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Abstract

A search for the electric dipole moment of the
electron using thorium monoxide

Amar Chandra Vutha

2011

This thesis is concerned with the conception, design and construction of an exper-

iment to search for the permanent electric dipole moment of the electron (de) with

improved sensitivity. This dipole moment, de, is a hypothesized quantity whose de-

tection, or (in the absence of detection) an improved constraint on its size, would

shed some light on the part played by discrete symmetries of space-time in the evo-

lution of our universe. A non-zero de is evidence of parity and time-reversal violation

in fundamental physical processes, and provides an experimental test of many pro-

posed extensions to the Standard Model of particle physics. The experiment takes

advantage of the enhanced sensitivity of the H state in the thorium monoxide (ThO)

molecule to de. The precession of the spins of the valence electrons in the internal

electric field of the molecule is measured using a molecular beam apparatus. This ex-

periment has the potential to improve the experimental limit on de to ∼ 10−30 e cm,

an improvement by a factor of 103 over the current experimental limit. I will describe

the analysis that led to the identification of ThO as a favorable system for such an

experiment, details of the design and construction of the experimental apparatus,

and measurements of various properties of ThO which guide estimates of the sta-

tistical sensitivity and the size of potential systematic errors in the experiment. A

method of analysis of geometric phase effects in terms of off-resonant energy level

shifts, which was developed in order to understand potential systematic errors in this

experiment, is also described.



Chapter 1

Introduction
T -violation, electric dipole moments and ThO

We have sailed many weeks, we have sailed many days,

(Seven days to the week I allow),

But a Snark, on the which we might lovingly gaze,

We have never beheld till now !

The Bellman’s Speech, The Hunting of the Snark

The universe, thankfully, provides a constant source of mysteries to keep us en-

tertained and bewildered. At the present time, despite the success of the Standard

Models of particle physics and cosmology, there are huge and humbling gaps in our

understanding of the way our universe works. The nature of dark energy and dark

matter, which together make up 96% of stuff in the universe, remains a complete

mystery. Yet there is a perplexing puzzle even within the 4% of the universe that we

do claim to understand. This is the puzzle about where all the anti-matter has gone,

for we know that equal amounts of matter and anti-matter were initially created out

of energy after the Big Bang, but anti-matter in any substantial quantity does not

seem to be naturally present anywhere in the universe [DK03]. One plausible solu-

tion to this puzzle invokes T -violation1 in physics in the early phase of the universe,

the idea being that certain processes that turn anti-matter into matter occurred at

very slightly faster rates compared to the reverse processes that turn matter into

anti-matter [Sak67]. But this solution does not quite work, because the known level

of T -violation in particle physics is insufficient to explain the observed size of the

1The discrete symmetry operation T maps a process into its motion-reversed version. See [Sak64,
Sak85] for discussions of the action of the discrete symmetry operators P and T .
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asymmetry between matter and anti-matter [GHO+94]. This leads us to believe that

other sources of T -violation exist out there, in physics that is unknown as of now.

It is in the search for such new sources of T -violation that the permanent electric

dipole moment of the electron might play a part [FSB03].

In any quantum mechanical system in an eigenstate of angular momentum, a

permanent electric dipole moment (EDM) can only exist if T is violated (along with

parity P ).2 Therefore the discovery of an EDM, or an improved experimental limit

on its size, provides information about new sources of T -violation. In 1950, Purcell

and Ramsey [PR50] pointed out that the question of the existence of permanent

electric dipole moments of fundamental particles could only be decided experimen-

tally, rather than by appealing to aesthetic notions of symmetry. Since then, EDMs

of the neutron, the electron, the muon and the proton have been the focus of ever

more sensitive searches,3 although no EDM has ever been detected. The present

limit on the neutron’s EDM is one of the important elements of the puzzle known

as the strong CP problem in the Standard Model. The limit on the EDM of the

electron (eEDM) has already excluded a significant section of the parameter space

of supersymmetry [OPRS05], a theoretical extension to the Standard Model that is

often believed to be true.

The plausible existence of more than one Higgs doublet, or the postulated ex-

istence of a multitude of supersymmