
|B−〉
|B+〉

(5.10)
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where, EB± and κ± are defined in equations 4.10 and 4.11 respectively, the phase angle

rotation rate is given by χ̇ = iΘ̇ − i(θ̇ + δ) sin 2Θ, and I have defined a new quantity,

ξ = (δ + θ̇) cos 2Θ. It is worthwhile noting that this Hamiltonian is the same as that which

we used to described systematic errors in section 4.1.3, the only difference being that I have

not made the assumption here that Θ ≈ π/4, and I have called the quantities Θ, θ, and δ

by different names.

This Hamiltonian indicates that if the population transfer rate Θ̇, phase noise frequency

θ̇, or two photon detuning δ is comparable to Ωr, then there will be significant mixing

between the dark state and the bright states, leading to population lost from the dark state

resulting in inefficiency in the STIRAP state transfer process. Note that the system is most

vulnerable to such mixing due to the two photon detuning or phase noise when the state

transfer is about half completed, Θ ≈ π/4.

5.3.2 Constraints on STIRAP laser spatial intensity profile width

Although STIRAP has been performed in a number of atomic and molecular-beam experi-

ments [39,64,74,119,130,156], performing efficient STIRAP state transfer in our apparatus

is particularly challenging because we must efficiently transfer population with a large dis-

tribution of two photon Doppler shifts, δD = (kHC − kXC)σvy/2 ≈ 2π · 0.3 MHz (where

σvy ≈ 1.2 m/s is the transverse velocity distribution width as specified in section 5.4.1

below) and a large spatial distribution of molecules spanning about 25 mm, with a finite

amount of laser power available for the notably weak H → C transition (with estimated

transition dipole matrix element in table 4.2.1). The STIRAP laser beams were sent through

the apparatus along the ŷ direction for technical reasons discussed in section 5.4.2. Lets

consider that we have a spatial intensity profile I(x, z) that is Gaussian along the x̂ direction

with 1σ width of wx, and flat-topped along the ẑ direction with a half width of wz, with

laser power P ,

Ii (x, z) =
Pi√

8πwxwz
exp

(
−(x− xi)2

2w2
x

)
(−wz ≤ z ≤ wz),
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where xi is the x position of laser beam with index i ∈ {HC,XC}. The Rabi frequency is

then given by

Ωi =Di

√
2Ii(x, z)

cε0

where Di is the transition dipole matrix element, ε0 is the electrical constant, and c is the

speed of light.

Given that we have about 10 W available at 1090 nm for the H → C transition, and

given that the transition dipole matrix element is about DHC ≈ .005 e a0 and the laser

beam must be stretched to address all the molecules, wz ≈ 1.5 cm, then the maximum Rabi

frequency available for the H → C transition is about ΩHC ≈ 2π · 2 MHz
√

100 µm/wx. In

order to efficiently transfer the full two photon Doppler width of molecules, we require that

Ωr � δD, which sets an upper bound on the laser intensity width of roughly wx � 1 mm,

which implies that we must focus these laser beams in the x direction.

On the other hand, if the laser intensity profiles have a width of about wx in the x̂

direction, and the molecules are traveling through these beams at vx ≈ 180 m/s, then the

full state transfer must be completed within a time period of wx/vx. In other words, the

state transfer rate is approximately θ̇ ∼ (π/2)(vx/wx), and in order to maintain adiabatic

transfer of the molecules we require that Ωr � θ̇, which sets a lower bound on the laser

intensity width of roughly wx � 20 µm. Ultimately we observed efficient state transfer

with wx ≈ 160µm, which is consistent with the two photon Doppler width and adiabaticity

conditions.

5.3.3 Effect of laser phase noise

We had to ensure that the integrated power spectral density of the phase noise with φ̇ ∼ Ωr

was sufficiently low so that it would not significantly resonantly drive population from the

dark to the bright states in the dressed state picture. The light for these two lasers was

derived from commercial external cavity diode laser systems (ECDLs) at 1090 nm (resonant

with H → C) and 690 nm (resonant with C → X) and these systems typically have noise

spectral density linewidths on the order of ∼ 2π · 1 MHz. By performing active frequency

stabilization with respect to ultra-low expansion (ULE) glass cavities with a finesse of

about 30,000 using the Pound Drever Hall (PDH) locking method [46], the laser power
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spectral densities were significantly narrowed. Measurements of the power spectral density

of the beat-note between two 690 nm lasers locked to separate cavities indicated a narrow

(≈ 2π × 150 Hz) peak on top of a much broader pedestal, suppressed by about a factor of

100× in power with respect to the peak, with a ≈ 2π × 1 MHz linewidth that is typical of

the unlocked laser.

With these power spectral densities we observed STIRAP state transfer efficiencies in

the range of 30 − 40%. This behavior is consistent with recently reported detrimental

effects on STIRAP transfer efficiency due to broad pedestals in the spectral line shape

that are common to stabilized ECDLs [177]. Furthermore, we performed simulations of

the STIRAP efficiency by integrating the Lindblad master equation with random sampling

over the spatial and velocity distributions within the molecular beam. The simulations were

run with a phase model consistent with the measured power spectral density of the lasers,

varying phase noise parameters such as pedestal amplitude, width, and position of noise

features within the uncertainty of the measurement.

In this model, the relative phase between the Stokes and Pump STIRAP lasers are is

given by a random waveform, φ (t), given by

φ (t) =δφ

∫ ∞

0
φ (ω) sin(ωt) dω, (5.11)

such that δφ is the phase noise amplitude, and φ(ω) is a normally distributed random

variable with zero mean, 〈φ(ω)〉 = 0 and a diagonal covariance with a Lorentzian spectral

shape,

〈φ(ω)φ(ω′)〉 =δ(ω − ω′) (γ/2)2

ω2 + (γ/2)2
. (5.12)

Here, δφ is the phase noise amplitude for which the noise pedestal in the power spectral den-

sity is suppressed by about 10 log10(δφ2) dB relative to the power at the carrier frequency.

γ is the width of the phase noise pedestal.

The results of these simulations are consistent with the observed behavior, i.e., they

showed a typical STIRAP saturation with laser power of the transfer efficiency at only

30%–40% in a parameter range similar to that of our system.

To reduce the laser phase noise in the pedestals, the off-the-shelf diodes were replaced

with AR-coated diodes, which yield a narrower linewidth in an ECDL configuration before
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locking (2π×200 kHz compared to 2π×1.5 MHz). The power spectrum of the beat note from

locked ECDLs with the new diodes displays a much-suppressed pedestal (103× instead of

102×) with approximately the same pedestal linewidth (∼ 2π×1 MHz). Simulations using a

phase noise model consistent with the improved power spectrum predict near-unity STIRAP

efficiency.

5.3.4 Peculiarities in the Observed STIRAP

As expected, the STIRAP efficiency was observed to be very sensitive to two-photon detun-

ings δ 6= 0, but quite robust to one-photon detunings ∆ 6= 0. Unlike many other STIRAP

systems, we obtain higher efficiency when running at one-photon detunings that are large

compared to the Doppler linewidths on the two transitions. Transfer efficiency decreases

by about 10–20% when on one-photon resonance – we believe that this is due to excess

light in the spatial intensity profiles of the laser beams outside of the region where the

STIRAP state transfer takes place. On resonance, this excess laser intensity in the wings of

the spatial intensity profiles (due, e.g., to scatter or diffraction from apertures in the laser

beam paths) can drive optical pumping, depleting the population of the initial state before

it is transferred or the final state after it the population had already been transferred.

Simulations of the molecule ensemble, when integrating the Schrodinger equation of

the three-level system, show similar behavior when including Airy-like wings in the tails

of the spatial intensity profiles of the lasers with amplitudes at the level of 10–20% of the

maximum intensity, comparable to the ones observed in our laser beams.

We also observed that at one-photon detunings that are large compared to the one-

photon Doppler linewidths of the pump and Stokes lasers, the two-photon lineshape is very

asymmetric. This is a fairly generic signature of STIRAP that exhibited when at one-photon

detunings that are large compared to ∆� Ωr and when the peak Rabi frequencies are not

equal [25]. In our case, ΩXC/ΩHC≈ 1.5×.

5.4 Interaction Region

In the ACME apparatus, we refer to the large rectangular vacuum chamber in which the spin

precession region takes place as the interaction region. This vacuum chamber houses the

electric field plate assembly that is used to apply a uniform electric field in the ẑ direction
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to the molecules, the fixed collimator that selects the solid angle of the molecular beam

that is detected, and the optics assembly used to collect the laser induce fluorescence as the

experiment signal. This chamber includes a number of windows, ports, and feedthroughs

to enable laser access, molecular beam access, and electrical access to the spin precession

region.

Several modifications were made to this vacuum chamber for the ACME II apparatus

including:

• a shortening of the beamline between the beam source and the interaction region,

widening the fixed molecule beam collimators, and widening the distance between the

electric field plates to enable detection of a larger solid angle of the molecular beam.

• changes in the vacuum chamber to accommodate a larger area of optical access along

the ẑ direction, and new optical access along the ŷ direction for STIRAP lasers.

• the addition of vacuum ports to accommodate magnetometry with fluxgate magne-

tometers at positions closer to the molecules, and with the ability to vary the position

and orientation of the magnetometers from outside the apparatus.

• a modification to the support structure for the electric field plate assembly, and a

modification to the trunk connection port for increased rigidity of the system.

• the addition of vacuum ports to accommodate more light pipe feedthroughs for the

improved light collection system.

In this section and the following section, I will elaborate on each of these improvements and

the considerations that were required in making these design decisions.

5.4.1 Beam Geometry and Collimation

The design of the molecule beamline and collimation geometry in ACME I was not highly

optimized to maximize detected molecule flux, so there was a significant opportunity to

increase the molecule signal in the interaction region in ACME II with a beamline redesign2.

2. Early in the development of ACME II, we explored the possibility of and constructed an electrostatic lens
for the purpose of focusing molecules in either the low field seeking |X, J = 1,M = 0〉 or |X, J = 2,M = 0〉
states with a transverse velocity capture range larger than the transverse velocity distribution in the detection
region in ACME I which could significantly increase the detected molecule flux. After we observed X-rays
being emitted from the device (see this reference for a more detailed description: [171]), in combination with
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Our efforts can be decomposed into two fairly separable efforts: the reduction in the length

of the beamline between the output conical aperture in the molecule beam source, and the

increase in the size of the fixed collimator and the field plate separation in the interaction

region.

Beamline length optimization

interaction region

trunkISO 100 bellows

gate valve

rotational
cooling

conical
aperture

turbo
pump

gate valve

adjustable collimator

KF50 bellows
interaction region

ACME I

ACME II

ACME I:  1.3 m

ACME II: 1.1 m

Figure 5.3: A comparison of the contributions to the length of the beamline in the ACME
I (top) and ACME II (bottom) configurations. Note that the ACME I apparatus included
a second vacuum chamber that had been originally included only for diagnostic purposes
and it was not replicated in the ACME II beamline. Additionally, ACME I included a
module containing adjustable collimators, that enabled searches for systematic errors that
varied throughout the molecule beam spatially in the transverse direction that was also not
replicated in ACME to aid in reducing beamline length.

concerns regarding the increase in complexity of the experiment, we explored obtaining a detected molecule
flux increase from a modification of the beamline and collimation geometry in place of the electrostatic lens.
We found that an electrostatic lens could provide only perhaps a few times larger signal gain compared to
simply optimizing the beam geometry and so we decided to put the lens project on hold.
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Figure 5.3 shows the contributions to the beamline in both ACME I and ACME II

which have lengths of 1.3 m and 1.1 m respectively between the conical output aperture in

the beam source and the square fixed collimator in the interaction region, resulting in a

gain in detected molecule flux of roughly (`ACME I/`ACME II)2 ≈ 1.4× due to the increase

in solid angle subtended by the detection region. The ACME I apparatus included two

small vacuum chambers with KF50 ports along the beamline, one of which was used for

the rotational cooling scheme discussed above in section 5.2 and another that had been

originally included only for diagnostic purposes. In ACME II we redesigned the beamline to

accommodate ISO100 connections so that we could improve conductance along the beamline

to reduce the effects of molecule beam attenuation by background gas [172], and we did not

include a second diagnostic chamber. Additionally, ACME I included a module containing

adjustable collimators, that enabled searches for systematic errors that varied throughout

the molecule beam spatially in the transverse direction. Since systematic errors that would

exhibit this signature are not well theoretically motivated and since these systematic error

runs were not sensitive enough to put a strong empirical limit on any systematic error that

might have this behavior, we decided not to include the adjustable collimators in ACME II

to aid in reducing the beamline length. We decided to keep the rotational cooling region

since the increase in molecule signal provided by the cooling is not offset by the gain in

detected solid angle from shortening the beamline further. However, future iterations of

this experiment might benefit from performing some rotational cooling immediately before

or after the conical aperture within the beam source vacuum chamber, if effective3, while

eliminating all components of the beamline other than the trunk, a bellows, and a gate

valve.

Optimizing the fixed collimator aperture size and field plate separation

In ACME I, it is not clear why the electric field plate spacing was set to dFP = 2.5 cm – the

motivation for that decision seems to be lost to history. Nevertheless, the fixed collimator

aperture size dc was selected to satisfy a design requirement that no geometric trajectory of

a molecule can be incident on the electric field plates and those trajectories that come closest

3. We currently do not know the J-changing collision rate between molecules and the background buffer gas
in the vicinity of the conical aperture - if this rate is faster than the rotational cooling rate, then rotational
cooling may not be possible in this region. Further experiments would be required to determine if this is a
viable path forward for the experiment.
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come no closer than do = 3 mm away to account for various uncertainties in the relative

alignment of components that define the beamline. This was satisfied by a rectangular

collimating aperture with a dc = 1 cm width along the ẑ direction [173]. The height of

the collimating aperture was constrained by the requirement that the full distribution of

molecules be addressed by the state preparation and read-out lasers which were limited in

height to 2.5 cm by the chosen viewports on the interaction region vacuum chamber. So

the fixed collimator size was chosen to be a 1 cm square.

In ACME II, we decided to change the spacing dFP between the electric field plates

while using the same trajectory constraint as used in ACME I to set the largest acceptable

fixed collimator size dc, to increase the detected solid angle of the molecular beam, given

by

dFP = 2do + dc + (dc + ds)
`FP
`
, (5.13)

where ` ≈ 1.1 m is the length of the beamline between the conical aperture beam source

output of diameter ds ≈ 7 mm and the fixed collimator, and `FP ≈ 48 cm is the length of

the field plate assembly in the interaction region. Since this optimization was done after

the vacuum chamber modifications described in section 5.4.2 and magnetic shield and coil

modifications were implemented, the field plate spacing was limited to be less 5 cm for a

number of technical reasons – for instance, that is the size of the available optical access for

the STIRAP lasers along the ẑ direction. Additionally simulations indicate [126] that with

our existing collection optics system [86] the total gain in detected molecule signal levels off

and begins decreasing as the field plate spacing reaches and begins to exceed 5 cm due to

decreased light collection efficiency resulting from a decreased solid angle subtended by the

collection optics, and decreased light transmission due to the larger phase space distribution

of light being emitted from the larger cloud of molecules in the detection region.

Additional considerations in selecting a field plate spacing include ensuring that the

STIRAP state transfer, and the state read-out optical pumping can continue to be efficient

in performing their functions with the increased Doppler widths and increased molecule

cloud sizes that accompany the larger solid angle of the molecular beam in the detection

region. In order to estimate these quantities, we can model the beam source as a probabilistic

emitter an emission probability P (~x,~v) with a uniform distribution of emission within a
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circle defined by the conical aperture with radius ds, with a fixed longitudinal velocity v‖,

and a normally distributed transverse velocity with variance δv2. The number of molecules

N admitted by the fixed collimator (perturbatively expanding about δv/v‖ � 1) is

N =
1

2π

(
d2
cv

2
‖

`2δv2

)[
1− 1

48

(
4d2

c + 3d2
s

)

`2

( v‖
δv

)2

+ . . .

]
. (5.14)

Then the variance of the velocities in the z direction of the molecules admitted by the square

collimator δv2
z , and the variance in z positions of the admitted molecules as a function of

position x from the fixed collimator aperture, δz2 (x), are given by

δv2
z ≈

1

12
v2
‖

(
dc
`

)2
(

1 +
3

4

(
ds
dc

)2
)

+ . . . (5.15)

δz2 (x) ≈ 1

12
d2
c

{(
1 +

3

4

(
ds
dc

)2
)(

1 +
x

`

)2
+

3

4

(
ds
dc

)2
}

+ . . . (5.16)

With these considerations taken into account, we decided to set the field plate spacing

to dFP = 4.5 cm and to set the fixed collimating aperture to dc = 24 mm. Using equation

5.14, we anticipated an improvement of molecule flux in the detection region in ACME

II of ggeo ≈ NACME II/NACME I ≈ 8× which is reasonably consistent with that which is

observed in the experiment. With this geometry, the variance in the transverse velocity

distribution is about 1.2 m/s corresponding to a Doppler width in the state read-out region

of 2π × 1.7 MHz on the |H,J = 1〉 → |I, J = 1〉 transition. Since this Doppler width is not

too much larger than the natural linewidth of the I state, γI ≈ 2π × 1.0 MHz [96], it is

reasonable to expect that driving optical pumping to completion for molecules on the tail

of the distribution should not be too much of a problem provided that we have enough

laser power to achieve a reasonable Rabi frequency on the order of Ωr ≈ γI . Indeed, after

simulations described in section 5.5.2 indicate that we will be able to drive optical pumping

to completion with the available laser power in the state read-out region in ACME II.

5.4.2 Interaction Region Design

Modifications for STIRAP

Most of the components in the interaction region required either modification or redesign

for the ACME II apparatus. The major modifications are highlighted in a cut-away CAD
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Laser Lounge

STIRAP Launchpad Breadboard

STIRAP Optics Elevator

Magnetic Shields

Magnetic Field Coils
Electric Field Plates

Scattered Light 
Prevention

Fluxgate 
Magnetometers

Degaussing Cables

Figure 5.4: A cut-away view of a CAD model of the ACME II interaction region design

drawing of the interaction region in figure 5.4.2. The dominant reason for these changes

was to enable vertical optical access through the apparatus along the ŷ direction that was

not previously available to accommodate the STIRAP lasers for efficient state transfer from

|X〉 → |H〉. This required a redesign of the vacuum chamber flanges, a redesign of the

auxiliary magnetic field coils that generate By and gradients thereof, a modification to

the primary magnetic field coils that generate Bz and gradients thereof, new holes in the

magnetic shields, and a modification to the electric field plate assembly.

In principle we could have sent the STIRAP lasers along the ẑ direction using optical

access previously available for the state preparation lasers, but we decided that this was not

a viable option for several reasons. When the design choices were being made, we had not

yet considered changing the detection transition in ACME II, so we were concerned about

the possibility of significant scattered light in the detection region from the 690 nm STIRAP

laser introducing a large background in the 690 nm laser-induced fluorescence signal from

|C〉 → |X〉 decay thereby introducing a new significant source of noise that could reduce the

experimental sensitivity to the electron’s EDM. If the STIRAP lasers passed along ẑ they

would have passed through the field plates, which we empirically determined would result
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in a scattered light signal that would completely dominate the laser-induced fluorescence

signal. Additionally, the STIRAP laser beams are high power (>1 W) lasers that need

to be highly focused to obtain sufficient laser intensity to ensure adiabatic transfer of the

molecules, as described in section 5.3. These high intensities could be sufficient to damage

ITO coating and possibly induce a large Enr or a significant inhomogeneity in E (x) that

could lead to systematic errors as previously described in section 3.2. Furthermore, if the

STIRAP laser passes through the two electric field plates, the molecules would interact also

with the defocused back-reflection off of the second electric field plate, which could result

in significant optical pumping before or after the STIRAP state transfer is intended to take

place resulting in a low efficiency of transfer.

The size of the vertical optical access along the ẑ direction, 5 cm, was chosen such that

the required holes in the magnetic shields would be as large as we would be comfortable

with when considering both structural integrity of the shields and penetration of external

magnetic fields into the spin precession region. The size of the optical access along the x̂

direction, 10 cm, was chosen such that the aspect ratio of the windows was about 2 : 1 so as

to ensure high probability of success with window vacuum seals given that there was some

difficulty with a large aspect ratio window seal during the development of ACME I on the

same vacuum chamber. When making these design decisions, we had not yet considered the

beam geometry optimization that was discussed in section 5.4.1 and this decision impacted

the choice of the field plate spacing.

We also made a series of design decisions that resulted from our concern regarding a

large background of scattered light at 690 nm within the chamber caused by the |X〉 → |C〉
STIRAP laser. In order to minimize scattered light we carefully chose the material for the

vacuum chamber windows4. We also recessed the windows away from the interaction region

as far as possible using custom vacuum nipples so that the point where the laser is incident

on the window does not have a line of sight to the light collection optics in the detection

region. Additionally, since the STIRAP lasers are highly focused in the interaction region,

pulling the windows away from the beamline reduces the intensity of light on the windows

4. These windows are Corning 7980 Grade 0F Fused Silica. These have dimensions 5.5”×3.5”× .75”± .01”
with the clear aperture being the center 4” × 2” of the glass face. These were specified to have a 10 − 5
Scratch-Dig rating, λ/8 total wavefront distortion (TWD) at 690 nm, and were custom manufactured by
Custom Scientific. Calculations indicate that the deflection of the surface will be on the order of ∼ λ/10.
These windows were AR coated by Spectrum Thin Films on both sides with a specified reflectivity of ¡1%
for the relevant wavelengths - 512 nm, 690 nm, 703 nm, 1090 nm.
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which decreases the likelihood of damaging the anti-reflection (AR) coatings which could

have lead to increased scattered light. Additionally, we enclosed the beam path so that

dust, which could serve as laser scatterers, would more slowly accumulate on the surface of

the window. This enclosed beam path consists of a blackened rectangular aluminum tube

connected that extends outside the magnetic shields and a flexible duct coupling connected

to a box that sits on an optics table with a right angle wedge mirror and another window

through which the STIRAP lasers pass.

A platform, known as the Laser Lounge, was built above the experiment to enable us to

set-up optics required for the shaping, focusing, and launching of the STIRAP lasers into

the apparatus. This platform is supported from above by two aluminum I-beams that are

connected to supports in the walls of the lab. A separate support structure, supported by the

floor, was built around the existing interaction region structure, while maintaining structural

independence from both that structure and from the Laser Lounge. This structure supports

an optics breadboard right above the interaction region vacuum chamber that includes the

STIRAP optics in a location where the optics can be easily manipulated by a lab member

who is on the Laser Lounge. The optics breadboard is attached to 4 steel rails that surround

it, which enables the optics breadboard to be raised or lowered with the aid of a crane that

is built into the lab. This degree of freedom included in the design so that the optics may be

manipulated when the optics breadboard is in the raised position, but the optics breadboard

may be lowered to reduce the lever arm between where the STIRAP lasers are launched and

the molecules in case fluctuations in the laser positions are leading to noticeably drifting

STIRAP efficiencies over time.

Pockets for Magnetometer Access and Reversal

During ACME I we monitored the magnetic field near the spin precession region by mount-

ing 4 fluxgate magnetometers on the interaction region vacuum chamber. This allowed

us to characterize the approximate size of the applied B-field and other contributions to

the B-field that were correlated with other experimental switches. However our fluxgate

magnetometers have an electronic offset that varies over time that necessitates reversal of

the magnetometer to subtract of this electronic offset to measure a background Bnr field.

As a result, we were unaware of the unexpectedly large ~Bnr ≈ .7ŷ mG residual magnetic

field that we discovered when performing magnetometry on the system after the ACME I
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experiments were completed.

We decided to modify the way in which we monitor the magnetic fields during ACME

II by moving the magnetometers closer to the spin precession region so that the measured

B-field will be closer to that which the molecules feel, and by enabling the rotation of the

magnetometers while they are inside the apparatus from outside, we can we can measure

the residual magnetic field ~Bnr. To achieve this, we built “magnetometer pockets” which

are Aluminum flanges that attach to a KF40 port on the interaction region chamber, which

extend into the vacuum chamber. These pockets are cylindrical and match the outer di-

ameter of a Teflon magnetometer holder that we designed to enable the connection of the

fluxgate magnetometer to the end of a rod for rotation and translation, and provides a low

coefficient of friction between the pocket and the magnetometer. There are four pockets,

two that extend in the ŷ direction and two that extend in ±x̂ on either side of the electric

field plates. This magnetometry scheme required that we add access through the magnetic

shields, the main magnetic field coils, and the auxiliary magnetic field coils into the exper-

iment for each of the manipulation rods that are attached to the magnetometers. Since

all of these components already required modification or redesign necessitated by the STI-

RAP scheme, ensuring magnetometer access in each of these components did not require

too much additional work. The magnetometers that sit in the ŷ magnetometer ports are

connected to rotation stages and a translation stage that are mounted on the Laser Lounge.

The translation stage enables mapping of the magnetic field and extraction of magnetic

field gradients along the ŷ direction. The magnetometers that sit in the x̂ magnetometer

ports are connected to rotation stages that are mounted to the magnetic shields.

Additional Modifications

There were a series of additional modifications to the apparatus that were not motivated by

either the introduction of the STIRAP state transfer process or improved magnetometry.

• We increased the optical access for the state preparation and state readout lasers

along the ẑ direction, which was limited mostly by the size of the existing holes in

the magnetic shields, and by existing cable positions on the main magnetic field coil.

Since the access area available was similar to the target for the STIRAP, the same set

of windows were used for ẑ and ŷ optical access.
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• We modified the vacuum chamber flanges on the ±x̂ sides of the vacuum chamber to

enable a more rigid connection between the interaction region vacuum chamber and

the beamline trunk, and we added ports so that we could accommodate 8 light pipe

feedthroughs for an improved light collection scheme.

• The connection between the electric field plate assembly and the interaction region

vacuum chamber was redesign to provide increased rigidity and to improve the posi-

tioning tolerance of the electric field plates with respect to the vacuum chamber.

Materials Selection and Vacuum Composition

As was previously described during the construction of the ACME I apparatus [164], dur-

ing ACME II all components within the magnetic shields in the interaction region were

constructed with careful regard for the materials selection. So as to minimize residual mag-

netic fields and gradients that contribute to Bnr, all materials in this region were chosen to

be non-ferrous and non-magnetic. Some common materials that are found in this region

include Al6061, brass, copper, titanium, ceramics, plastics, phosphor bronze, berrilium cop-

per, glass, etc. Materials that were explicitly excluded include iron, steel, and nickel. Before

inserting each component into the apparatus each one was tested for magnetization by pass-

ing it over a fluxgate magnetometer and looking for detected magnetic fields down to the

sensitivity of about .1µG.

Materials inside the vacuum chamber were subject to further scrutiny to ensure that

all materials are UHV compatible such that outgassing would be reduced in the chamber.

All materials in the vacuum system underwent cleaning in a series of solvents: detergent,

water, hexane, acetone, and then isopropanol, followed by drying and baking in a vacuum

oven if the parts were small enough to fit in our oven. Solvents were only excluded for

parts with materials that react chemically or dissolve in the solvents. After the interaction

region vacuum chamber was assembled in its near final form, the chamber was baked with

all parts, except for the optical components, for several days at around 100◦C.

In a first round of vacuum baking, as we increased the temperature, we observed the

appearance of a strong signature of phthalate molecules at a mass to charge ratio of about

149 amu in a mass spectrum taken with our residual gas analyzer (RGA) . We identified

that these phthalates were originating from a Viton component in the electric field plate
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assembly that is used in the clamping mechanism to distribute more evenly an asymmetric

force profile from the copper clamp on the glass field plate to try to prevent bending of the

field plate . We later learned that “commercial Viton” includes a large fraction of plasticizers

such as phtalates that is not contained in “virgin Viton” which is UHV compatible and used

in O-ring construction. After we replaced the offending part with another one made from

this better material, we baked the vacuum chamber again for several days at 100◦C and

the phthalate signal in the vacuum chamber did not reappear.

The vacuum pressure after baking reached about 1× 10−7 torr which is sufficiently low

that the attenuation of the molecule beam by the background gas should not be significant.

A mass spectrum and an analysis of the gas components in this spectrum are presented in

figure 5.4.2. This analysis consists of fit of the mass spectrum peak amplitudes to a small

library of mass spectra for a series of compounds acquired from the following NIST mass

spectrum database [121]. Since a mass spectrometer detects molecule fragments, many large

molecules show similar fingerprints of other large molecules and subsets of those molecules.

Hence, among those compounds that have fingerprints that fit well to the spectrum, I believe

the assignment only if there is a plausible reason why that compound might be present in

our chamber. The following classes of compounds would be expected to be seen given the

materials in the vacuum chamber and processes used to assemble it:

• Air: Nitrogen, Oxygen, Water, Argon, Carbon Dioxide, Nitrogen Dioxide,

• Solvents and Detergents: Hexane (and relatives - Pentane, Butane, Propane, Ethane),

Ethanol, Isopropanol, Acetone, Ammonia, Nonene.

• Fluoropolymers: Fluorine, Hexafluoropropylene Oxide, Difluoroethene

• Nitrile Rubber: Acetonitrile

• Other Oily Stuff: Methane, Ethylene, Benzene, Carbon Dioxide, Possible Large or

Biological Molecules
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Figure 5.5: A mass spectrum of the contributions to the residual gas in the interaction
region vacuum chamber after baking for a few days at 100◦C. The total pressure is about
1× 10−7 torr and the dominant components to this gas are air and water.

5.5 Detection

5.5.1 A Better Readout Transition

While implementing the ACME II upgrades described above, we also considered the pos-

sibility of replacing our ACME I state readout scheme, which consists of optical pumping

on |H,J = 1, ν = 0〉 → |C, J = 1, ν = 0〉 and observing a 690 nm photon from spontaneous

emission on the |C, J = 1, ν = 0〉 → |X, ν = 0〉 transition, with a different detection transi-

tion. The following criteria make a given excited state |e〉 good for detection in the ACME

experiment with the existing detection scheme:

1. The branching ratio beH from |e〉 → |H〉must be small (<10%) since this type of decay

reduces measurement contrast and enters linearly in the sensitivity of the measurement

to electron’s EDM.

2. The state |e〉 must decay primarily to a single electronic level such that the laser-

induced fluorescence is fairly monochromatic at wavelength λ and this narrow band

of light can be isolated fairly efficiently using interference filters. There also must

be available photodetectors with reasonably high quantum efficiencies (>10%) at the

wavelength λ.
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3. The radiative lifetime of state |e〉 must be short compared to the time that the

molecules spend in the detection region, τ � 1 cm
v‖
≈ 50µs.

4. The |H〉 → |e〉 transition must have a reasonably strong transition dipole moment such

that with available laser technology we can achieve Rabi frequencies, when resonantly

addressing this transition, that are comparable to the state decay rate Ωr ∼ γe = 1/τe,

with a laser beam spatial profile that has a y-extent large enough to address the full

molecule cloud, and an x-extent large enough that the molecules spend several decay

times in the molecule beam.

5. The
∣∣∣H,J = 1,M = ±1, Ñ

〉
→ |e, J M = 0, P̃〉 transition is reasonably spectroscop-

ically resolved from other transitions for reasonable electric fields in the range of

E ∼ 10− 1000 V/cm.

Based on some recent spectroscopy [96], we determined that the |I, |Ω| = 1〉 state satisfies

criteria 1-3 and implementation of this new detection transition would not only eliminate

any concerns that we had regarding scattered light from the STIRAP lasers interfering

with the laser-induced fluorescence signal, but would enable increased sensitivity of the

measurement to the electron EDM in ACME II relative to ACME I. The |I〉 state has a

branching ratio to |H〉 of about 5%, satisfying condition 1, and a branching ratio to |X〉
of about 91% [96], satisfying condition 2 – in fact, this is larger than approximately 70%

branching ratio from |C〉 → |X〉 implying that we would get more photons per molecule

if using the I state. The |I〉 → |X〉 transition is at λ = 512 nm at which PMTs can be

obtained with a quantum efficiency of 25%, which is a significant improvement relative to

the 10% quantum efficiency of the PMTs that were used in ACME I to detect 690 nm 5.

Additionally, the |I〉 state has a radiative lifetime of about τI ≈ 115 ns, satisfying condition

3, which is faster than the |C〉 state with a lifetime of τC ≈ 500 ns which implies that optical

pumping through the I state can progress more quickly than in ACME I. As a result it may

be possible to use a narrower laser beam and a faster polarization switching rate and still

obtain the same efficiency of optical pumping which can make more efficient use of a fixed

amount of laser power.

5. Part numbers for the PMTs used in ACME I and ACME II
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5.5.2 Measurements of the H → I transition

Since the |I〉 state seemed like a promising state read-out detection transition we sought to

find the |H,J = 1〉 → |I, J = 1〉 transition frequency down to the MHz precision level so that

we could address the transition in the molecular beam. This transition had previously been

identified in high-temperature emission spectra [50] and the transition frequency determined

to be in the vicinity of 14222.46± .02 cm−1. We searched for this transition in the buffer gas

cell with an overlapped 943 nm and 703 nm diode lasers. This first laser serves to optically

pump on the |X, J = 1,M = 0〉 → |A, J = 0,M = 0〉 from which a significant fraction of

the population decays into
∣∣∣H,J = 1,M = 0,±1, P̃ = −

〉
. Then we detect the microwave

absorption by laser induced fluorescence with optical pumping with the 703 nm laser on

the
∣∣∣H,J = 1,M, P̃ = −1

〉
→
∣∣∣I, J = 1,M, P̃ = +1

〉
transition. We identified this signal

at the ≈ .5% absorption level with a signal to noise ratio of about 1 – this data is shown

in figure 5.5.2 with a Gaussian fit to the observed line indicating a line center of about

14222.4561± .0002 cm−1 which is consistent with the earlier measurement.
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Figure 5.6: Absorption of 703 nm laser light on the
∣∣∣H,J = 1, P̃ = −1

〉
→∣∣∣I, J = 1, P̃ = +1

〉
transition in the buffer gas cell after populating H by optical pump-

ing on |X, J = 1,M = 0〉 → |A, J = 0,M = 0〉. The line center is identified to be
1422.4561± .0002 cm−1.

After identifying the transition frequency, we moved on to measurements of the tran-
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sition dipole moment on the H → C transition. The lifetime and branching ratio mea-

surements suggested a molecule fixed transition dipole moment of dmol
IH = .69 Debye [96].

For the purposes of the ACME experiment, we sought to measure the particular transition

dipole moment dIH for the transition that we would drive for the state read-out:

dIH ≡
∣∣∣
〈
I, J = 1,M = 0, P̃ |er0|H,J = 1,M = ±1, Ñ

〉∣∣∣ =
1√
8
dmol
IH (5.17)

We performed this measurement in the stem region between the beam source and the

interaction region in a region by once again populating the |H,J = 1〉 state with optical

pumping with the 943 nm laser, followed by optical pumping with the 703 nm laser. We

measured the resulting fluorescence at 512 nm integrated over the molecule pulse and varied

both the laser power and detuning so that the detuning was swept through resonance and

the power was swept through saturation. These Doppler scans were taken over the course of

about an hour, which is long compared to the timescale of molecule number fluctuations from

the beam source, so this was a very significant source of noise in this data. Another set of

data was taken by sitting on resonance and sweeping the power through saturation quickly

enough so that the effect of molecule number fluctuations were reduced and the power

values were randomized such that a drift in molecule number results in added noise rather

than in a systematic error in the measurement of the saturation intensity. To calibrate the

measurement, the laser power was measured before the laser beam entered into the vacuum

chamber, and the extent of laser power reduction before interaction with the molecules was

left to estimation and the uncertainty in this estimation is a significant source of systematic

uncertainty in this measurement. The data that was taken in shown in figure 5.5.2.

These measurements were performed in an electric field with magnitude of roughly

(300V/.75in) = 158 V/cm which is sufficient fully mix the opposite parity states in both

H and I. We observed a Doppler width of about 2π × 4.5 MHz which was much bigger

than the expected Doppler width of 2π · 3.1 MHz given the collimation geometry used for

this experiment. We determined that there was a large variation in the magnitude of the

electric field across the molecule beam since the electric field plates used in this experiment

had a separation comparable to both width of the plates and the size of the molecule beam

which resulted in Stark broadening of the transition.

The analysis of the data that is presented in figure 5.5.2 was performed by creating
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integrating the Master Equation for a two level system with the empirically obtained spa-

tial intensity profile of the laser, and compare the acquired data with these simulations

to generate a Bayesian posterior probability distribution for the transition dipole matrix

element dIH , and the Doppler width σD assuming that the data is normally distributed

about mean values for the true model. After integrating out σD as a nuisance parameter,

we find that dmol
IH ≈ 1.0± 0.3 Debye, which is notably higher than, but plausibly consistent

with the estimation based on the measured branching ratios.

Given the measurement of the transition dipole moment and after having decided on

a beamline geometry as described in section 5.4.1 we sought to determine the required

power to drive optical pumping to completion in the state read-out region with polarization

switching in ACME II. In order to do this, we performed 3D simulations with molecule

trajectories that were randomly chosen from the beam source probability distribution that

was previously described that were consistent with geometric collimation constraints. For

the molecules admitted to the detection region, we integrated the Master Equation to

simulation the polarization-switched optical pumping in the state readout region with a

Gaussian laser intensity profile with a 1σ width of 1 mm in the x̂ direction, and a 1σ width in

the ŷ direction that was chosen such that all geometric molecule trajectories fall within ±1σ

of the center of the beam. The results of these simulations, shown in figure 5.5.2, indicate

that we can drive optical pumping to completion with the selected beamline geometry and

with a fraction of the available few Watts6 of laser power at 703 nm. Later measurements

of optical pumping in the state readout region at 703 nm [128] are consistent with these

simulations with respect to the power required to drive optical pumping to completion and

the measured Doppler widths.

5.5.3 Additional Improvements to the Collection Optics

As previously mentioned in section 5.4.1, the change in the beamline geometry results in a

decrease in the light collection efficiency. The increase in the separation between the electric

field plates reduces the solid angle of the detection region subtended by the collection optics.

After re-optimization of the angle and packing of the collection optics lenses with a new

mounting structure, the efficiency of the collection lenses was estimated to be around 25%,

6. We generate about 4 W of 703 nm light using an M Squared SOLSTIS Ti:Sapph laser seeded by a
Lighthouse Photonics Sprout.
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Figure 5.7: Measurements of the transition dipole moment on the
∣∣∣H,J = 1,M = ±1, Ñ

〉
→∣∣∣C, J = 1,M = 0, P̃

〉
transition in a test apparatus in the stem region. Saturation measure-

ments are shown as data points in black. A global fit to all of the data is shown in red
- the fit functions are derived from Master Equation integration taking into account the
measured spatial intensity profile of the laser shown on the bottom right. The contour plot
in the middle right shows the likelihood function for the two free parameters in this model
- the transition dipole moment and the Doppler width.
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Figure 5.8: Results of a Master Equation simulation of optical pumping in the state readout
region with molecule trajectories that are consistent with our model of the beam source and
with the geometric constraints along the beamline. Top: Fraction of molecules that are not
optically pumped in the state readout-region as a function of increasing laser power. Middle:
Fraction of molecules that are optically pumped as a function of molecule velocity vz along
the laser propagation direction. Bottom: Distribution of transverse velocities vz in the state
readout region.
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Figure 5.9: A Photograph of the ACME II collection optics system installed in the interac-
tion region vacuum chamber.

which is about 75% as efficient as it was in ACME I [125].

The ACME II light collection system also introduced bent fused silica light pipes that

steer the fluorescence photons out of the vacuum chamber, replacing fiber bundles which

were previously limited in transmission by the fiber packing fraction of about 65% [158].

This scheme necessitated an increase in the number of light pipe vacuum feedthroughs and

the number of photodetectors from the two that were used in ACME I, on which light that

had been incident on multiple collection lenses could be combined, to eight in ACME II,

one light pipe feedthrough and one photodetector for each collection lens. Additionally

in ACME II, the increased size of the molecule cloud leads to an increase in the phase

space density of the light that must be collected. However, since we increased the total

photodetector area in ACME II this increase in phase space density is not an issue.
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Figure 5.10: Illustration of the selection criteria used to select an electric field magnitude
at which to operate the experiment. The different colors and linestyles correspond to
different classes of transitions. The vertical green lines correspond to recommended electric
field values that can be achieved with the ACME I voltage supply. The vertical red lines
correspond to electric field values that are recommended, but require the higher voltage
ACME II supply. The thin vertical blue lines correspond to the electric field values that
were used in ACME I. The left column pertains to |H,J = 1〉, and the right column pertains
to |H,J = 2〉. 1. |H〉 → |I〉 transition detunings vs. electric field magnitude. 2. Sum of
off resonant optical pumping rates for |H〉 → |I〉 vs. electric field magnitude. 3. |H〉 → |C〉
transition detunings vs. electric field magnitude. 4. Sum of off resonant optical pumping
rates for |H〉 → |C〉 vs. electric field magnitude. 5. The deviation in the state from
|H,J = 1,M, Ñ 〉 = |H,J = 1,M,Ω = MÑ Ẽ〉. In 2. and 4. the top solid purple curve
corresponds to the sum of the off-resonant optical pumping rates for all of the transition
classes.
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Detection Modification Signal Gain

Bent light pipes and other collection optics upgrades 1.8×
Increased quantum efficiency PMTs at 512 nm 2.5×
Increased detection transition branching ratio at 512 nm 1.25×
Transmission of 512 nm through Electric Field Plates 0.75×
All Detection Improvements 3.5− 4.5×

Table 5.2: Summary of signal gain from changes in molecule detection in ACME II relative
to ACME I.

5.6 Electric Fields

5.6.1 Selection of Electric Field Magnitude

In ACME I we set up the experiment so that we could operate at two values of the

electric field magnitude, E ≈ 35, 140 V/cm. The higher electric field magnitude was

selected fairly arbitrarily at the start of ACME I. The second electric field magnitude

was carefully chosen so that it would be at least a factor of a few different from the

higher electric field magnitude, would be achievable with the existing voltage power sup-

plies, and would result in state preparation and state read-out transition frequencies on∣∣∣H,J = 1,M = ±1, Ñ
〉
→
∣∣∣C, J = 1,M = 0, P̃

〉
that would be as far from degeneracy with

nearby transitions as possible. If there were other transitions that were nearly degenerate,

the state preparation or state readout schemes could interact with these other transitions

leading to background fluorescence that can reduce contrast, or lead to interference effects

that could result in systematic errors.

In ACME II, due to the increased complexity of the experiment, the selection criteria for

a suitable electric field magnitude are more strict, so we decided to formalize the selection

process beyond that which drove the analogous decision during ACME I. Here are the

factors that are to be taken into account during the selection process:

1. We would like the
∣∣∣H,J = 1,M = ±1, Ñ

〉
→
∣∣∣I, J = 1,M = 0, P̃

〉
state read-out

transition frequencies to be as far as possible from other nearby transition frequencies.

2. We would like the
∣∣∣H,J = 1,M = ±1, Ñ

〉
→
∣∣∣C, J = 1,M = 0, P̃ = −1

〉
STIRAP

transition frequencies to be as far as possible from other nearby transition frequencies.

3. We would like the prepared spin state in |H〉 to be as close to a pure rigid rotor

|J,M,Ω〉 state as possible.
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4. We require that the electric field magnitude be acheiveable with the ACME II electric

field power supply7, which can supply electric fields up to around 200 V/cm, and we

would prefer that it be achievable also with the ACME I power supply which can

supply electric fields up to around 80 V/cm with the ACME II field plates separation

of dFP ≈ 45 mm.

5. We prefer that there be at least two viable electric field magnitudes that differ by at

least a factor of 2×.

All of the states that are being considered in this section, H,C, I all have angular momentum

projection along the nuclear axis of |Ω| = 1 which have omega doublet structure. Within

these states the Stark shifts, in the limit that the scale of the shifts are small compared to

the rotational splitting, DE/BR � 1, for a state |A, J,M, Ñ 〉 are given by

E
(
A, J,M, Ñ

)
=− Ñ

√(
1

4
∆AJ (J + 1)

)2

+

(
MDmol

A |E|
J (J + 1)

)2

, (5.18)

where I have defined ∆A is the zero field omega doublet splitting in J = 1 of state A,

and Dmol
A is the molecule fixed electric dipole moment of the state A. The detuning of a

transition between state
∣∣∣e, J,M, Ñ

〉
and state

∣∣∣g, J ′,M ′, Ñ ′
〉

can be defined as

∆E
(
e, J,M, Ñ ; g, J ′,M ′, Ñ

)
=E

(
e, J,M, Ñ

)
− E

(
g, J ′,M ′, Ñ ′

)
. (5.19)

Using the molecular constants listed in table 5.6.1, these transition frequencies are plotted

for e = C, I, g = H, J = 1, J ′ = 1, 2 in figures 5.6.1 1a, 1b, 3a, 3b.

Parameters ∆A DA BA τA = 1/γA
H 2π × .362 MHz 2π × 2.086 MHz/V/cm 9.78463 GHz 2 ms
I 2π × 101 MHz 2π × 2.1 MHz/V/cm 115 ns
C 2π × 50.4 MHz 2π × 1.0 MHz/V/cm 500 ns

Table 5.3: Molecular parameters that were used in making these plots

In our application, we drive Lambda transitions of the form:
∣∣∣g, J ′,M ′ = ±1, Ñ ′ = ±1

〉
→∣∣∣e, J,M = 0, Ñ = ±1

〉
. All of the other transitions that are possible are unnecessary, and

7. Apex PA89a powered by Acopian supplies and controlled with a BiasDAC.
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could possibly lead to unknown systematic errors or reduced sensitivity of the measure-

ment. Hence we would like the unwanted transition detunings to be as far away from the

intentionally driven transition as possible. Motivated by the classical optical pumping rate

for a two level system, the metric that I have selected to quantify distance between two

transition frequencies is a max-normalized Lorentzian function,

L (∆, γ) =
(γ/2)2

∆2 + (γ/2)2 , (5.20)

where γ is the natural linewidth of the transition that is intended to be driven and ∆ is

the difference between the detunings of the transition that is intended to be driven and

an unwanted transition. In order to quantify goodness of a given electric field value, I

find the sum of the distance factors L (∆, γ) for the difference in detunings ∆ between

every intentionally driven transition frequency, and every other transition frequency that is

nearby.

Γ
(
e, J ; g, J ′

)
=

∑

Ñ , Ñ ′, Ñ ′′, Ñ ′′′ = ±1

M ′′,M ′′′ = −J, . . . ,+J

(
1− δÑ ,Ñ ′′δÑ ′Ñ ′′′δM,M ′′δM ′,M ′′′

)
L
(
∆Eeg′,e′′g′ , γe

)

(5.21)

∆Eeg′,e′′g′ =∆E
(
e, J,M = 1, Ñ ; g, J ′,M ′ = 0, Ñ ′

)
−∆E

(
e, J,M ′′, Ñ ′′; g, J ′,M ′′′, Ñ ′′′

)

(5.22)

Here, I omit any weighting factor for each pair of transitions (which could take into

account the extent to which a given transition may stronger or weaker due to the transition

matrix elements, or forbidden due to the requirement of imperfect polarization or an even

parity transition operator to drive, etc.) indicating that I would like to be equally far

from all possible transition level crossings regardless of their likelihood for being driven.

I have performed this calculation of Γ (e, J, g, J ′) for e = C, I, g = H, J = 1, J ′ = 1, 2,

for subsets of unwanted transitions, displayed in figures 5.6.1 2a, 2b, 4a, 4b and for all

unwanted transitions in figure 5.6.1.
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In addition to distance to nearly degenerate transitions, we also take into the molecular

state purity in deciding on an electric field magnitude. When we apply an electric field

that is large enough ∆A � DAE � BA, the molecule state becomes fully polarized and the

system eigenstates are nearly perfect rigid rotor basis states |J,M,Ω〉. Nevertheless there

is always some mixing between opposite molecular orientation states corresponding to a

deviation from the molecule being fully polarized and there is also some Stark rotational

mixing. At first order in perturbation theory in both of these effects, the eigenstates of the

Stark Hamiltonian can be described as:

∣∣∣H,J,M, Ñ
〉
≈ (5.23)

+
∣∣∣H,J,M,Ω = +M̃Ñ Ẽ

〉
(5.24)

+ Ñ 1

8
[J (J + 1)]2

∆H

|MDHE|
∣∣∣H,J,M,Ω = −M̃Ñ Ẽ

〉
(5.25)

− Ẽ 1

2

1

(J + 1)2

√√√√
(

(J + 1)2 −M2
)(

(J + 1)2 − Ω2
)

(2J + 1) (2J + 3)

|DHE|
BH

∣∣∣H,J + 1,M,Ω = +M̃Ñ Ẽ
〉

(5.26)

+ Ẽ 1

2

1

J2

√
(J2 −M2) (J2 − Ω2)

(2J − 1) (2J + 1)

|DHE|
BH

∣∣∣H,J − 1,M,Ω = +M̃Ñ Ẽ
〉

(5.27)

+ . . . (5.28)

To ensure maximal sensitivity to the electron EDM and to maintain simplicity in the ex-

periment, we would like these eigenstates to correspond as closely as possible to the perfect

rigid rotor states. Hence, I define the state impurity as

Ξ (H,J,M,Ω) =1−
∣∣∣
〈
H,J,M, Ñ |H,J,M,Ω = M̃Ñ Ẽ

〉∣∣∣
2
, (5.29)

which we can attempt to minimize with respect to our choice for the electric field magnitude.

This state purity metric is displayed both for |H,J = 1, 2〉 in figures 5.6.1 5a, 5b and figure

5.6.1.

To combine all of the factors described above quantitatively, I created an fairly arbitrary
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goodness metric G (J, J ′) which should be minimized in the selection of an electric field,

G
(
J, J ′

)
= Γ

(
I, J,H, J ′

)
Γ
(
C, J,H, J ′

)
Ξ
(
H,J ′,M = 1,Ω = 1

)2
(5.30)

which is displayed in figure 5.6.1 for the cases in which we perform the measurement∣∣∣H,J,M = ±1, Ñ
〉

with J =1 or 2. Based on this goodness metric, the recommended

electric field magnitudes are listed in table 5.6.1.
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E�Field �V�cm�
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0.001

1

Goodness Metric
�H,J�2���C�I,J�1�

10 20 50 100 200 500 1000 2000
E�Field �V�cm�

10�14

10�11

10�8

10�5

0.01

Goodness Metric
�H,J�1���C�I,J�1�

Figure 5.11: Here is a “goodness” metric that was artificially constructed decide which
electric field magnitudes would be best to use as a running configuration for both |H,J = 1〉
(left) and |H,J = 2〉 (right). Here the red dashed line corresponds to the square of the
|H〉 state Hunds case (c) basis state purity. The yellow dashed curve corresponds to the
off-resonant optical pumping rate for |H〉 → |I〉 and the green dashed curve corresponds to
the off-resonant optical pumping rate for the |H〉 → |C〉 transition. The solid blue line is the
product of the three dashed lines above it and is considered to be the “goodness” function
(such that the smaller this value is, the better the electric field value is as a candidate
electric field magnitude).

Measurement Recommended E−field Magnitudes (V/cm)

ACME I, |H,J = 1〉 35, 140
ACME II, |H,J = 1〉 37, 56, 78.5, 150
ACME II, |H,J = 2〉 65, 90, 225

Table 5.4: Recommended electric field magnitudes in ACME II. Those displayed in bold
are achievable with both the ACME I and ACME II electric field power supplies, and those
not in bold are achievable with only the ACME II power supply.
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Mapping Electric and Magnetic

Fields

Acker – Hit the Net, do a search for,
oh, two years ought to do it. Any and
all, like, “weird news” ... Danni, get me
the brightest kids from the Field
Theory class and design a computer
model of an electromagnetic field ...
Map out the anomalies that Acker
finds and grunt out the equations.

The Core

6.1 Interferometric Measurements of the Electric Field Plate

Spacing

We used an interferometric method to aid in precisely setting the spacing between the two

electric field plates which are used to apply a uniform electric field to the molecules in the

spin precession region, and to provide a first estimate as to the possible spatial homogeneity

and stability of this field given residual variations in the separation as a function of space

and time. Similar measurements were performed previously to set the electric field plate

spacing in ACME I as described in section [158]. In this section, I will present the methods

and data analysis used for these measurements in ACME II, which differ from previous

measurements with respect to some details, and I will present the conclusions drawn from

these measurements.

The interferometric separation measurement is performed using a “white light” Michel-
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s

Light
source

L1

L2

CCD

Figure 6.1: Schematic of the apparatus used to perform an interferometric measurement of
the electric field plate separation. A spectrally broad light beam is reflected perpendicularly
off the field plates and passes into a conventional Michelson interferometer setup with one
fixed arm (length L2) and one movable arm (length L1). An example of a pair of beam
paths of interest is shown as solid and dashed red lines. If the two paths are slightly tilted
relative to each other, a spatial interference pattern (inset) is observed on the CCD detector
when the path length difference between the two beams is less than the coherence length,
e.g. L1 + s− L2 < Lc.

son interferometer [131]. A schematic of the setup is shown in figure 6.1. A collimated light

source with coherence length `c is directed at normal incidence through the electric field

plates in the ẑ direction. As a light source, we use a broadband superluminescent diode1

with a nominal coherence length ` ≈ 15 µm. This results in multiple reflected beams, but

we will restrict our discussion to the reflections from the ITO conducting surfaces, which are

separated by a distance s, as these are of primary interest and were efficiently experimen-

tally isolated from all others. The reflected beams passed into a Michelson interferometer

with one arm of fixed length, L2, and one with length adjustable via a motorized micrometer

translation stage2, L1, with a CCD camera at the observation port. Interference is observed

on the camera when the length of multiple light paths from the source to the camera differ

by . `c. The interferometer is intentionally slightly misaligned so that several fringes of

interference can be observed as a spatial variation of the light in intensity in the camera

image as can be seen in the inset of figure 6.1. The interference condition is met when

L1 = L2 (a reflection from a single surface self-interferes in the interferometer) or when

1. QPhotonics QSDM-680-2.

2. Zaber T- NM17A04SKT02 stepper motor
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L1 = L2± s (reflections off of the two surface interfere with each other). A measurement of

the difference in the movable arm position L1 between observing two of these interference

conditions are sufficient to measure s. Usually, we will measure the “center peak”, when

L1 = L2, once and then we will measure the “separation peak”, when L1 = L2 + s, as a

function of x and y to extract s (x, y). The resulting data is shown in figure 6.1.

The size of the observed interference fringe contrast is quantified by evaluating the 2d

power spectrum of the CCD image and integrating over a fixed region of the spectrum which

contains the periodicity and orientation of the interference fringes. The interferometer is

aligned so that the interference fringes appear at roughly 45◦ with respect to the camera

pixel grid axes since those orientations have a higher background in the power spectrum. A

scan of about 80 of these fringe contrast measurements is acquired while moving the inter-

ferometer arm to positions to randomly ordered linearly spaced points across the separation

peak resonance. This data is fit to a Gaussian fit function, which fits the data quite well,

to extract an estimate the separation s between the electric field plates. This measurement

is repeated at each point on a rectangular grid in the xy plane, with points separated by

about 1.5− 2 cm.

A final map of the spatial variation in the separation of the ACME II electric field

plates is shown in figure 6.1. This data shows that there a bend in the plates along the x

direction of magnitude ≈ 9.5 µm/cm2 and there is a significant xy twist – both which were

characteristics that were observed in the ACME I electric field plate assembly [158]. This

observed variation in the electric field plates is about 10−3× the overall separation. Given

that we will likely operate the experiment in ACME II at E ≈ 80 V/cm (see section 5.6.1

for a discussion), the variation in the electric field is likely to be around δE ≈ 80 mV/cm

throughout the spin precession region.

This observation was surprising to us given the history of investigations into the source

in the ACME I electric field plate bend. After ACME I we found that a bend along the

x direction in the electric field plates was correlated with the tension in the field plate

clamping mechanism. In fact, a 1 mm bend across the gold-coated copper clamps lead

to an order of magnitude increase in the size of the bend. We attempted to eliminate this

source of bending by flattening the gold-coated copper clamps and inserting a squishy Viton

gasket in between the gold-coated copper clamps and the electric field plates to distribute

the clamping force. However, even after the introduction of this gasket the bend remained
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Figure 6.2: Map of the electric field plate separation obtained from white light interferome-
try. Left: Measurements of the spatial variation in the separation between the electric field
plates as a function of x and y dominantly show a bend along the x direction, of magnitude
approximately equal to that observed in ACME I [158], in addition to an xy “twist”. Inset:
An aggregation of all of the interferometer fringe contrast scans scaled by the fit amplitude
and shifted by the fit center, for Gaussian fits to the data displays the coherence function
of the light source and the typical signal to noise ratio for each scan. Right: The residuals
of the data shown on the right with respect to the 2d polynomial fit function show that
the fit is good, but the measured χ2 > 1 indicates that there is some source of noise, apart
from the uncertainty in the extraction of the center of each contrast scan, that has not
been accounted for. The uncertainties in the extracted fit coefficients have been rescaled in
attempt to account for this additional noise.

164



Chapter 6. Mapping the Electric and Magnetic Fields

even in the limit in which the electric field plates were hardly being clamped. This lead us

to suspect that there was a bend in the glass itself and that the ACME II plates, which

are made from a different material and specified to have a flatness that is much better than

the observed bend, would be unlikely to exhibit the same feature. Hence, it was surprising

when we observed the same size bend in the electric field plates in ACME II, and the source

of the bend still remains unclear, but is more likely than before to be originating from the

clamping structure.

Spatial variation of ~E could lead to the accumulation of geometric phases during the spin

precession measurement [134,163]. There are known mechanisms by which such phases can

contribute to electron EDM-like systematic errors, as described in section 3.3, though simple

estimates show that these effects are several orders of magnitude below the sensitivity of

this measurement. However, additional E-field imperfections such as non-reversing fields,

due to e.g. variations in the ITO coating, which could produce patch potentials, are known

to contribute to electron EDM-like systematic errors and are only revealed by more direct

measurements of the electric field which are discussed in the section 6.2.

We also measured some time variation in the separation between the electric field plates

on long time scales as is shown in figure 6.1. During this measurement, we fixed the

measurement position to the center of the electric field plates, x = 0, y = 0, and we

alternated between measuring the separation peak position and the center peak position

to account for possible long term drifts in the alignment of the interferometer or long

term hysteresis in the stepper motor. There was some evidence that the drift in the room

temperature was correlated with the drift in the electric field plate separation, but the

evidence was certainly not conclusive.

6.2 Mapping the Electric Field with Microwave Depletion

Spectroscopy

In ACME I, after having identified, as described in section 4.3, that an AC Stark shift

phase can couple to the non-reversing component of the electric field, Enr, to result in a

systematic error in the EDM measurement, we required a method to measure Enr so that we

could evaluate the size of the corresponding systematic error. We developed three methods

to measure the E-field, each of which did so by measuring the Stark shift or changes in the
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Figure 6.3: Interferometric measurements of drift in the field plate separation over time at
the position x = 0, y = 0 in the center of the electric field plates. The dark blue points with
errorbars are measurements of the separation. The light blue shaded region are confidence
intervals for a non-parametric local linear regression fit to the data which attempts to
extrapolate what the separation might have been at times when there was missing data.

Stark shift in the |H,J = 1,M = ±1, Ñ 〉 levels:

1. Raman spectroscopy by driving the two photon |B(x̂), Ñ , P̃〉 → |C, J = 0,M = 0, P̃〉
→ |B(x̂),−Ñ , P̃〉 transition, described in [77], enabling measurements in regions of

optical access, |E(xprep)|, |E(xread)|.

2. Off-resonant measurements of the correlated contrast CNE = (∂C/∂∆)DH,J=1Enr(xprep)

and the correlated laser induced fluorescence signal, SNE = (∂S/∂∆)DH,J=1Enr(xread),

described in [158].

3. Microwave depletion spectroscopy, by driving a resonant π-pulse on the |B(ŷ), Ñ , P̃〉
→ |H,J = 2,M = 0, P̃〉 transition (depicted in figure 6.4) as a measure of |E(x)| for

the region of the beamline between x = xprep and x = xread, which is described here.

6.2.1 Measurement of |E (x)| and Enr (x)

A schematic of the experimental setup used for the microwave depletion measurements is

shown in figure 6.4. The measurement procedure began by transferring molecules from

|X, J = 1,M = ±1〉 to an incoherent mixture of levels in |H,J = 1〉 by optical pumping

on the |X, J = 1,M = ±1〉 → |A, J = 0,M = 0〉 transition at 943 nm in the state

preparation region, just as was done for the ACME I spin precession measurement . The

packet of molecules travels through the spin-precession region until it is entirely occupied

by the molecule pulse. Then, a π-pulse of microwaves at 2π × 39 GHz with nominal ŷ
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polarization was applied counter-propagating to the molecule beam along the −x̂ direction.

When on resonance, this transferred population from |B(ŷ), Ñ , P̃〉 to |H,J = 2,M = 0, P̃〉,
as shown in figure 6.4 for choice of Ñ , P̃. State readout was performed as usual (see

section 2.1) by optically pumping with alternating polarizations x̂ and ŷ on the state read-

out transition and detecting the laser-induced fluorescence. The measured asymmetry (as

defined in equation 2.4) served as a measure of the microwave transfer efficiency. The

x position of the molecules at the time of the microwave pulse was mapped onto their

arrival time in the detection region and, with knowledge of the longitudinal molecular beam

velocity, v‖, could be extracted. Thus, by performing this microwave transfer efficiency

measurement for microwave frequencies spanning across resonance, the spatial dependence

of the resonant frequency, ωMW(x), could be extracted from time-dependent asymmetry,

A(t). This transition resonance frequency ωMW is linearly proportional to the Stark shift

in |H,J = 1,M = ±, Ñ 〉 and |E(x)| could be directly extracted.
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Ñ = +1

M =

−2

−1

0

+1

+2

P̃ = −1

P̃ = +1

2DH,J=2E

2DH,J=1E

∆H,J=1

∆H,J=2

1

J = 1

J = 2
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Ñ = +1

M =

−2

−1

0

+1

+2

P̃ = −1

P̃ = +1

2DH,J=2E

2DH,J=1E

∆H,J=1

∆H,J=2

1

J = 1

J = 2

Ñ = −1
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ẑ

ŷ
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ẑ

ŷ
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Figure 6.4: Illustration of the microwave depletion spectroscopy used in mapping |E(x)| and
Enr(x). Left: Schematic of the experiment. An optical pumping laser at 943 nm transfers
population from |X〉 (gray cloud) to an incoherent mixture of states in |H,J = 1〉 (blue
cloud) as described in section 2.1. A horn emits a short π-pulse of microwaves resonant
with the |H,J = 1〉→ |H,J = 2〉 thereby depleting molecules a particular state in |H〉,
|B(ŷ), Ñ , P̃〉, whose population is then read-out via optical pumping with a second laser at
1090 nm, as described in section 2.1. The time of arrival of the molecules in the state read-
out region encodes the position at which they absorbed the microwaves enabling spatially
resolved spectroscopy. Right: Illustration of the levels in |H,J = 1, 2〉 in an applied electric
field of magnitude ∆H � DHE � BH , and an example of one of the |B(ŷ), Ñ , P̃〉→|H,J =
2,M = 0, P̃〉 transitions that is resonantly driven with a microwave π-pulse at 2π× 39 GHz
(blue arrows).

We observed a resonance linewidth of ≈ 2π × 25 kHz ≈ 2π/T which was limited by the

microwave π-pulse duration of T = 40 µs. With our signal-to-noise, we were able to fit the

resonance center to a precision of ∼ 2π × 1 kHz, typically using ∼ 50 detuning values and
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averaging over ∼ 50 molecule pulses per detuning value. Example data obtained via this

method are shown in figure 6.5. The resonance exhibits a lineshape that is qualitatively

consistent with a two level system driven resonantly by a square pulse with fixed time T .

However, the data does not fit very well to this model however, even allowing for deviations

from ideal Rabi frequency, ΩrT = π, and allowing for T to vary from that which we applied

in the lab. However, it is likely that the microwaves propagating within our apparatus

cannot be described by a simple plane wave with fixed polarization and intensity as we

implicitly assumed in the simple model that was previously described. For instance, due

to boundary conditions at the surface of the electric field plates it is probably that the

microwave intensity varies significantly along the ẑ direction across the molecule beam,

and a co-propagating microwave reflection off of the vacuum chamber walls, which differs

in frequency by the Doppler shift relative to the counter-propagating microwaves in the

molecule rest frame, is probably simultaneously interacting with the molecules.

Figure 6.5: Color-map: Plot of the asymmetry A induced by a microwave pulse as the
frequency of the microwaves was scanned across resonance. Red data points: Plot of the
extracted center of the resonance signal binned by time after the microwave pulse. The
position x at the top of the plot is relative to the center of the spin-precession region.
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The data shown in figure 6.5 shows that the resonant frequency of the microwaves varies

across the molecule pulse by around 2π × 60 kHz. The position x of the molecules at the

time of the microwave pulse was assumed to be linearly related to the molecule arrival time

in the state readout region. The observed spatial variation of E was roughly consistent

with expectations based on the measured variation of the ACME I electric plate spacing

described above in section 6.1.
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Figure 6.6: A plot of the spatial variation of Enr. The black points are data obtained
via microwave spectroscopy. The blue points are data obtained via Raman spectroscopy.
The red data point was obtained by examining the variation of contrast with ∆prep. The
approximate position of the state preparation (state readout) laser beam is shown as a
red dotted line on the left (right) of the figure. For the microwave spectroscopy data the
uncertainty/averaging range of the position is around 21 mm at the left-hand side of the
plot and decreases to around 13 mm at the right-hand side — see main text for details.

By switching Ñ and Ẽ between measurements of the E-field with the method described

above, we were able to extract Enr from ωNEMW = DH,J=1Enr, the Ñ Ẽ-correlated component

of resonance frequency. These measurements, shown in figure 6.6, were used to evaluate the

size of the ωNEEnr systematic error in the ACME I measurement. We observed that Enr (x)

varies significantly across the spin precession region and the spatial variation with x, as

shown in figure 6.6, and this profile was reproducible for the period of several weeks over

which these measurements of the electric field were taken. By performing additional mea-

surements of Enr (x) while clipping the molecule beam with additional upstream collimators,

we also observed significant variation of Enr along the z direction as shown in figure 6.2.1.

We are unsure as to the origin of the Enr but it is possible that it is generated by

patch potentials [142] present on the electric field plates, or by local fixed charges that

are not affected by charging and discharging the electric field plates. We observed some

unexplained disagreement between the Raman spectroscopy and microwave spectroscopy

Enr measurements, but note that both report non-reversing fields of a few mV/cm with the
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Figure 6.7: Microwave depletion measurement of Enr variation along ẑ using molecular
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same sign. It is possible, given the measured z-dependence of Enr, that this disagreement

could be originating from differences in spatial variations along z in the sensitivity of these

two methods.

The mapping between arrival time in the detection region and x position during the

microwave pulse was approximate, suffering from spatial averaging due to a variety of

effects. For example, velocity dispersion led to spatial averaging over length scales ∆xσv‖/v‖,

where σv‖ is the longitudinal velocity spread of the molecular beam and ∆x is the distance

between the location of microwave interrogation and state readout laser. This averaging

distance was largest, ≈ 1.6 cm, at the state preparation region. Spatial averaging also

occurred across the ≈ 0.7 cm distance traversed during the T = 40 µs microwave pulse.

Finally, there was averaging of the spatial position of the molecules due to the finite size

of the state readout laser beam and the polarization switching; molecules were optically

pumped (with varying probability) throughout the ≈ 0.5 cm wide laser beam. In addition to

spatial averaging, uncertainty in the mean longitudinal velocity contributed an uncertainty

in position. Changes of ≈ 10 m/s between molecule pulses were quite typical over the course

of the E-field measurement, giving an estimated position uncertainty of . 1 cm.

By adding the above contributions in quadrature we concluded that the range of po-

sitions from which the microwave-induced signals could have originated increased from

around ≈ 1.3 cm at the state readout beam to ≈ 2.1 cm at the optical pumping beam.

These ranges are shown as the width of the black boxes indicating the estimates of Enr in

that state preparation and state readout lasers in figure 6.6.

6.2.2 Stroboscopic Measurement of Velocity for Improved Spatial Deter-

mination

In order to increase our resolution in determination of the spatial position of the molecules

when addressed by the microwave pulse, we also performed microwave depletion measure-

ments while strobing the 943 nm pump laser beam by using an acousto-optic modulator

(AOM) as an optical switch. This creates well localized packets of molecules prepared in

|H,J = 1〉, and due to velocity dispersion that occurs between the molecule beam source

and the interaction region, narrower distributions of velocities in each packet. We have

used this experimental method in the past [93] to calibrate for the Zeeman spin precession

time in the interaction region to make an improved measurement of the magnetic moment
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in |H,J = 1〉.
We analyze this data by assuming that all molecules addressed by a strobe pulse of

duration T , are equally likely to have been prepared in |H,J = 1〉 at each time t0 while

the laser is on, and that those molecules that are prepared have a normally distributed

longitudinal velocity with mean v̄ and variance σ2
v ,

P0 (t0, v) =
1

T
(0 < t0 ≤ T )

1√
2πσ2

v

exp

(
−(v − v̄)2

2σ2
v

)
(6.1)

This molecule packet undergoes velocity dispersion as it passes through the region of length

L between the pump laser beam and the state readout laser beam resulting in a probability

distribution P1(t1) for the time t1 of detection,

P1(t1) =

∫
P0(t1 − v/L, v)dv (6.2)

≈ 1

T

{
erf

(
1√
2

L

σv

[
t1 −

L

v̄

])
− erf

(
1√
2

L

σv

[
t1 − T −

L

v̄

])}
+O

(σv
v̄

)
. (6.3)

The integral in equation 6.2 is approximated using Laplace’s method in a perturbative

expansion with respect to σv/v̄ which is typically on the order of 2% for these wavepackets.

The analytic formula in equation 6.3 is used to fit to the observed time dependence of the

fluorescence signal for each strobe pulse to extract v̄ and σv for each pulse.

An example of the stroboscopic fluorescence data with the fits to the model in equation

6.3 are shown in figure 6.2.2A. The inferred velocity distributions for each strobe pulse are

shown in figure 6.2.2B with the same coloring scheme as in 6.2.2A and the inferred total

longitudinal velocity distribution is shown with a thick black line. Note that those pulses

that arrive later have a lower velocity distribution due to velocity dispersion along the

beamline. From this measurement, we can determine that the longitudinal velocity of the

buffer gas beam is fairly normally distributed with a mean velocity around v̄ ≈ 185 m/s with

a standard deviation of σv ≈ 13 m/s. By performing this measurement over longer timescale,

we can monitor variations in the longitudinal velocity distribution as illustrated in figure

6.2.2C where we observed variations in the mean velocity roughly between 180 m/s−190 m/s

over a 2 hour time window.
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6.3 Characterizing the Magnetic Field Constrained by

Maxwell’s Equations

In ACME I, we decided to include limits on possible EDM systematic errors proportional to

non-reversing magnetic fields, Bnr, transverse fields, and field gradients, in our systematic

uncertainty as discussed in section 3.6.1. We did not observe any systematic errors propor-

tional to these quantities, but since the PbO electron EDM experiment [49] had observed

systematic errors when applying transverse magnetic fields and magnetic field gradients and

the mechanism was not understood, it is possible that the same mechanism could be present

in our experiment so we included the possibility that these effects are present when con-

structing our systematic uncertainty to be on the safe side. Furthermore, there are known

mechanisms by which the residual magnetic field, Bnr, can contribute to the AC Stark shift

phase systematic errors and Stark Interference systematic errors are described in sections

4.3 and 4.2.1. Hence it is important that we measure the magnetic field in our apparatus

so that we can characterize the size of these systematic errors that contribute to the EDM

measurement.

The magnetic field monitoring that we performed during ACME I was not sensitive

to the residual field Bnr. Four fluxgate magnetometers were physically attached to the

interaction region vacuum chamber, and since these fluxgate magnetometers have fairly

large voltage offsets (which correspond to a few mG) that tend to drift significantly in

time, we were unable to resolve any Bnr below that level. After the ACME I experiment

had been completed, we opened up the vacuum chamber and inserted a device called the

“probulator” [174], depicted in figure 6.3. These measurements showed an unexpectedly

large residual magnetic field, Bnr ≈ 0.7ŷ mG. Later we determined that this field was

caused by the magnetization induced in the magnetic shields from Earth’s magnetic field

≈ 500 mG prior to assembling them. Our magnetic shield degaussing scheme provided

insufficient current to entirely remove this magnetization since it was engineered to remove

the smaller magnetization induced by the the ≈ 20 mG magnetic fields applied by our coils

within the magnetic shields [123].

As described in section 5.4.2, in ACME II, the interaction region has been designed

with magnetometer pockets protrude into the interaction region with corresponding access

holes through the magnetic field coils and magnetic shields such that we can perform mag-
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netometry of the applied magnetic field and the residual magnetic field, as we did with

the probulator, along multiple axes within the experiment and without having to break

vacuum. In this section, I describe some magnetic field mapping that was performed in the

interaction region after the ACME II modifications had been made to the magnetic field

coils and the magnetic shields. Here, I also present a method of aggregating magnetic field

measurements along different scan axes using a model that satisfies Maxwell’s equations to

improve our understanding of the magnetic field in spatial regions of the apparatus that

were not explicitly mapped. This method may be useful during ACME II to estimate the

magnetic field within the spin precession region given measurements of the magnetic field

within the magnetometer pockets that surround the spin precession region.

Such models that satisfy Maxwell’s equations in free space have been used before to fit

magnetic field data in other experiments. The ATLAS experiment performed a nonlinear fit

to Fourier-Bessel terms and hyperbolic terms to model their solenoid field [9,73]. The TJ-II

Heliac used a linear model of toroidal harmonics in toroidal coordinates to describe a toroidal

solenoid field [115]. A search for unexploded ordnance used a nonlinear regression model

consisting of the sum of dipole fields was used for the detection of unexploded ordnance

[117]. Outside of the magnetosphere, the earths magnetic field has been described using

linear regression with a spherical harmonic basis set [112]. In the characterization of the

magnetic fields within the ACME experiment, we found it most useful to use a truncated

3d polynomial model constrained to satisfy Maxwell’s equations.

Interaction Region Chamber

Electric Field Plates

Probulator
Fluxgate Magnetometer

Probulator Stage

(still enclosed by magnetic shields,
magnetic coils, but at atmospheric

pressure)

Theodolite

Translation Stage

Rotation Stagey

x
z

Figure 6.9: Schematic of the set-up used to perform magnetometry along the molecule
beamline within the experiment. This consists of the probulator, a set of rigidly held tubes
that can be precisely aligned along the beamline using a theodolite, and which can support
a cylindrical fluxgate magnetometer to perform magnetic field measurements.
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6.3.1 Measuring the Magnetic Fields
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Figure 6.10: Schematic that illustrates the ACME interaction region. The large cylinder
denotes the outermost layer of the 5 mu-metal magnetic shields. The smaller concentric
cylinder denotes the cosine coils that can be used to apply a magnetic field in the z direction.
The rectangles within that cylinder denote a set of coils that can be used to apply a magnetic
field in the y direction. The blue region in the center denotes the spin precession region
where we would like to carefully map the magnetic fields. The red lines indicate the axes
along which we performed scans of the magnetic field. This figure is to scale.

Two 3-axis Bartington Mag-03 fluxgate magnetometers with a sensitivity of about

3 µG/
√

Hz were used to map applied fields of magnitude ∼ 20 mG, and a residual field

of magnitude ∼ 30 µG. These magnetometers are cylindrical with a 2 cm diameter and 5.5

cm length. The magnetometer was fixed inside of a Teflon mount that adapts to the end of

an aluminum 6061 drive shaft connected by a nylon flexible coupling. The magnetometer

slides linearly within a plastic tube which defines a magnetic field scan axis. The position of

the scan axes are fixed with respect to the spin precession region such that their positions

and orientations correspond those shown in figure 6.3.1. The magnetometer is translated

within the tube using a translation stage, and data points were taken with a spatial sepa-
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ration of about 1 cm. Since the magnetometer is larger than the separation between data

points, the magnetometer smooths any magnetic field variations shorter than the length of

the magnetometer. A rotation stage that is fixed to the translation stage is used to rotate

the cylindrical magnetometer within the tube which serves to reverse or interchange the

magnetometer probe sensors that are transverse to the scan axis. The axial magnetometer

sensor cannot be easily reversed in this set-up.

Within the experiment there are three sets of coils: a set of cosine coils wound on a 70

cm diameter cylindrical polycarbonate mount that apply a magnetic field in the z direction,

a rectangular grid of coils to apply a magnetic field in the y direction, and a Helmholtz coil

wound around the cosine coil mount to apply a magnetic field in the x direction. The z-

coils are used to apply a uniform Bz within the spin precession region of magnitude ranging

from 0 − 50mG. We have built in the capability to apply uniform fields along the two

transverse directions, Bx and By, and the capability to apply all 5 independent first order

gradients: ∂By/∂x, ∂By/∂y, ∂By/∂z (using the y−coils), ∂Bz/∂x, and ∂Bz/∂z (using the

z-coils). These auxiliary field configurations are used to search for EDM systematic errors

that may depend on some of the magnetic field components – as described in section 3.6.1,

in ACME I, we put direct limits on possible systematic errors coupled to each of these

parameters and included these in the systematic uncertainty.

Outside of the magnetic field coils, there are 5 layers of concentric cylinders of mu-

metal with planar end-caps that vary in diameter from 76 cm to 106.5 cm. These magnetic

shields have been measured to have a static shielding factor of about 105, which suppresses

the ambient magnetic field from 500 mG to around ∼ 5 µG. However, the residual magnetic

field in the spin precession region is currently ∼ 30µG and is likely limited by magnetization

in the mu-metal. The mu-metal shields have an array of holes for molecule beam access

and laser access to the spin precession region. When applying a magnetic field of about

Bz ≈ 20 mG in the precession region, the inner layer becomes magnetized and results in a

change to the residual field of about ∼ 30µG in the precession region. This magnetization

is subsequently removed by degaussing the mu-metal using a set of coils wound around each

mu-metal layer which is driven by an oscillating current at 200 Hz with an exponentially

decreasing waveform.

The magnetic field in the precession region has been mapped for each of the configura-

tions that we can use to apply uniform fields in each of the 3 Cartesian directions (except for
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Bx), and to apply each of the 5 independent first order gradients. The background residual

field in the absence of any applied field was also characterized. Each field has been mapped

along each of the 8 scan axes shown in figure 6.3.1 which gain access to the spin precession

region via holes in the mu-metal shields. The plastic tubes that confined the magnetometer

along a given scan axis were aligned to their assigned positions within about ±.25 cm, which

also implies an angular tolerance of about ±5 mrad. For the scans in the x and y directions

the rotational alignment of the magnetometers was set by the direction of Bz generated by

the z−coils, but for the scans in the z direction, the rotational alignment was set by the

direction of the By generated by the y-coils. These geometric alignment uncertainties lead

to systematic errors in the magnetic field mapping scheme that are discussed later.
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Figure 6.11: Measurement scheme for mapping the magnetic field. The rotation angle of the
magnetometer is varied between 4 states, the sign of the applied magnetic field is switched,
and the linear position of the magnetometer along the scan axis is varied. All of these
parameters are randomized.

The measurement scheme is shown in figure 6.3.1. One magnetometer scan was per-

formed at a time with a given magnetic field configuration. The fluxgate magnetometers

that were used in this mapping have electronic offsets that are comparable to the fields

that are measured that drift slowly in time. This offset can be subtracted off by physically

rotating the magnetometer by π radians, or by reversing the sign of the magnetic field. The

effect of the offset drift can be transferred to signal noise by rotating the magnetometer or

changing the sign of the magnetic field on a timescale that is fast compared to that of the

drift and by randomizing the experiment parameters to transfer the drift into measurement

noise.

The magnetometer measurements were averaged over about 2 s and standard normal

uncertainties were assigned to each measurement. The rotation angle of the magnetometer
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was changed between 4 states varying by π/2 so as to subtract off the electronic offsets and to

interchange the orthogonal magnetometer axes to search for an effect of non-orthogonality of

the measurement sensors. After a full set of 4 rotation angle states, the sign of the magnetic

field would be reversed by changing the sign of the current running through the coil. In

between magnetic field sign states, the mu-metal shields were run through a degaussing cycle

in the absence of applied fields to remove the magnetization from the previously applied

field. After a full set of 2 magnetic field sign states, the position of the magnetometer was

changed. Measurements were taken over a range of 15 cm for scans in the y direction, 30

cm in the z direction and 40 cm in the x direction, and measurements were taken in steps

of about 1 cm. Each of the 3 parameters that were varied were randomized.

6.3.2 A Convenient Magnetic Field Model Obeying Maxwell’s Equations

Provided that there are no magnetic field sources in the in the spin precession region, then

the magnetic field should satisfy Maxwell’s equations in free space, ∇·B = 0, ∇×B = 0. In

this case, we may express the magnetic field as the gradient of a scalar magnetic potential

B = ∇Φ, so that the field automatically satisfies the curl condition, ∇×∇Φ = 0. Since our

coils were designed to apply Cartesian field components and first order Cartesian gradients,

then it is convenient to model the magnetic field as a polynomial in Cartesian coordinates

in which case the fit coefficients are the calibration coefficients. If we truncate the Taylor

series at order O, then we may write the magnetic potential fit function as

Φfit (~x) ≡
∑

1≤`+m+n≤O
a`mnx

`ymzn (6.4)

where a`mn are the fit coefficients and where the Cartesian magnetic field component along

p ∈ {x, y, z} can be obtained from Bpfit = ∂Φfit/∂p. The magnetic field must be constrained

by the divergence condition ∇ · Bfit = ∇2Φfit = 0 and hence Φfit must be a solution to the

Laplace equation. This condition leads to a series of linear constraints S`mn (~a) on the fit
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coefficients,

S`mn (~a) = (`+ 2) (`+ 1) a`+2,m,n

+ (m+ 2) (m+ 1) a`,m+2,n

+ (n+ 2) (n+ 1) a`,m,n+2 = 0. (6.5)

Note that this fit function constrained by the divergence condition has N = O (O + 2) free

parameters even though the total number of coefficients in equation 6.4 increases like ∼ O3.

From the magnetometry described above, we have a series of NB of magnetic field mea-

surements of the form
{
~xi, ~Bi, δ ~Bi

}
where the index i runs over all of the data points,

assuming that each position ~xi is known exactly, and each magnetic field measurement Bpi
is a normally distributed random variable with variance (δBpi )2. The maximum likelihood

estimate for the fit coefficients is obtained by minimizing the negative log likelihood func-

tion, which in this case is χ2. The divergence constraints can be accounted for by adding

Lagrange multiplier terms with coefficients λ`mn for each independent constraint to the χ2

function, and then minimizing χ2 with respect to both the fit coefficients ~a and the Lagrange

multipliers ~λ. We can write χ2 as

χ2 =
1

Ndof

NB∑

i=1

3∑

p=1

(Bpi − B
p
fit(~xi)

δBpi

)2

−
∑

`nm

λ`mnS`mn (~a) (6.6)

where Ndof = NB −N is the number of degrees of freedom. Since the gradient of χ2 with

respect to the free parameters ~a,~λ is linear with respect to these parameters, this problem

falls in the class of linear regression problems which can be solved efficiently by matrix

inversion, and the posterior distribution for ~a is jointly normal and is defined entirely by

maximum likelihood estimate of ~a and the covariance matrix. Note that the linear regression

problem with linear equality constraints is fairly ubiquitous and a general treatment may

be found here [104].

Since the fluxgate magnetometers have unknown electronic offsets, in the case of mea-

suring the residual magnetic field, Bnr, since the residual field cannot be reversed, then

the magnetometer axes that cannot be reversed are only known up to a constant. These

constants were included as additional fit parameters for the analysis of this field.
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6.3.3 Results and Systematic Errors

0

0.5

1

re
la

ti
v
e

 c
o

e
ff

ic
ie

n
t 

s
iz

e

 

 

(x/ℓ) (y/ℓ) (z/ℓ) (x/ℓ)(y/ℓ) (x/ℓ)(z/ℓ) (y/ℓ)(z/ℓ) 1
2!
(x/ℓ)2 1

2!
(y/ℓ)2 1

2!
(z/ℓ)2

Bz By dBy/dx dBy/dy dBy/dz dBz/dx dBz/dz

Figure 6.12: Comparison of the fit coefficients for the 7 field configurations that were
mapped. The “relative coefficient size”, plotted on the y-axis, is the absolute value of the
coefficient that multiplies the term on the x-axis in the polynomial expansion for Φ and
is normalized such that the largest coefficient for a given field configuration is 1. Here,
` = 3.5 cm is chosen to be a length scale that is characteristic of the size of the spin
precession region.

Using the linear regression model described in the previous section, the magnetic field

measurements were fit to O = 8 polynomial for field configurations intended to generate uni-

form fields By, Bz, and uniform gradients, ∂By/∂x, ∂By/∂y, ∂By/∂z, ∂Bz/∂x, and ∂Bz/∂z,
and used to measure the residual field Bnr. The relative size of the coefficients extracted for

each fit are shown in figure 6.3.3 for 9 lowest order terms in the expansion. An example fit

is shown for an applied ∂By/∂y field in figure 6.3.3. This map illustrates that the global fit

is generally pretty good and the data and the fit satisfy the divergence condition ∇ ·B = 0.

The residual background magnetic field, Bnr, was also mapped in our system and it was

found that the field is fairly constant with a value of about 33µG in the center of the spin

precession region with roughly equal components in each of the Cartesian directions as seen

in figure 6.3.3. From measurements of the static shielding factor of the magnetic shields,

we believe that the residual field is about 3 times larger than the effect of earth’s magnetic

field. The magnitude of the residual field and the gradient in the field is fairly comparable

to that observed in other shielding systems that use mu-metal [92, 160, 162] which tend

to be on the order of 10µG and exhibit gradients on the order of 10µG/` where ` is the

approximate size of the magnetic shields. To achieve a lower Bnr we would likely have to

actively apply a magnetic field to offset this residual one.

In the absence of systematic errors, using a fit that is constrained to satisfy Maxwell’s

equations gives higher sensitivity than applying an unconstrained fit of the same order.
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Applied ∂By/∂y Field Map
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Figure 6.13: Magnetic field map obtained when using the y-coils to apply a ∂By/∂y gradient.
Here, Bx is black, By is red, and Bz is blue. The points are magnetic field measurements,
and the lines are 1σ confidence intervals for the resulting fit with O = 8. The vertical dotted
lines denote the extent of the spin precession region.
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Applied Field
Fields (µG/mA) Gradients (µG/mA · cm)
By Bz ∂By/∂x ∂By/∂y ∂By/∂z ∂Bz/∂x ∂Bz/∂z

Best Fit Value 268.44 1201.89 17.04 5.82 20.26 1.17 7.56

Systematic Uncertainty (%)

Scan Position .013 .032 .61 .94 .46 .60 .82

Scan Center .037 .034 .54 1.0 .57 2.2 .76

Rotational Align. .013 .007 .09 .14 .06 .09 .21

Geometric Error .042 .048 .82 1.4 .74 2.3 1.2

Fit Error .058 .076 1.1 1.5 .91 .92 2.3

Table 6.1: Table of best fit values for the primary field coefficients extracted using the
Maxwell fit for each of the coil configurations that were mapped. Below is a comparison of
systematic uncertainties in the extracted coefficients with the fit output uncertainty. The fit
errors agree with the geometric errors within about a factor of 2. The dominant contribution
to the geometric error comes from uncertainties in the relative spatial alignment of the 8
scan axes.

However, in this work, the uncertainty is dominated by systematic errors due to deviations

between the data and Maxwell’s equations with typical reduced χ2 values on the order of

103. The fit residuals are not randomly distributed about zero, but rather hover consistently

away or oscillate about zero for a given scan axis and a given magnetic field component. If

we are confident that the model does fit the data well in the absence of systematic errors,

we can attempt to account for some of these systematic errors by rescaling the fit covariance

matrix by the measured value of χ2.

This method for accounting for systematic errors is not so elegant and in general it is

better to try to understand the systematic errors and then account for them. We believe

that the dominant systematic errors that contribute to the large χ2 originate from the

following geometric factors:

1. uncertainty in the relative position of the scan axes

2. uncertainty in the position of the center of the spin precession region along each scan

axis

3. uncertainty in the relative rotation alignment of the magnetometer axes for each scan

axis.

The relative scan axis positions are estimated to be known to within ±.25 cm from uncer-

tainties in the alignment procedure. The uncertainty in the relative rotational alignment of

the magnetometers is approximately ±10 mrad and is determined by the uniformity of the
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By and Bz fields that we can apply. By varying all of the geometric parameters, we deter-

mined the sensitivity ∂an/∂P of the fit coefficients an to each of the geometric parameters

P and estimated the resulting systematic uncertainties δan (P )by:

δa2
n (P ) =

[(
∂an
∂P

)2

+

(
δ
∂an
∂P

)2
]
δP 2. (6.7)

where δ∂an/∂P is the uncertainty in ∂an/∂P , and δP is the uncertainty in P . By observ-

ing the variation in the fit χ2 when varying each parameter P , it was observed that the

shifts in the parameters required to minimize χ2 were comparable to the previously stated

uncertainties in the geometric parameters.

The results for the best fit values for the dominant fit coefficients for each of the mapped

coil configurations, which may be used as calibration constants, are collected in table 6.3.3.

Here, the individual geometric systematic uncertainties are compared, and then the total

geometric systematic uncertainty is compared with the χ2 rescaled fit uncertainty. This

table shows that the fit uncertainty agrees with the estimated geometric systematic uncer-

tainty within a factor of ∼ 2× . This suggests that rescaling the fit covariance can fairly

reasonably account for this class of systematic errors.

Another possible source of systematic error could come from averaging over the volume

of the magnetometer. The magnetometer has a 2 cm diameter and a 5.5 cm length, so

variations of the magnetic field over shorter length scales than this will be smoothed by the

magnetometer thereby changing the measured magnetic field profile in a way that may not

satisfy Maxwell’s equations. However, the typical length scale for spatial variation of the

magnetic field is expected to be on the order of the separation between the magnetometer

and the sources of the magnetic field (the mu metal shields and the magnetic field coils),

which are a distance of about ∼ 40 cm away from the spin precession region.

A significant source of systematic error that does not contribute to the large fit χ2 is the

overall calibration factor for the magnetometer signal. The magnetometers were calibrated

within .5% by the factor, and using a set of Helmholtz coils we were able to confirm that

they were calibrated to better than 2%. This becomes the dominant source of systematic

error in the fit to the Bz field, but is comparable to the geometric uncertainties for most of

the other field configurations.
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Summary and Outlook

Slow is not the same as deficient. It’s
just slow. A glacier is slow too, but it
gets there, and nothing stops it.

Kim Stanley Robinson, Aurora

In this thesis, I have documented some of my contributions to the ACME experiment

during the a time period spanning roughly from May 2012 to May 2016 while I was in

residence at Harvard University where the experiment is located. During this time we

performed measurements of the electron’s EDM using the methods described in chapter

2 with the ACME I apparatus. During the course of these measurements we searched

for unforeseen systematic errors and carefully characterized those systematic errors that

were observed as described in chapter 3. This resulted in a measurement of the electron’s

EDM that was consistent with zero with more than an order of magnitude improvement

in precision relative to the previous best measurement [6]. In order to understand the

systematic errors that we observed in ACME I, so that we may suppress them and anticipate

possible new systematic errors in the ACME II apparatus, we developed analytic systematic

error models which are documented in chapter 4.

We then constructed a new apparatus, which is described in chapter 5, referred to as

ACME II, which introduced a series of improvements that increased the number of detected

molecules by more than a factor of 100×. In chapter 6 I documented a series of auxiliary

measurements that were performed both during ACME I and ACME II to to characterize

the electric field plate separation, the electric fields, the magnetic fields, and the molecule

beam velocity distribution.
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At the time of this writing, the ACME II apparatus is currently running at full statis-

tical sensitivity in the phase measurement and we are in the process of implementing the

experimental switch sequence required to perform the electron EDM measurement. So long

as there are no new significant sources of noise or large unanticipated systematic errors,

ACME II should be capable of making a measurement of the electron’s EDM with an order

of magnitude improvement in sensitivity relative to ACME I with a 1σ statistical uncer-

tainty on the order of δde ∼ 2× 10−30e · cm. If a non-zero electron EDM is observed during

the course of this new measurement it would constitute a direct observation of physics be-

yond the Standard Model and may shed light on how bariogenesis occurred in the early

universe. If the measurement is consistent with zero, a large new swath of SUSY parameter

space will be ruled out for the most popular variants of SUSY, as discussed in chapter 1.

Additional improvements to the sensitivity of the electron EDM measurement should

be possible for an ACME III apparatus that could follow the ACME II data runs that may

facilitate 1σ statistical uncertainties as low as δde ∼ 1× 10−31e · cm. These improvements

have not been discussed in the previous text and will only be briefly mentioned here. The

electron EDM sensitivity scales like δde ∝ 1/Eeffτ
√
ṄT , where Eeff and τ will remain the

same if we are to use the same metastable H state in ThO for future measurements, since

Eeff depends on the molecule state wavefunction and τ is currently limited by the lifetime

of the state. Hence future improvements in an electron EDM measurement with ThO will

come from either increased rate of molecule detection, Ṅ , or increased averaging time, T .

Possible future improvements to these quantities include:

• Thermochemical Beam Source: In ACME I and ACME II, molecules were gen-

erated in pulses at 50 Hz by nano-second ablation of a ceramic pellet of ThO2 in a

cryogenic buffer gas cell with an output aperture. An alternative beam source has

been developed by the Doyle group, spearheaded by Elizabeth, in which local laser

heating of a pressed pellet consisting of a mixture of ThO2 and Th in a buffer gas

cell results in a chemical reaction ThO2 + Th→ 2ThO that proceeds favorably above

2000 K. This beam source has been demonstrated to produce a factor ∼ 10× increase

in detected molecule rate relative to the ablation source.

• Increased Integration Time: In ACME I the data that contributed to the elec-

tron EDM measurement and the statistical uncertainty consisted of about 2 weeks of
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continuous data taking. However, the data that went into the systematic error and

uncertainty was taken over the course of about 6 months and many of our systematic

error contributions were limited by statistics. In ACME II we plan to operate the

experiment for a similar duration as in ACME I. However, in ACME III, we could

average for a much longer duration for the statistical run – maybe for 6-12 months

rather than 2 weeks – and if we focused only on characterizing known systematic

errors, we may be able to cut down significantly on the fraction of time required for

characterizing systematic errors.

With these two improvements a factor of 10× improvement in sensitivity to the electron

EDM may be achievable in ACME III relative to ACME II. Although the improvements

listed above are likely to be implemented in a future ACME measurement, the inclusion

of other improvements that are being pursued are not so certain. These other possible

improvements include:

• Increased Detected Solid Angle: In ACME II, we modified the molecular beam

collimation geometry and reduced the distance between the beam source and the

detection region so that a larger solid angle of the molecule beam could be detected.

Even further improvements in the detected solid angle could be achieved by moving

the buffer gas beam source much closer to the spin precession region (and possibly even

extending the cryogenic region into the magnetically shielded region). Alternatively

some improvement may be possible by focusing the molecule beam into the detection

region using an electrostatic lens.

• Increased Detection Efficiency: We have explored the possibility of detecting pho-

tons using Silicon Photomultipler (SIPM) devices which can provide higher quantum

efficiencies than the photomultipler tubes used in ACME I and ACME II. Addition-

ally, the detection scheme could be modified such that optical cycling is used to evoke

multiple photons per molecule or a high intensity pulsed laser could used to ionize

the molecules which could be detected with a multi-channel plate (MCP). In these

schemes, the molecules in the detection region may be detected with near unity ef-

ficiency. Such schemes would likely first require optical pumping of the projections

of the molecule spin state |ψ〉 in |H〉 onto two detection states |B(X̂), Ñ , P̃ = ±1〉
into opposite parity rotational states |X, J = 0, 2〉 and |X, J = 1〉. Then cycling or
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ionization can be performed with the resulting populations in |X〉.

We hope that with these continued efforts we may someday detect the electron’s electric

dipole moment. This elusive property continues to hold the promise of teaching us something

about that which we don’t yet understand about laws of nature and the measurements may

shed light onto how the early universe developed. Even if we don’t observe the electron’s

EDM in the near future, each incremental step constrains theories of new physics and brings

us closer to our goal.
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Experimental Control Software

It is exciting to discover electrons and
figure out the equations that govern
their movement; it is boring to use
those principles to design electric can
openers. From here on out, it’s all can
openers.

Neal Stephenson, Cryptonomicon

A.1 Programming in LabVIEW

The ACME experiment, for better or for worse, is married to LabVIEW for experiment

control operations. We have accumulated such a substantial library of LabVIEW code and

instrument drivers since the early days of the experiment that starting out again with a new

programming language would be impractical. However, it is not clear that we would want

to switch away from LabVIEW since it is one of the few programming environments that

facilitates fairly simple communication with external instruments and enables the creation

of decent and functional user interfaces for interacting with these devices without too much

work.

However, LabVIEW tends to evoke strong opinions, which is probably related to the fact

that it deviates significantly from the form of the traditional programming environments

such as that of C++ or Python. LabVIEW is a visual (rather than text based) programming

language that is intended to mimic the electronic circuits. A LabVIEW function (known

as a virtual instrument or VI) has inputs and outputs, and there are variables denoted by
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wires that link together LabVIEW VIs to perform operations on variables.

When beginning to program in LabVIEW, there are several commonly made mistakes

due to unfamiliarity with the LabVIEW programming environment. At their worst, Lab-

VIEW code looks like a mess of wires that became tangled and don’t have any hope of

becomming untangled. At its best, LabVIEW reads as a nested flow chart that both

performs operations and explains itself. Usually VIs fall somewhere between these two ex-

tremes. Here I provide some tips (that I have stumbled across the hard way) that help in

developping programs that fall on the better side of the spectrum of LabVIEW code.

A.1.1 Tips for Programming in Labview (learned the hard way)

1. Keep the code simple - do not allow a program to exceed the size of your computer

screen. If you have to scroll to connect the start and end-points of a wire, you are

making the program unreadable and difficult to edit. As soon as your program reaches

the size of the screen, bundle parts of the code that perform distinct operations into

sub-VIs.

2. Always comment your code. The best way to comment is to edit the icon of a custom

subVI and add 2-4 words which explain what that subVI does. Text comments on the

block diagram should not be overlooked, but the subVI icon aids in crucial in enabling

the code to double as flow chart.

3. Use error propagation for flow control (determining which parts of the code occur

before others in time) - avoid sequences if at all possible. If you do not wire errors,

and if an error does occur, your code will stop running altogether. Rather you would

generally like your code to continue running, resolve the error on its own, display the

error on a user interface, and log the error for future reference. If you use sequences

for flow control, the code will often run a little slower and the block diagram tends

to be a little bit bigger and less readable. Always include inputs and outputs for

errors on subVIs even if the VI does not use or generate errors since these inputs and

outputs are used to regulate flow control.

4. Use clusters to pass data between subVIs. Take all of the relevant variables in the

program, bundle those variables as a cluster, define that cluster as a strict type defi-

nition, and pass that cluster into and out of subVIs. By using the “bundle by name”
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and “unbundle by name” functions, every subVI will have access to all of the relevant

variables in the program and those variables can be called and set by using their

names. In addition, every subVI can have the nice standard form with a single cluster

input and output and a single error input and output (otherwise, attempting to input

many variables into a subVI looks like a spiderweb that is difficult to read).

5. Avoid using local variables - use property nodes instead to access data associated

with a given front panel object. The property nodes include error terminals that

allow you to include accessing variables in setting the flow control, and the property

nodes enable access to many properties of a front panel object - not just the “value”

which is obtained from the local variables.

6. You can manipulate front panel objects from a subVI within the program. It is not

the most elegant feature in LabVIEW, but doing this is often critical to bundling

parts of code into subVIs. This is achieved by inputing a front panel object reference

into a subVI, and getting or setting data associated with this object by using unbound

property nodes that are fed the front panel reference.

7. Avoid using local and global variables for communicating between loops within a

single VI or for communicating between different VIs on the same computer - instead

use notifiers or queues for data transfer. Queues are used if you have multiple sources

that are sending data to a single receiver, and Notifiers are used if you have multiple

receivers that need to receive every message.

8. It is usually useful to have two while loops in a given top-level program. One loop

contains an event structure that responds and interacts with the user through the user

interface. The second loop performs some operation such as saving data or talking to

an instrument, etc... The two loops usually communicate with a queue or a notifier.

A.2 The Logging System

A.2.1 Logging

The most important data acquired from the experiment is certainly that which is taken

when running the experiment; this includes photomultiplier traces and data from various
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sensors monitoring the state of the experiment. However, we also insist on logging the data

from the monitoring sensors at all times, although often at a slower rate. This data is

useful for quickly detecting and diagnosing problems with experiment hardware which is a

critical aspect of maintaining a high duty cycle for operating an experiment. This auxiliary

data can be easily overlooked in importance, but the incremental work for implementing

continuous data logging is small given that sensor monitoring must already be set-up for

the experiment, and the potential gains from such a system can be significant.

This philosophy has been actively adhered to by the ACME collaboration since the be-

ginning of the experiment. The original ACME logging system was constructed by Andrew

Speck (a post-doc in the Gabrielse group), and was maintained by Paul Hess (a graduate

student in the Gabrielse group). After both of these group members had moved on from the

collaboration, most of the knowledge of this system was lost due to scarce documentation,

so I sought out to revamp the logging system to ensure that the logging system would meet

our ACME Generation II needs and to ensure that the system was user friendly and well

documented. This section serves as documentation for the updated ACME logging system.

This logging system is set up with modularity in mind. Various programs on any given

computer can communicate with experiment sensors and acquire data. These programs

funnel data to the Logging Mediator which serves as a gatekeeper to the logging database

and ensures that any given channel is not overwhelming the database with too much data.

If the logging mediator is not running, or if communication between a client computer and

the database fails, the individual programs that communicate with the sensors will not fail,

but rather the data will just not be logged.

The logging data is assigned to a Logging Channel that corresponds to a time-series of

data that consists of timestamps (with millisecond resolution), and real float data from a

given experiment sensor. For each sensor, you must write a driver to communicate with and

acquire data (more details on this are given in section XX below). To set-up data logging

for this particular sensor adhere to the following instructions:

• Register this logging channel with the database. If you attempt to log to an

unregistered channel with the database, the data will be ignored and lost. There is

an easy-to-use LabVIEW form that you can use to register a Logging Channel that

can be accessed via the Logging Mediator VI on the Logging Status tab by clicking

on the Add Logging Channel button as seen in the upper left of figure A.2.1. A new
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Figure A.1: Adding a Logging Channel. Click the Add Logging Control button on the upper
left to open the Create New Logging Channel window on the right. After registering your
logging channel with the database, write a VI to acquire and log data. Please follow the VI
style guide shown on the bottom.
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window will open that will request information about this new logging channel which

is shown on the upper right of figure A.2.1. You should enter all of this information

and remember the specified channel name which is refer to your new Logging Channel.

If you have a new sensor with multiple outputs, then a separate channel should be

assigned to output, and the set of channels can be assigned to a new Logging Channel

Group. Logging Channel Groups make it easier to access data from multiple channels

at once.

• Create a VI that acquires the data and logs the data. A style example

for a logging VI is shown in the bottom of figure A.2.1. You should have a sub-VI

that communicates with and acquires data from a sensor (style examples for this VI

are included in the later section XX) and provides a timestamp that corresponds to

when the data was taken. This data should be fed to the Enqueue Logging Data VI

(available on the Logging menu palette with the image of a remote control on the

icon) with the appropriate channel name wired to the string input. This will send the

data to the Logging Mediator which will then decide whether or not to log the data,

and if so will insert it into the LogChannelData table on the LoggingLogData database

on the Gandalf SQL Server.

• Plot or Download Logging Data. Once the data acquisition and logging has been

set up for a given logging channel, you will want to access the data that is logged. In

the Logging Mediator VI on the Monitor Channel tab, there are drop down menus

to select a logging channel or a logging channel group, and there are corresponding

buttons to plot data corresponding to the selected channel or group. Upon pressing

one of these two buttons, a Logging Monitor window will open with a plot of data

from the last hour as shown in figure A.2.1. Controls on the upper left side of the

window allow you to modify the time range that is being plotted. The upper right side

of the plot allows you to save the data that is being shown in the plot to a designated

text file. If you would like to access a large amount of data, or would like to automate

the process of grabbing logging data periodically, you can set-up database access on

any computer using the ACME VPN and access data with scripts that I provide for

Matlab or Python as described in section XX.
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Figure A.2: Plotting Logging Data. Select a Logging Channel Group or a Logging Channel
using the drop down menus and then click the Plot Channel Group or Plot Single Channel
buttons on the left to open a Logging Monitor like the one shown on the right. The logging
monitor allows you to select the time period that you would like to plot and gives you the
option to save data to a text file.

A.2.2 Control State Data and Notifications

In addition to logging real float data from monitoring sensors, I have implemented a Control

State Logging system that serves to log the state of instruments that control the experiment

when there is a state change. In analogy to the data logging system described in the

previous section, Control Channels take the place of Logging Channels, and a discrete set of

control states replace the continuous real float data that is logged. Although the method for

logging by the Logging Mediator is entirely analogous, there is one major practical difference

between these two systems. The Logging Mediator continuously monitors the database (with

a period of 250 ms) for new control state changes and when it detects a state change, it

provides notifications in a textbox on the right side of the Logging Mediator window on

the front Logging Status tab (as seen on the lower left of figure A.2.2) and also sends these

notifications out in a LabVIEW notifier to any VI that may be listening. Programs can

be set up to listen for certain control state changes and can perform operations contingent

on receiving such notifications. By this method, the control state logging system can be

used as a remote control to send commands between computers on the logging system in
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Figure A.3: Adding a Control Channel. Click the Add/Edit Control button on the bottom
left to open the Add or Edit a Control Channel window shown on the top. Here, you
can add a Control by clicking on the “+” button next to the Control drop down menu.
Then you must assign Control State Groups, as seen in the “Groups” section, and then you
must add individual states as seen on the right side of the window. After states have been
selected, click “commit state list to database” to save the changes that you have made.
After creating a control, follow the VI style guide shown on the bottom right to create a
VI that logs control state changes and listens for other control state changes and performs
operations contingent on those perceived state changes.
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addition to keeping a record of the states of instruments in the experiment.

Follow the instructions below to take advantage of the Control State Logging system:

• Set up a Control Channel. You must register a Control Channel, its possible

control states, and the notification text that should accompany each state with the

database before inserting data into this channel. On the Logging Mediator VI on

the first tab Logging Status, there is a button with text Add/Edit Control. Clicking

this button opens a LabVIEW form that allows you to create control channels, control

states, and control state groups, and to assign allowed states to a given control channel.

On the upper left side of this window, you must specify a Room and Class that your

new Control Channel belongs to. To edit an existing control, select a control from

the “Control” drop down menu. To add a new control, click the “+” button next to

the control drop down menu and enter the new control name in the window that pops

up.

• Assign Allowed States to a Control Channel. Within the Add or Edit a Control

Channel window, you must assign states that are associated with your control. Each

control subscribes to and array of Control State Groups from which assigned states

can be chosen. These Control State Groups can be created and/or assigned to a given

control in the “groups” section of the window right below the “control” drop down

menu. You may also add, modify, or delete states within a given Control State Group.

Note that when you create a new state, you must specify a State Name and Notification

Text. When this state is called, the text that will appear in the notification textbox will

be of the form {date}{time}{control name}{notification text}. I like to ensure that

the combination ({control name}{notification text}) forms a readable sentence where

{control name} is the subject. Now that your desired states exist within Control State

Groups that are assigned to your control, you may assign specific states to the control

on the right side of the window using the “states” drop down menu array. There is

a boolean option named “notifications” next to the “states” drop down menu array

- I usually set this to true, but currently this option does not have any purpose. I

imagine in a future version of the logging system this option would be used to allow

states to opt out of displaying notifications, but in the current state, all states display

notifications. After assigning a state list, make sure to click “commit state list to
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database”. You can access this states list at any time by returning to this window

and selecting your control from the “control” drop down menu. In order to log or

listen for a given state, you will need to refer to the state by the unique “Index”

integer to the left of the “states” drop down menu array. This states list window is

useful when used as a look-up table for state indices.

• Create a Control VI that monitors and logs state changes. A VI style guide

for creating a control VI is shown in figure A.2.2 on the bottom right. Here there

are two loops - one is a user interface loop that contains an event structure and,

in this case, waits for a user to click a certain boolean button that changes that

state of an instrument in a subVI. When the button’s state changes, the new control

state is logged using the Enqueue Control State Data VI (which can be found on the

Logging Sub-Pallette and has a picture of a remote control and a little person on the

icon). The Enqueue Control State Data VI sends the data in a queue to the Logging

Mediator which decides whether or not to log the data, and if so inserts the data

into the LogControlStateData table in the LoggingLogData database on the Gandalf

SQL Server. The second loop listens for an array of possible notifications from the

database, and if it receives one of these notifications it will cause the boolean switch

to change state.

• View or Download Control State data. In the Logging Mediator VI on the third

tab View History there is button that says View Notification History and next to this

button is a drop down menu with a list of Controls. If you select a control and then

push this button, a new window will open that will display notifications from state

changes that correspond to the chosen control over a certain time period. The time

period that is displayed can be selected on the upper left of this window, and there

is an option to save this data to a text file on the upper right side of this window. If

a control channel is not selected, then this window will display notifications from all

controls over the designated time window. This data can also be accessed by querying

the database directly, which is described in section XX.
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A.2.3 Global Variables

The Gandalf SQL Server is also being used to share global variables among the computers on

the ACME network. This is simply a list of string variable names with corresponding string

data that is contained within the table GlobalVariables on the database LoggingConfigSQL.

Any computer can read or write values to each one of these variables at any time by using the

Get Global Variable and Set Global Variable VIs that are found in the logging subpallette.

You can also request or read multiple variables at once by using the Get Global Variables

and Set Global Variables VIs on the logging subpallette (using these array based VIs are

more efficient than using the scalar VIs in a loop because all of the queries on the database

are transferred in one packet). Unlike the Logging and Control State Logging systems, the

Logging Mediator does not mediate the database communications for Global Variables (this

is a relatively safe database operation since it does not increase the size of the database,

but only reads or updates a single existing entry).

Global variables serve as a fairly quick (as fast as 10ms) way to communicate between

two computers via the Gandalf SQL Server. For example, a Global Variable is used to sync

the operation of the FPGA DAQ acquisition with the setting of the experiment state in the

Master Run VI. The Master Run VI inserts a state name into a global variable. When the

FPGA DAQ receives traces, it reads the global variable, uses the information to save the

data to the appropriate file, and empties it in acknowledgment of receipt of the data.

Global variables can be also used to control the parameters of a remote operation.

Although the Control State Logging system enables software triggers to be sent for remote

control between computers, sometimes data needs to be shared between multiple computers

to elaborate on instructions for a given operation which can fulfilled by taking advantage of

global variables. For example, a doppler scan with a given locked laser can be triggered with

a control state notification. However, the number of points and the range of the frequency

scan is set by global variables.

A.2.4 Header Queue

The Header Queue is a database table named Header on the database LoggingConfigSQL.

I refer to it as a “queue” in analogy to a LabVIEW queue; the data from many experiment

sensors are inserted into the queue from several computers, and all of the data is removed

199



Chapter A. Experimental Control Software

from the queue periodically by the Master Run VI that uses that data to construct the

experiment header files. The transfer of data for insertion into the header is functionally

separated from the logging system for two reasons:

• We like to log data at a slower rate (about every 5 seconds) compared to the rate

at which we change the state of the experiment and log header files (about every .5

seconds). If these two operations were not functionally separated, we would have to

log about 10x as much data as we would otherwise.

• The logging database table grows in time and hence queries on that table become

slower over time. Since the header table is periodically emptied by the Master Run

VI, the Header table is small and maintained at roughly a fixed size averaged over time

such that the query speed against that table is fast and does not change significantly

over time.

I have been setting up the various experiment sensors to attempt to log data at the same

acquisition rate as the experiment (every .5 seconds) such that one entry per logging channel

will be contained in each header. When the experiment is not running, the sensors are

acquiring at the same rate but the logging mediator throws away data to enforce a logging

rate of once every 5 seconds. When the Master Run VI is turned on, a Control Notification

triggers the Logging Mediator on each computer to start inserting all logging data into the

Header Queue at the full acquisition rate. When the Master Run VI is shut off, data is no

longer inserted into the Header Queue.

A.2.5 Device Drivers

In the ACME experiment, we attempt to set up as many devices as possible to be controlled

via Ethernet over the ACME network so that these devices may be accessible from any

computer. However, most of the devices in the ACME lab are not directly controllable

via Ethernet, but rather controllable via RS-232, RS-485, GPIB, Fiber Ring, USB, NI

DAQ, etc... In general we use Comtrol DeviceMasters to control RS-232, RS485, and Fiber

Ring devices via Ethernet. The serial communications settings (baud rate, parity,stop bits,

terminating character, etc...) can be set from the Portvision software on Gandalf for each

port. We use NI GPIB-ENET devices to communicate with GPIB devices over Ethernet.

Note that a computer must have the GPIB-ENET drivers installed and must have each
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Figure A.4: Adding a Device. Click the Add/Edit Device button on the left to open the
window on the right. This form allows your to register the communication protocol and
address of a given device in the lab with the database.

GPIB-ENET devices registered with NI MAX with the appropriate name before you can

communicate over one of these devices. We have not yet found a way to make a USB

or NI DAQ device available for communication over the ACME network, so for the time

being, these devices are tethered to a given computer and can only communicate with that

computer.

Before you can communicate with a given Device on the ACME network, you must

register your device with the database. By clicking on the Add/Edit Device button on the

first tab Logging Status on the Logging Mediator VI, you can access a simple form that allows

you to register your device with the database as shown in figure A.2.5. You must assign a

unique Device Name to your device which will be used as the handle to communicate with

your device. You must also specify the Device Type (a new device type may be added using

this form, however if you have certain start-up and close VIs that must be run before you

can communicate with a device, then you must create your device type on Gandalf and you

must register the start-up and close VIs) the Bus the Room and you must enter an address

for your device. The form of the address fields will depend on the device type and the bus,

but in general we only have a few ways to specify the address. The easiest way to figure

out how to specify the address is to look at examples of devices already on the network

with the same protocol as yours and mimic the address form. For Ethernet and Comtrol

devices the primary address is the IP address of the device. For GPIB devices, the primary
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Figure A.5: Creating a Device Driver. After having registered your device’s address with
the database, follow this VI style guide to create a device driver for communicating with a
device. These VIs can be found on the GPIB subpalette.

address is the GPIB address integer. For Ethernet devices, there is no secondary address.

For Comtrol Devices, the secondary address correponds to the port number on the Comtrol

device. For GPIB addresses, there is usually not a secondary address except for the rare

case where a secondary GPIB address integer is required to specify the location of a device.

We have a set of robust LabVIEW VIs which have been tried and tested and work

for communication with devices with a variety of communication protocols - it is strongly

recommended that you use these VIs to write device drivers! These VIs are yellow and are

found within the “GPIB” subpalette, though the VIs do not apply only to GPIB devices.

If you do not believe that these VIs cannot accommodate the communication protocol that

you are using, then these VIs should be modified to do so. An example of an instrument

communication driver using these VIs is shown in figure A.2.5. Note that the the instrument

is designated only by the Device Name that has been registered with the database. The first

time you attempt to communicate with a device with a given Device Name, these VIs query

the database to determine the communication protocol and address of this device. Then

these programs cache the address information open a communication session with the device.

Once a communication session is open with a device, you generally cannot communicate

with this device from another computer until you manually close the communication session

using the “Close VISA Session” VI.

A common problem that arises when writing device drivers comes about due to improper
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reading from a device. If you attempt to read from an instrument and you specify an

incorrect terminating character, in some cases the device driver can hang (while continuously

probing this device, using a lot of the CPU!) for a few seconds and can cause all operations

on the computer to lag even if all of the data from the device was read within the first few

milliseconds to the operation. You should test your instrument drivers to ensure that this is

not happening and that you are reading from the device as quickly as possible. If the device

does have a long wait time before providing responses, you may want to put in a delay

between your write and read operations so that the computer is not using up resources by

continuously probing the device in the meantime.

A.2.6 Start-Up Protocols

When using LabVIEW to control an experiment, it is nearly inevitable that you will end

up with a myriad of programs each with its own window, each of which is necessary for

the operation of the experiment. Opening all of the necessary programs can be tedious and

adds to the start-up time of the experiment. To facilitate the start-up process, I have set-up

a system so that we can have an array of different start-up configurations that are specific

to certain computers in the lab. On the desktop of each experiment control computer I have

put a shortcut to the “Run VI Loader”. Double-Clicking on this icon will open LabVIEW (if

it is not already open), and will display a small window with a drop-down menu. From this

menu you can select the start-up configuration that you would like to initiate. After making

a selection the corresponding VIs will be opened and will start running if the start-up list

indicates that they should open on start-up.

You can add a new start-up list, or modify a start-up list for any computer in the lab

by clicking on the Add/Edit Start-Up List on the first tab Logging Status of the Logging

Mediator VI. Pressing this button opens a new window as shown in figure A.2.6. After

selecting a computer, you can select an existing start-up list from the “Start Up Config”

drop down menu, or you can add a new start-up list by clicking on the “+” button next

to the drop down menu. After having selected a start-up list, you can edit the list of VIs

that should be opened in the “Start-Up Configuration Details” box. There an array of “VI

Names” which are drop down menus with a list of all VIs that have been registered with

the database. The VIs are opened in order from the top of the list to the bottom of the

list. If you would like to add a VI to a start up list that is not yet in the drop-down menus,
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Figure A.6: Start Up Lists. Click the Add/Edit Start-Up List button on the bottom left
to open the window shown in the background. Here, you can create a list of VIs that will
automatically open and start running after clicking the “Run VI Loader” shortcut on the
desktop.

then you can add a VI to this list by inserting the path to this VI in “Add VI Path” on the

upper right of the window, and then you must lick the button “Add VI”. If the VI has a

complicated name, the VI may complain and give an error; if this happens, please make a

copy of the VI with a less complicated name and then add that VI path. After adding the

VI, it should show up in the drop down list of “VI Names”. After you are satisfied with

the start-up list modifications, click the large button that says “Update StartUp List” to

commit the changes to the database. If you don’t do this, your start-up list modifications

will be lost.

A.2.7 Doppler Scan Logging

Most of the data that we log fits nicely into the framework described in the Logging system

described in section XX. However, we have been logging a specialized format of data each

time we take a doppler scan that does not fit so nicely within that framework. Hence, I

created a specialized table DopplerScanData on the LoggingLogData database to accomo-

date doppler scan logging. If we find that we would like to be logging many types of “scan”
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Figure A.7: Doppler Scan Logging. By using the Insert Doppler Scan Into Database VI,
shown in the Logging subpalette on the bottom right, you can log doppler scan data. By
clicking the View Doppler Scans button on the top right, the window on the left will open
which will allow you to search, view, and save-to-txt doppler scans that have been inserted
into the database.

data, we can generalize the DopplerScanData table to accomodate these other scan types,

but at present we have no need to do so. Any program that takes doppler scans can log

the resulting frequency vs signal data on the database by using the Insert Doppler Scan

into Database VI that can be found in the logging subpalette that is shown on the bottom

right of figure A.2.7. The doppler scan data that has been save can then be viewed or

downloaded by going to the View History tab of the Logging Mediator and pressing on the

View Doppler Scans button. This will open a new window which will allow you to search

through the existing doppler scans by laser or date, and you can also view trends in the

center frequencies or widths of the doppler scans for a given laser in time.
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A.2.8 Quick Lab Notes

I found that I was often taking notes while in lab in my personal email account, and

searching my email later when I wanted to refer back to those notes. After thinking about

this system, I decided to formalize it and make it easier to implement with the Lab Note

functionality of the ACME Logging system. On the Logging Mediator VI on the first tab

Logging Status, there is a button that says New Note. Clicking on this button opens a Note

Editor window where you can specify the lab member who is writing the note, the title of

the note, and the text of the note as shown in figure A.2.8. I implemented an auto-save

feature such that if the window is open for a few minutes and there is text in the note,

it will automatically save the note to the database, and the program automatically saves

when closing the note. There are buttons at the top of the window which allow you to

quickly email the note to yourself and/or to other group members. You can also view and

edit previous entries by using the Lab Notebook which can be accessed by navigating to the

third tab View History in the Logging Mediator VI and clicking on the View Lab Notebook

button. This will open a window which at the top will display a list of previous entries.

You can filter the entries in the list by lab member or by category. By double-clicking on

an entry, it will open the text of the lab note in the text box below. By default, you cannot

edit the text of the lab notebook, but if you press the Allow Editing of Body button, you

can edit the note within the Lab Notebook. Alternatively, you can click the Open Note in

Editor button to load the selected note in an editor window for editing.

A.2.9 Error Handling

It is easy to overlook the importance of error handling in LabVIEW. However, as described

in the LabVIEW tips section, ignoring error propagation can physically stop your program,

whereas proper error handling will overcome the error and inform the user so that the prob-

lem can be fixed. I have implemented an error handling protocol for the ACME experiment

which makes proper error handling simple. In the logging subpalette, there is a VI named

Clear Errors and Log. This VI should be placed inside all while loops in your program at

the end of the set of operations for your loop as seen in the VI style examples in figures

A.2.1 and A.2.2. This VI sends the errors to the Logging Mediator where the errors will be

displayed in the same textbox as the Control State notifications. If the “Log Errors” button
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Figure A.8: Quick Lab Notes. By clicking the New Note button on the Logging Mediator,
a window like that on the right will open which will allow you to jot down some notes in
the lab and then save the note and quickly email it to yourself or to others. By clicking the
View Lab Notebook button on the bottom left the window in the background on the left
will appear that will allow you to search, view, and edit the existing entries.

on the settings tab is pressed, then these errors will also be logged in the LogProgramErrors

table on the LoggingLogData database.

A.2.10 Details on the Database Structure and Maintenance

We are constantly adapting the Gandalf SQL Server databases to suit our needs. Neverthe-

less, the more infrastructure that we build around the existing database model, the more

permanant it becomes. Hence, in this section, I will document the more permanant parts

of the database model for future use. There are two primary databases that are currently

in use:

• LoggingConfigSQL - contains mostly “configuration data” - this database is fairly

small in size and does not change significantly in size over time. You can read and

write fairly quickly to this database.

– Devices - a list of devices that are accessible via the ACME network with their

communication protocols and addresses

– LogChannels - a list of all of the logging channels along their properties such as
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the parameter type and units that are being locked

– LogControls - a list of the logging controls and their properties

– StartUpConfigs - a list of all of the registered LabVIEW start-up configurations

on all of the lab computers

– SwitchConfigurations - a list of all saved switch configurations generated by the

Configure Switch Sequence VI.

– Triggers - a list of all of the hardware trigger configurations that are being used

for the experiment hardware timing.

– Lasers - a list of all of the lasers in the lab along with their locations, locking

method, and wavemeter channel

– GlobalVariables - a list of global variables that can be read or modified by any

computer in the lab

– DefaultValues - a list of values for experiment parameters that should be used if

these parameters are not explicitly set.

• LoggingLogData - This database consists mostly of stored data, can be quite large in

size, and grows over time. Queries on this database can be fairly slow so this database

is mostly used for write-only operations.

– LogChannelData - a compilation of all of the logged data from the experiment.

– LogControlStateData - a compilation of all of the logged control state changes in

the experiment.

– LogLabNotes - a list of all of the saved lab notes.

– LogProgramErrors - a list of all logged program errors from various labview

programs.

– DopplerScanData - a list of all logged doppler scans.

– AblationMirrorPositioning - a map of where we have ablated on the ablation

target

– Header - a queue of logging data that is used to transfer header data to the

master run VI
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Since the LoggingLogData database is continuously increasing in size over time eventually,

old data will eventually need to be archived so that the database size remains managable.

After starting the LoggingLogData in August 2015, by October 2015 I found that simple

queries (SELECT MAX(TimeStamp) FROM LogChannelData) would require at least 10

seconds to complete, and larger queries would timeout. I found that this was happening

because there was no primary index on the LogChannelData so each time a query was

performed

A.2.11 Accessing the Database from Your Office Computer

The ACME logging system saves data in databases hosted on a Microsoft SQL Server.

Gandalf (10.16.1.2 on ACME Network, located in Jefferson 162) is the server on the ACME

Network and hosts the SQL Server as well. The logging VIs on the computers in the lab

communicate with this SQL server over the ACME network via LabSQL. However, we

would like to access the logging data from computers that aren’t necessarily on the ACME

network, and using programming languages that are not necessarily LabVIEW. Hence i am

providing instructions for setting up a connection between a computer and Gandalf, and

instructions on how to extract data from the database using Python and Matlab.

Gandalf is connected to the ACME Network and to the Gabrielse Network, and can

access the internet only through the Gabrielse firewall. We are using a VPN to connect

between computers on the internet and the SQL Server on.

Instructions:

• Install the VPN LogMeIn Hamachi (select unmanaged mode). Once installed, open

the program, and click on the button that looks like the ’on’ button for a computer.

This will connect the VPN to the internet and assign an IP address to the computer

on the VPN. You will be prompted to log into LogMeIn - you can use the experiment

credentials:

– edm.experiment@gmail.com

– (usual password)

• Once logged in, you should be able to click ’Join existing VPN’ with credentials:
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– VPN Name: ACME-Database

– VPN Password: (usual password)

• You should now be on the VPN, and the LogMeIn Hamachi window should show that

Gandalf.acme.harvard.edu is also on the VPN (if not, open the VPN on Gandalf). By

right clicking on Gandalf, you can choose to ping Gandalf to test the connection.

• You need to install the SQL Server Client 32 bit version or 64 bit version which will

allow you to make connections to an SQL server.

• Now, depending on the programming language that you are using, you will may need

to download some package to send commands and grab data from a database. I have

have able to do this in python and in matlab and will provide instructions for both:

Access via Python 2.7

• Download and install the package pyodbc (this is easily done by using the command

’pip install pyodbc’ in the command prompt)

• Follow the documentation for pyodbc to issue SQL commands to the database and

retrieve data. I have written some sample code and provide it here.

Access via MATLAB (>2013)

• Click on the MATLAB ’apps’ tab and click on the database explorer. If this is not

present then you will need to download the database toolbox. If it is present, then

it might prompt you to connect to an existing database, but since you don’t have

any configured yet, click ’cancel’. Click the down arrow on the ’new’ button at the

top of the matlab database explorer window, and then select ’new odbc data source’.

This will open a new window with a list of existing configured databases. Click ’add’

and another window will pop up asking you to select a driver for the connection.

Click ’SQL Server Native Client 10.0’ and click finish. Give this database connection

the same name as the database ’LoggingLogData’, and enter ’gandalf’ as the server.

Specify that you would like to connect with SQL server authentication with username

’sa’ and the usual password. Select the default database to be ’LoggingLogData’. Now

you should see ’Logging Log Data’ in the list of ODBC data sources. Add another
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source repeating each step but for the ’LoggingConfigSQL’ database. Now that these

databases are configured in Matlab, you can ’browse’ the data in the database. Since

most of the data is in a very large single table (LogChannelData), then this browser

is essentially useless, and you should find your desired data by using SQL in scripts.

• Now that the database connections are set-up you can follow the database toolbox

documentation to issue SQL commands to the database and retrieve data. I have

written some sample code and provide it here.

SQL Queries

• If you want to do something complicated with grabbing data, you will need to learn

some SQL commands. There are some simple tutorials online such as this one.

• If you just want to grab some data from a given channel between a certain set of

times, I have provided some python code here and some MATLAB code here.

WARNING

In the real world people work really hard to set up permissions to their SQL databases and

carefully regulate which clients have write and read access to different parts of the database

and try to keep the clients from doing stupid things. We have not done anything of the sort

and only have a single login to the database and so you have the full capability to access

and destroy all of the data. Here are some tips for interacting with the database:

• DO NOT DELETE DATA!!!

• Only insert data if you know what you are doing. Even if you know what you are

doing, do not overload Gandalf with insert requests - BE REASONABLE!

• DO NOT DOWNLOAD TOO MUCH LOGGING DATA!!!!! there is a lot of data

in gandalf and if you request all of the logging data, the server will probably get

overloaded for a while and might crash.

Good luck with your database access. If you want to add some functionality to the database,

please consult the database administrator (this is Brendon currently).

211

http://www.mathworks.com/help/database/ug/importing-data-from-databases-into-matlab.html
http://www.mathworks.com/help/database/ug/importing-data-from-databases-into-matlab.html
https://drive.google.com/open?id=0B6rsjQgDYmvXTWR3Sk84eTFjdTQ
http://www.w3schools.com/sql/
https://drive.google.com/file/d/0B6rsjQgDYmvXMWpqNUtOekhUeVE/view?usp=sharing
https://drive.google.com/file/d/0B6rsjQgDYmvXdThndmZPTWE4Umc/view?usp=sharing


Chapter A. Experimental Control Software

A.3 Experiment Control Software

A.3.1 Ablation Mirror Positioning

The Ablation Mirror Positioning VI allows you to control mirror motors that control the

pointing of the YAG ablation laser onto the ablation target in the buffer gas cell so that

the laser is addressing a new spot on the target. There is a set of 8 buttons that allow you

to move the mirror motors in 2d across the target on the upper left side of the program.

Finding a New Spot

AI for Automated Spot Finding

Integration with the Database

The Ablation Mirror Positioning VI is one special case of a program that interacts with the

database independent of the Logging Mediator VI. This VI first grabs the most recent x and

y positions of the mirror motors from a database global, and then it loads into memory all

of the data from the most recent MapID regarding previous ablation spot locations (x and

y), a timestamp for when the laser moved to that location, and a duration of time during

which the YAG was on file firing at that spot.

After switching between ablation targets, or after realigning the YAG ablation optics,

the current ablation map is no longer applicable and so a new map should be initialized.

This can be done by going to the ’configuration’ tab and clicking the ’New Target’ (which

will prompt you to specify which target you are now shooting at), or clicking the ’Realigned

Optics’ button. The data from the previous ablation maps remains saved in the database

after these operations for future access.

Troubleshooting

In case you are troubleshooting problems with the VI, here some suggestions:

• The Mirror Motors need to be reinitialized. The mirror motors sometimes

need to be re-initialized before they will work again. You can do this by clicking on

the ’initialize’ button on the ’settings’ tab. This will move the mirror motors to the

“zero” of the coordinate system, and then will return to the setpoint.
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• The assigned COM ports are incorrect. The mirror motors are controlled by

USB and are registered with the computer as virtual COM ports and sometimes the

computer will reassign a new number to the virtual COM ports. Go to the Device

Manager and determine the current COM port for the devices and then make sure

this matches up with the COM port assignments on the ’settings’ tab of the ablation

mirror positioning VI.

A.3.2 Beam Box Ablation and Timing

Beambox Controls and Limits

Experiment Hardware Timing

A.3.3 Main Current and Voltage Control

A.3.4 Configure Switch Sequence

The Configure Switch Sequence VI allows you to customize the experiment that you are

performing on any given day. You input the parameters that you would like to vary, whether

or not their should be a complete set of states with respect to this parameter, the values

that they should take on, and the way and the rate at which they should be varied and

then the program will generate a sequence that will be forwarded to the Master Run VI to

perform the experiment. A switch configuration consists of a list of Switch objects. These

objects contain information about how the switch should be performed and contains a list

of switch states to to step through. Switch states themselves can be Switch objects as well,

which leads to nested switch structures. I refer to the deepest nesting level as the “block”,

and the next nesting level as the “superblock”, and the next after that is an “uberblock”.

This switch structure can be represented as a tree where the leaves are the individual switch

states.

The code works with a custom Python class:

Switch(name,states,timescale,degeneracy,force_unique,configuration)

The input parameters are described as follows:

name – a name string corresponding to a given switch. the list of allowed names are

included in LoggingConfigSQL under the view called Switches. These names must not
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have spaces or special characters such as “—”, and must be correct, otherwise the

master run VI might throw an error.

states – a list of states. For binary switches this is usually just [−1,+1], but for continuous

parameters, this can be an arbitrarily long list of real numbers. In the case of nested

block, superblock structures, the states list can also include switch objects.

timescale – this is an integern ≥ 0 which indicates the timescale on which this switch

should live relative to the other switches. On any given switch nesting level, n = 0 is

the fastest switch timescale (unless no switch is assigned to n = 0 in which case the

fastest switch is the one with the smallest assigned timescale). Only the ordering of

the timescales matters, not the difference in their values (if we only have two switches,

with timescales 0 and 2, the behavior will be the same as if we have two switches with

timescales 0 and 1).

degeneracy – this is an integer n ≥ 1. This will indicate how much degeneracy there

should be in a given switch. If we configure an AB binary switch with degeneracy 2,

then a sequence ABAB will be generated before moving on to the next timescale.

force unique – this is a boolean (True or False). For a set of switches on a given nesting

level, we may want a unique set of all possible state combinations for those switches.

force unique indicates whether or not to include this switch in that set of switches

on which we will enfore the unique state condition on each nesting level. If two or

more switches are forced to be unique on the same timescale within the same nesting

level, then other instructions indicating the switch method are overconstraining the

problem. The code handles this by ignoring the specified switch configuration and

introducing randomness.

configuration – is a specially formatted list with two inputs. The first input is one of

the following strings: ‘sequence’,’random permutation’, ‘serial sequence’ or ‘random

sequence’.

• If the first input is ‘sequence’: the second input should be a 1D list of indices

corresponding to states that should be called. These states will be called in the

sequence provided.
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• If the first input is ‘random permuation’: the second input should also be a 1D

list of indices. The states that are called will be a random permutation of these

indices.

• If the first input is ‘serial sequence’ or ‘random sequence’: the second input

should be list of lists. When the sequence is called, it will step through each

sequence (for ‘serial sequence’) or it will randomly permute the sequences in the

list and and step through them (for ‘random sequence’).

• There are also some shortcuts so that you don’t always have to include a configuration

list of indices.

– configuration=’sequence’ is equivalent to configuration= [’sequence’, xrange(0,len(states))]

– configuration=’random permutation’ is equivalent to configuration= [’random

permutation’, xrange(0,len(states))]

– configuration=’ascend/descend’ is equivalent to configuration= [’serial sequence’,

[xrange(0,len(states)), xrange(len(states)-1,-1,-1)]]

– configuration=’in to out’ generates a configuration which starts in the middle of

the states list an alternates between states on the left and the right of center,

working its way to the outside of the list.

– configuration=’in to out and back’ generates a configuration equivelent to the

’in to out’ configuration, but then repeats the sequence in the reverse order the

next time it is called.

• if you have a binary switch, there are some additional options included for convenience,

– configuration=’AB’ is equivalent to ‘sequence’, configuration= [‘sequence’, [0,1]]

– configuration=’rand(A,B)’ is equivalent to ‘random permutation’, configuration=

[‘random permutation’, [0,1]]

– configuration=’ABBA’ is equivalent to configuration= [‘sequence’, [0,1,1,0]]

– configuration=’rand(AB,BA)’ is equivalent to configuration= [‘random sequence’,

[[0,1],[1,0]]]

– configuration=’rand(ABBA,BAAB)’ is equivalent to configuration= [‘random se-

quence’, [[0,1,1,0],[1,0,0,1]]]
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How to Create a Switch Sequence

This program is fairly sophisticated and as such, it takes a litttle while to learn how to

program it. It will probably suffice to load various sequence instructions from the database

into the “Configure Switch Sequence VI” and stare at the instructions and the resulting

switch sequence to understand intuitively the mapping between the two. Nevertheless, I will

provide instructions here for creating a switch sequence using the LabVIEW user interface.

When you open the program, an existing switch sequence will be probably be present. To

start from scratch on a new experimental switch sequence, you can click the Delete Sequence

button. All switch configurations that are generated are saved to the database so you don’t

have to worry about deleting someone elses configuration. Click the Add Switch button to

add a new switch parameter to the experiment. Note that a switch parameter doesn’t have

to have multiple states and can be static throughout the experiment. Clicking on this button

opens a new window which allows you to configure all of the switch properties described in

the previous section, except for the states list. There are drop-down menus to select the

switch name and the configuration types - as described earlier, for some configuration types

you must include a configuration list, but for others you need not.

After adding a switch, you must add states for that switch to switch amongst. You can

add these by hightlighting the switch that you would like to add states to by clicking on it’s

text and then clicking on the button Add Child State Array. This button will open a new

window where you can add a list of strings that correspond to states. There are shortcuts

on the right side of this window to populate the states array with binary switch states or

linearly varying real switch values. Note here that the states that you enter here must be

recognized by the subVIs in the Master Run VI that set that instrument states given the

experimental switch state inputs. You can repeat this process for several switches, which

would then constitute block switch sequence. To nest the switches to generate a superblock

switch sequence, you can click the Nest All Switches button. If you want a given parent

switch to switch between multiple child switches, you can highlight the parent switch and

then click the Add Child Switch button, which will open the switch configuration window

again, and will create a second switch so that the parent switch can switch between two

switch configurations.

Click the Generate Sequence From Configuration button to create a sequence. After
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doing so, the status indicator should show that the program is working and then after a

few seconds, it should generate a new figure on the right side of the VI which schematically

shows the new sequence that has been generated. The sequence instructions have also been

saved to the database and can be recalled at any time.

Save a Sequence or Access an Existing Sequence

When generating a sequence from a new configuration, the program automatically saves the

configuration instructions to the database as an unnamed switch configuration. You can

also deliberately save a configuration to the database with a name and a descriptions (so

that it is easy to recall and load later) by going to the Save/Load from Database, entering

a sequence name and description and then clicking the Save Current Configuration button

on the right side of the tab control. On the left side of the tab control you should now be

able to find your sequence in the Named Sequence drop down menu. Later you can select

this option and click Load Named Config to load the switch configuration that you have

made. If you are searching for a sequence that you did not explicitly save, you can check the

Autosaved Sequences from the Last Week drop down menu. Here, it refers to configurations

only by the date and time they were autosaved.

A.3.5 Master Run VI

The Master Run VI is the program that controls the experiment when it is running. Within

this program there are three while loops:

1. User interface loop - for interacting with the user via an event structure.

2. Experiment loop - to perform the experiment, and the stop the operation of the

experiment when instructed to.

3. Header Saving Loop - to asynchronously aggregate and save the header data (which

contains information regarding the experiment parameter set-points and measure-

ments during a given spin precession measurement) to disk.

I will first describe the operation of the experiment loop and i will mention when there is

experiment behavior that can be modified by the user via the user interface loop.
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Figure A.9: View of the various tabs in the front panel GUI interface to the Master Run
VI program.

Figure A.10: Main experiment control loop (top), and Header saving loop (bottom) within
the Master Run VI program.
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Figure A.11: Detail showing the code of the Switch Instrument Parameters Sub-VI and
Sub-VIs within this function.
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Figure A.12: Detail showing the code within the Decide How to Continue Sub VI within
the Master Run VI.

Description of Experiment Loop

1. Wait for User - When the program starts running, the program operates this function

that waits for a command from the user to start the operation of the experiment.

Whenever the experiment is not running, the experiment loop should be hanging in

this function. This periodically checks the user interface notifier for notifications.

2. Grab New Sequence - When the program has finished running, or if the previous

experiment sequence has finished, this function grabs a new experiment sequence

from the ’generate switch sequence’ queue. This queue is stocked by the Configure

Switch Sequence VI which must be running in the background with the appropriate

experiment switch configuration in order for this feature to work.

3. Measure Duty Cycle - This function updates its measurement of the experiment duty

cycle. This averages over a fixed number of iterations of this loop that is specified

by an interger “# avg for duty cycle display” in the Settings tab. The duty cycle is

displayed by a sliding bar on the Control tab.

4. Switch Instrument Parameters - This function sets the experiment state for the current

spin precession measurement. This function determines which instrument parameters

need to be varied, and varies them. Within this VI there are a series of functions:
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(a) Get Default Parameters SQL - Grabs all of the default parameters for the exper-

iment parameters that can be varied from the database if the default parameters

did do not currently exist in the experiment loop bundle. This grabs from the

DefaultValues table in the LoggingConfigSQL database.

(b) Get Switch Values - Grabs the values for each experiment switch for the current

experiment state from the experiment switch sequence.

(c) Resolve Parameters - Takes all of the default parameters and replaces all of

the default values with the current switch values for the parameters that are

currently being switched. Now we have all of the parameters that we need to set

the current state of the experiment.

(d) Parameters 2 X - This is a group of Sub-VIs that are run in parallel to convert

from the experiment switch parameters to instrument parameters. Currently

we have a Sub-VI for the magnetic field current controls, electric field voltage

controls, the waveplate rotations state controls, and the AOM frequency shift

controls.

(e) Combine Instrument Parameters - This function merges the array of instrument

parameters that must be set into a single array.

(f) What Changed? - This function determined which instrument setpoint values

changed between the last experiment state and the current experiment state. All

of those instrument parameters that have not changed will not be set in thie

round of setting instruments.

(g) Create Switch Table - This function creates the table that is displayed on the

Control Tab of the front panel of the Master Run VI that indicates which pa-

rameters or instruments are being switched, their current values, and whether

their value changed during the last switch.

(h) Switch States - This is the function that actually sets all of the instrument pa-

rameters for the current experiment state. Here, I will describe the operations

performed within this function. This function takes in the instrument parame-

ters that have changed and hence must be set and their values. This function

also takes in data that is set on the Switch Properties tab of the Master Run VI.

This data specified which sets of parameters should be allowed to switch, and
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if so, what delay time to provide when switching one of these parameters. For

example, after we set the electric fields,we typically wait for about 50 ms for the

electric field to settle before allowing the experiment data taking to continue.

Similarly, we wait at least a second for the magnetic field to settle after setting

the magnetic field state. This function additionally monitors the switch time

required for each set of instruments, and monitors the total switch time. The

switching of the states is the dominant determiner of the total duty cycle and

the switching times are displayed on the Switch Properties tab and are saved to

the header files.

5. Send Trace Name - This function creates the “name” for the given experiment state.

An example of a trace name is something like “0001.0122.0002.0039.0”. The way

to read this from left to right is in terms of indices regarding possible experiment

timescales from slowest to fastest: {run index}.{sequence index}. ... .{block in-

dex}.{state index}.{try index}. The “try index” is a feature that is not currently

used, but could be implemented in the future. If we modified the program such that

is could retake experimental states if there was a detected problem with a given mea-

surement, then we could advance the “try index”. The length of the name depends on

the amount of nesting in the experiment switch sequence (whether the highest level

is at the block, superblock, uberblock, etc. level). This function “sends” this trace

name to the Data Acquisition computer via the GlobalVariables table in the database

before data acquisition begins. This ensures that we know which PMT traces, which

are saved by a separate computer, are sychronized with the corresponding header files,

saved on this computer.

6. Send Trigger - this function sends a digital pulse of duration of the averaging time

for a single trace (currently specified to be .5 s). This digital pulse is mixed with

the scope acquisition trigger that produces pulses as 50 Hz sychronous with the laser

ablation with a time-offset set by the Timing VI. This will trigger the FPGA scope the

appropriate number of times for the current experiment state. FPGA has acquired

the correct number of traces, it clears the trace name from the GlobalVariables table

to signal that the acquisition is complete.

7. Decide How to Continue - This function continually checks to the database for the
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prevously described signal that the data acquisition for the current state is com-

puter, provided that “wait on DAQ comp. for ack.” is checked on the Settings tab.

This should always be checked for normal experiment operation, and should only be

unchecked for testing purposes. This function then checks the user interface notifier

to see if the user requested any changes to the operation of the experiment (whether

it should be paused, or whether it should tune up some parameter, or whether the

instrument default parameters need to be refreshed from the database).

8. Send Data For Header - This function takes the experiment switch parameters, the

instrument setpoint parameters, the measured switch times, and the starting time

and ending time to the current state, and sends that information to the Header saving

loop via a queue. The header saving loop continually acquires logging data via the

database and matches up data that was acquired in the appropriate time range with

experiment states. The header saving loop is operated with a delay with respect to the

main experiment loop to ensure that the header saving loop doesn’t miss any relevant

data that might be a little slow to be transferred via the database to the Master Run

VI. This header delay time is set on the Settings tab, and the defauly is currently a

second.

9. Tune Up Time - This function performs experiment parameter tune-ups if those tune-

ups are scheduled to happen at this point in the experiment. Note that this function

purely calls other programs to perform operations and waits for them to respond

indicating that the operation was complete. If the operation does not complete, the

tune-up will timeout with a specified timeout time. The parameters that are scheduled

to be tuned up, the periodicity with which that are being tuned up, and their time-

out values can be viewed in the Tune-Ups tab that is under the Settings tab. There

is a form for modifying the tune up schedule on the Actions tab under the Settings

tab. Currently the available “Tune-Ups” are doppler scans for various lasers, and

finding a new ablation spot. In the future, we would like to implement pointing

measurement and correction for the lasers as a “Tune-Up”. The list of tune-ups and

how they operate is controled by the TuneUpControls table on the LoggingConfigSQL

database, or can be viewed in the view TuneUpControlsInfo. These Tune-Ups have

a name which is mapped onto a certain LogControl, and LogControlStates that are
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issued as notifications to initiate a tune-up, and indicate that a tune-up has completed

or failed.
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Appendix B

Laser Spectrum Shaping with

Random Phase Modulation

This work describes a method of creating arbitrary shapes of the power spectral density of

a laser using random radio frequency phase modulation. First, it is shown that the space of

all power spectral densities that can be achieved by phase modulation is a small subset of

the space of all possible power spectral densities. Then, the phase waveform is expanded as

the arctangent of a fourier series with random, gaussian distributed coefficients. It is shown

that in the limit that the phase modulation simulates digital modulation of the amplitude,

the power spectrum of the wave closely resembles that of the input fourier series, but there

remains a high frequency tail in the power spectrum that falls off like ω−1 or faster and is

suppressed compared to the main feature by at least an order of magnitude.

B.1 Introduction

Phase modulation has been used extensively to sinusoidally dither the central laser frequency

with phase waveform φ (t) = β sin (ωt) using electro-optic modulators (EOMs). In the limit

of small modulation depth, β � 1, then in the fourier domain, the spectrum consists

mostly of 3 discrete bands: the carrier and two sidebands, which are spaced by frequency

ω0 from the carrier, which have a fixed phase relationship. If this laser light is introduced

into a system with resonances, then the sidebands lead to intensity beating at ω0 or some

harmonic of ω0. This principle has been used with great success in many atomic, molecular

and optical systems, with some of the most widespread applications being FM spectroscopy
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and Pound-Drever-Hall laser locking. The previously mentioned applications require the

fixed phase relationship between the laser modes, but in other applications, EOMs have

been used to simply broaden the laser spectrum. For example in the laser cooling of SrF,

several hyperfine levels were addressed using several of EOM sidebands for β ∼ 1.

Phase modulation has generally been limited to sinusoidal modulation because conven-

tional EOMs require resonant circuits to achieve modulation depths up to β ∼ 1, but can

only do so in a small frequency range on the order of 1−10 MHz. Fiber EOMs on the other

hand can bypass the typical restrictions. They use waveguides rather than resonant circuits

to increase the useful bandwidth to tens of GHz, and the nonlinear crystal can be made to

have a diameter on the order of µm rather than mm since it is situated inside of an optical

fiber that allows for large modulation depths, β > 1. This work discusses broadband phase

modulation with fiber electro-optic modulators to broaden and shape the laser spectrum in

the RF regime.

B.2 Phase Modulation is Not Almighty

Consider the electric field component, E (t), of a laser beam of a single frequency, ωc, with

polarization ε̂. We send this beam through an EOM across which we are applying a voltage

waveform V (t) that results in phase modulation φ (t) = πV (t) /Vπ of the beam (where Vπ

is a constant that is a property of the crytal material in the EOM).

~E (t) =Re
{
ε̂E0e

−iωct+iφ(t)
}

(B.1)

Given that ωc is a THz laser frequency and the bandwidth of an EOM is typically in the

RF and can be as high as the microwave regime, then φ̇ (t)� ωc. Hence, the components of

the fourier spectrum with positive and negative frequencies do not interfere, and are mirror

images of each other. It will be sufficient to characterize the light field spectrum in the RF

viscinity of ω = −ωc, from which we can infer the light field spectrum in the RF viscinity

of ω = +ωc.
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B.2.1 Unitary Complex Amplitude

I will consider a complex time varying amplitude (in the rotating frame, rotating at angular

frequency ω = −ωc) of the form:

A (t) =eiφ(t) (B.2)

which I can express as a continuous fourier series,

A (t) =

∫ ∞

−∞
dω e−iωtA (ω) (B.3)

Here, the power spectral density is simply S (ω) =
〈
|A (ω)|2

〉
, where the brackets indicate

to average over all possible waveforms weighted by the probability of those waveforms, if

A (t) is a random process.

Since there is only phase modulation, and no amplitude modulation, then the complex

amplitude has the unitary property, |A (t)|2 = 1. This puts a serious constraint on the

fourier transform function,

∫ ∞

−∞
dωA (ω + Ω)A∗ (ω) =δ (Ω) (B.4)

This says that the fourier transform must be translationally orthogonal to itself in frequency

space. Similarly, if we have a discrete frequency spectrum with frequencies spaced by ω0,

then we can write the fourier transform as:

A (ω) =
∞∑

n=−∞
Anδ (ω − nω0) (B.5)

in which case, the unitarity constraint yields:

∞∑

m=−∞
An+mA∗m = δn,0 (B.6)

B.2.2 Satisfying Unitarity is Not a Trivial Task

Any phase modulated waveform must have a spectrum that obeys equation B.4 (or equiv-

alently equation B.6 in the discrete case). Lets consider one simple example to show how

this constraint can be fulfilled. In the case of sinusoidal phase modulation, φ (t) = β sinωt,
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we can use the Bessel function expansion to obtain a fourier series,

A (t) =eiβ sinωt =
∞∑

n=−∞
Jn (β) einωt (B.7)

In terms of the notation used in equation B.5, the fourier series can be written as An =

Jn (β). The discrete unitarity constraint requires that:

∞∑

m=−∞
Jn+m (β) Jm (β) =δn,0 (B.8)

which arises naturally from Bessel addition theorem,

∞∑

m=−∞
Jn+m (x) Jm (y) =Jn (x− y) (B.9)

and the property that Jn (0) = δn,0. Hence, the resulting spectrum from sinusoidal phase

modulation satifies B.4.

B.2.3 Phase Modulation Needs Breathing Room

Now, suppose that I wanted to determine a waveform φ (t) such that A (ω) would be non-

zero only in a finite frequency range. Let us first consider the discrete case in which the

spectrum has a finite number N of added frequency bands, in addition to the carrier (N +1

total frequency bands). In this case, the unitarity constraint is:

N−n∑

m=0

An+mA∗m = δn,0 (B.10)

This constitutes a system of N + 1 equations with N + 1 complex free parameters. For

n = N 6= 0, the sum has only 1 term, ANA∗0 = 0, which forces us to elliminate one of the

bands on the boundaries of the spectrum to satisfy it. We now find that our range has

been reduced from N + 1 to N bands. We can perform this procedure interatively to find

that the only spectrum with a finite number of frequency bands that satisfies unitarity is

the case in which there is only 1 frequency band, An = δn,0, which results from the absence

of phase modulation altogether, φ (t) = 0, or from linear phase modulation, φ (t) = ωat for

some ωa.
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We can similarly show that the same applies in the continuous frequency picture, but

the proof is not as obvious. If we constrain our spectrum to the range ωa < ω < ωb, then

we have the unitarity constraint, for Ω > 0,

∫ ωb

ωa−Ω
dωA (ω + Ω)A∗ (ω) =0 (B.11)

We can zoom in on the boundary ω = ωb, such that Ω = ωa − ωb + ε. Assuming that A (ω)

varies smoothly close to the boundary such that A (ω) varies negligibly over the small but

finite range ε, then we can taylor expand about small ε resulting in εA (ωa)A∗ (ωb) = 0.

Just as before, this equation requires us to perpetually narrow our range until it becomes

an infinitesimal sliver.

B.2.4 Spectral Symmetry

Let us assume that φ (t) is a stationary random waveform (the probability distribution that

governs the waveform P (φ (t)) = P (φ), is independent of time, and hence the moments,

〈φn (t)〉 = 〈φn〉 are also independent of time). In this particular case, we can solely obtain

power spectra that are symmetric about ω = 0, S (ω) = S (−ω). I can write this relation as

〈∣∣∣∣
∫
e−iωt+iφ(t)dt

∣∣∣∣
2
〉

=

〈∣∣∣∣
∫
e−iωt+iφ(t)dt

∣∣∣∣
2
〉

(B.12)

then taylor expand about φ (t) = 0 to all orders, reverse the order of integration for one of

the integrals, dt→ −dt, and then we find that it is satisfied if

〈
φn (t)φm

(
t′
)〉

=
〈
φn (−t)φm

(
−t′
)〉

(B.13)

for all m,n, t, t′. This is clearly satisfied since the probability distribution governing φ (t) is

indepent of time.

However, that is not to say that it is difficult to obtain spectra with different symmetry

properties. For example, if we phase modulate with the random waveform with an added

linear component in time, φa (t) = φ (t) + ωa t, then we will similarly find that the power

spectrum is symmetric about ω = ωa, S (ω + ωa) = S (−ω + ωa). For a phase modulation

to which we have added a nonlinear component in time, φb (t) = φ (t) + (ωbt)
n, such that n

is a positive, odd integer such that n ≥ 3, the power spectrum will be strictly nonsymmetric
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about any frequency, S (ω + ω′) 6= S (−ω + ω′) , ∀ω′. Additionally, there is the possibility

of giving the probability distribution P (φ (t)) time dependence for which it is not very

difficult to create asymmetric power spectra. For the remainder of this paper, I will only

consider stationary random phase modulation like that of φ (t).

In this section, we have been able to deduce three things about power spectra resulting

from phase modulated signals:

1. The space of all possible power spectra obtained through phase modulation does not

span the space of all possible power spectra, but is rather only a small subset of it.

2. Phase modulation leads to a power spectrum that cannot be confined to a finite

frequency range.

3. For processes that produce stationary random phase modulation, the resulting power

spectrum is symmetric about ω = 0, S (ω) = S (−ω).

B.3 Shaping the Power Spectrum

Although we cannot create any shape of power spectrum that we may desire using phase

modulation, there are ways by which we can closely approximate many shapes, if we can

tolerate a power spectrum pedestal that is suppressed by one or two orders of magnitude

compared to the main feature.

I propose the following approach. Write down a function of time x (t).

x (t) = xrms

∫ ∞

0
dω ϕ (ω) sin (ωt) (B.14)

such that the fourier amplitudes ϕ (ω) are random variables with zero mean, 〈ϕ (ω)〉 = 0

that are gaussian distributed. The probability distribution for selecting ϕ (ω) is P (ϕ (ω)),

P (ϕ (ω)) =
1

σ (ω)
√

2π
exp

{
− ϕ2 (ω)

2σ2 (ω)

}
(B.15)

such that σ2 (ω) is the ideal spectrum that we would like to map onto our laser power

spectrum. This function is normalized such that,

2 =

∫ ∞

0
σ2 (ω) dω (B.16)

230



Chapter B. Laser Spectrum Shaping

With this normalization, xrms is indeed the root mean square value of the waveform x (t)

(where the root mean square value is defined by xrms =
√

1
T

∫ T
0 dt 〈x2 (t)〉 ). Then, we can

apply phase modulation with the signal,

φ (t) =arctan (x (t)) (B.17)

Examples of the phase modulation signal for various values of xrms are shown in figure B.3

for a top hat power spectrum, σ2 (ω) = 1
ω0

(0 < ω < ω0) (in this notation, the inequality

takes on a value of 1 when true and a value of 0 when false). In the limit that xrms � 1, the

phase waveform is equal to the fourier transform waveform, φ (t) ≈ x (t), and in the limit

that xrms � 1, the phase waveform looks like a digital waveform, taking on two discrete

values, φ (t) ≈ π
2 sgn (x (t)).
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−5time (s)
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Figure B.1: Examples of the phase waveform φ (t) for various values of xrms. Here, the
Carrier frequency ω0 = 2π · 1 MHz. From top to bottom, xrms = 10−1, 100, 101, 102, 103.
The peak to peak amplitude of the bottom plot is π radians, setting the scale for the plot.

For this phase modulation signal, we obtain a simple relation between the complex

amplitude and the signal x (t),

A (t) =
1 + ix (t)√
1 + x2 (t)

(B.18)
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In the limit that xrms � 1,

A (t) ≈ 1 + ix (t) (B.19)

we obtain the desired spectral shape since the amplitude is proportional to x (t), however

the large majority of the power is still in the carrier band, a delta function spike at the

origin,

S (ω) ≈ δ (ω) +
1

4
x2
rmsσ

2 (|ω|) (B.20)

where the power spectral density of the complex amplitude is normalized such that
∫∞
−∞ dω S (ω) =

1.

In the limit that xrms � 1, then

A (t) ≈ i sgn (x (t)) (B.21)

In this case all the power is in the new spectral feature, however, the sgn function has

added ’sharp corners’ to the waveform in the time domain, which manifests itself as the

introduction of a high frequency tail in the power spectral density. The signal now resembles

that of a digital signal.

In this limit, I can represent the amplitude as a series of digital pulses,

A (t) =i

[
2
∞∑

k=−∞
(t2k < t < t2k+1)− 1

]
(B.22)

such that tk > tk−1 for all k and tk are the zeros of the random waveform, defined by

x (tk) = 0.

The fourier transform of the complex amplitude is

A (ω) =i

[
2
∞∑

k=−∞
eiωTk δtk sinc

(
ωδtk

2

)
− δ (ω)

]
(B.23)

which is a sum of many interfering sinc functions, with widths that depend on the spacing
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between the zeros,

Tk =
1

2
(t2k+1 + t2k) (B.24)

δtk =t2k+1 − t2k (B.25)

If the ideal power spectral density, σ2 (ω) is confined to a finite frequency range, 0 < ω < ωa,

then the minimum possible spacing between the zeros would correspond to δtk = 2π
ωa

, and

the power spectral density for |ω| > ωa would be likely dominated by sinc
(
π ω
ωa

)
∼ ω−1.

Hence, in the worst case scenario, the power spectral density of the complex amplitude

would fall off with ω−1 just beyond the desired spectral feature, but the power spectrum

could in principle fall off more quickly.

This method of phase modulation proposed above gives nearly the correct power spectral

density for all xrms, but the ratio of power in the carrier to that in the added spectral feature

changes with xrms, and as xrms � 1, then we obtain a high frequency pedestal that falls

off faster than ω−1. As an example of this method, I choose the top-hat spectrum, for

which σ2 (ω) = 1
ω0

(ω < ω0). The resulting power spectral densities obtained from phase

modulation are shown in in figure B.3 for various values of xrms. Here the spectrum is

shown on both linear and logarithmic scales. On the linear scale, we can clearly see that in

the limit that xrms � 1, σ2 (ω) ≈ S (ω). The logarithmic scale shows the unwanted power

law pedestal that lies just one order of magnitude below the desired feature. It also shows

that for all values of xrms, the desired spectral feature is present, but with a varying ratio

of power in the carrier to power in the spectral feature.

This method of spectral shaping is not limited to to the top hat spectrum, but can rather

be applied to create a large variety of spectral shapes. Figure B.3 shows some triangular

and pyramidal power spectral densities as an example.

B.3.1 Getting the Amplitude Right

If you are correctly keeping tabs, in the limit of xrms � 1, the phase is almost discretely

jumping between values of ±π/2. This requires choosing the correct amplitude of the phase
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Figure B.2: Resulting spectrum for σ2 (f) = (|f | < f0) for varying xrms. From top to
bottom, xrms = 10−1, 100, 101, 102 103, 104. On the left the power spectra are presented
with a linear scale (note that each of the plots have been normalized to have the same
height). On the right, the same power spectra are presented on a logarithmic scale (but
here there is no normalization; the scales for each plot are the same).
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Figure B.3: Left: Triangular Spectra: from top to bottom, resulting power spectral

densities for σ2 (f) = 4
f0

(
1− f

f0

)
, σ2 (f) = 4f , σ2 (f) = 4

f0

∣∣∣2ff0
− 1
∣∣∣, which are non-

zero only for f ∈ (0, f0) for each. Right: Pyramidal Spectra: from top to bottom,

σ2 (f) = 2
f0

(0 < f < f0), σ2 (f) = 2
(

3
4f0

){
(0 < f < f0) +

(
0 < f < 1

3f0

)}
, σ2 (f) =

2
(

5
9f0

){
(0 < f < f0) +

(
0 < f < 3

5f0

)
+
(
0 < f < 1

5f0

)}
.

234



Chapter B. Laser Spectrum Shaping

waveform. Suppose that I modulate between ±π
2 (1 + ε) for ε� 1, then

A (t) =exp (i (1 + ε) arctan (x (t))) (B.26)

≈ 1 + ix (t)√
1 + x2 (t)

(
1 + ε arctan (x (t)) +O

(
ε2
))

(B.27)

(B.28)

In the limit that xrms � ε, the imperfect amplitude helps us,

A (t) ≈1 + (i+ ε)x (t) (B.29)

but in the limit that xrms � 1, this small imperfection ε can become troublesome,

A (t) ≈ iεπ
2

+ isgn (x (t)) +O
(
ε2
)

(B.30)

in that it leads to a delta function spike at the origin of the power spectrum whose size is

proportional to ε2.

B.3.2 Shaping a Finite Width Laser

For systems in which the width of the desired spectral feature is comparable to (but nec-

essarily larger than) the initial starting spectral width of the laser, then we can no longer

neglect the finite width of the laser. In this case, the power spectrum resulting after phase

modulation, S̃ (ω), will be the convolution of the laser power spectrum, S0 (ω), with the

power spectrum of the phase modulated amplitude, S (ω),

S̃ (Ω) =

∫
dω S (ω)S0 (Ω− ω) (B.31)

From this relation, we can extract S (ω), the spectrum that we wish to obtain by means of

phase modulation by the convolution theorem,

S (Ω) =

∫
dt eiΩt

∫
dω e−iωt S̃ (ω)∫
dω′ e−iω′t S0 (ω′)

(B.32)
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In the special case that the laser power spectrum S0 (ω) is Gaussian, and the desired power

spectrum, S̃ (ω) is a top hat spectum, then we obtain

S0 (ω) =
1

σ
√

2π
exp

(
− ω2

2σ2

)
(B.33)

S̃ (ω) =
1

2f0
(|f | < f0) (B.34)

S (ω) =
1

4ω0

{
erf

(
ω + ω0√

2σ

)
− erf

(
ω − ω0√

2σ

)}
(B.35)

The required S (ω) is ultimately a top hat spectrum with Gaussian tails.

B.3.3 Smoothing of Dispersive Features with Laser Broadening

Suppose that there is a dispersive feature that I observe in an experiment using a single

frequency laser that consists of the carrier band that has a form like that of the derivative

of a Lorentzian,

φ (ω) =A
ω

(
ω2 + (γ/2)2

)2 (B.36)

for some Lorentzian width γ and amplitude A. To obtain this feature, I would need to tune

the frequency of the ω, and measure φ at each point.

If we then use phase modulation to create a broadened power spectral density laser,

S (ω) and we redo the same experiment, then we will observe the feature φ̃ (ω) that can be

obtained by a convolution of φ (ω) with the power spectral density, S (ω),

φ̃ (∆) =

∫
dω S (ω) φ (∆− ω) (B.37)

φ̃ (ω) will have a similar, but distorted dispersive shape, but it will be widened and reduced

in amplitude. Since φ (ω) changes very wildly close to resonance, ω = 0, then we may wish

to reduce φ′ (ω = 0) by using phase modulation to spectrally broaden and shape the lasers

power spectral density. The reduction in the φ′ (ω) can be calculated by:

φ̃′ (0)

φ′ (0)
=

∫
dω S (ω)φ′ (−ω)

φ′ (0)
(B.38)
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For example, take the flat top spectrum, S (ω) = 1
2ω0

(ω < |ω0|). In this case there is a

Lorentzian reduction of the φ′ (0) with the width of the spectrum, ω0:

φ̃′ (0)

φ′ (0)
=

(γ/2)2

ω2
0 + (γ/2)2 (B.39)

So, provided that ω0 > γ, we can obtain significant suppression of the slope. So, now a

question naturally arises: what is optimum shape of the power spectral density to minimize

φ′ (0)? One approach is to use the flat top spectrum but let ω0 →∞, but this is impractical

as the power spectral density also goes to zero for all frequencies. Another approach is

to strategically place delta function frequency bands such that φ′ (ω) = 0. Taking this

approach, we find that an optimum power spectral density is

S (ω) =
1

2

(
δ
(
ω − γ/

√
6
)

+ δ
(
ω + γ/

√
6
))

(B.40)

Unfortunately, as we deduced in a previous section, we cannot create a frequency spec-

trum with a finite number of discrete frequencies using phase modulation. One possible

alternative is the ’dual top-hat’ spectrum, σ2 (ω) = 1
(ω0−ω1) (ω1 < |ω| < ω0). If we use the

proposed method above to obtain this spectrum by using phase modulation, thenwe obtain

the power spectral densities which are displayed in figure B.3.3 for various values of ω0/ω1.

In the limit that ω0/ω1 → 1, the spectrum consists of very narrow frequency bands, but

as a necessity, a fourier series of other narrow frequency bands arise at higher frequencies

spaced by 2ω0. On the other hand, for ω0/ω1 � 1, the width of the top hat widths are

comparable or larger than the spacing between them, and the pedestal approaches a well

behaved power law, just as that seen for the single top hat spectrum that is displayed in

figure B.3.

Even with this finite width spectrum, we can still obtain φ̃′ (0) = 0. If I define ω0 = ω̃+εγ2

and ω1 = ω̃ − εγ2 , then we find that

ω̃ =
γ√
6

√
2
√

1 + ε2 + ε4 + ε2 − 1 (B.41)

satisfies φ̃′ (0) = 0. In this case, the two extreme solutions that were previously discussed
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can be recovered from ε → 0 and ε → ∞. Since the power spectrum has many high

frequency narrow bands in the limit that ε→ 0 and the power spectral density is very wide

in the limit that ε→∞, then I would like to sit somewhere in the middle. If we arbitrarily

choose that we would like ω̃ = εγ (which is equivalent to ω0/ω1 = 3 in figure B.3.3), then

we find φ′ (0) = 0 for ε =
√

3/5.
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Figure B.4: Resulting spectrum for σ2 (f) = 1
(f1−f0) (f1 < |f | < f0). From top to bottom,

f1 is defined by f0

f1
= 1.01, 1.1, 1.5, 3, 6, 25, 100.

B.4 Realization

As a proof of principle, I have implimented the above procedure by using waveforms that

have been randomly generated by a Matlab script, and generated by an arbitrary wave-

form generator (model Euvis AWG 272). The signal was amplified by a broadband ampli-

fier (Minicircuits ZHL-1-2W) and sent to an optical fiber electro-optic modulator (model

EOspace PM-0K5-10-PFA-PFA-1090-UL).

An interferometer was constructed to measure the power spectrum of the laser after

having been broadened by the fiber EOM. This interferometer beats together the phase

modulated beam with the original beam that is potentially offset by a constant frequency,

ωAO, (for doing a ’lock-in measurement’, to move the applied spectrum away from the

electronic noise that is large near zero frequency). A schematic of the interferometer is
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shown in figure B.4. The intensity beating between these two beams is given by:

I (t) ∝
∣∣∣a ei(ω+ωAO)t + b eiωt+φ(t)

∣∣∣
2

(B.42)

∝ a2 + b2 + 2ab cos (ωAOt− φ (t)) (B.43)

where a and b are constants. A 150 MHz bandwidth photodiode (Thorlabs model PDA10CF)

was used to measure the intensity beating, and a spectrum analyzer was used to compute

the power spectral density of the intensity beating (model Agilent e4402b). The procedure

was applied for a top hat spectrum and ωAO = 0. The resulting spectrum is shown in figure

B.4. The amplitude of the RF was varied while monitoring the amplitude of the power

spectrum; the power spectrum amplitude should be maximized when the phase peak to

peak amplitude is π. Such an maximum was observed.

λ/2

AOM

EOM

λ/2 photodiode

Spectrum 
Analyzer

Arbitrary
Waveform
Generator

RF Amp

70 MHz RF

Figure B.5: Schematic of interferometer used to measure the phase modulation spectrum
inprinted on the laser by the fiber EOM
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Figure B.6: Spectrum Analyzer trace for interferometer in the case that the AOM frequency
is set to zero (and hence the center of the spectrum is at 0) and for a top hat spectrum,
σ2 (f) = 2

f0
(0 < f < f0) such that f0 = 40 MHz.
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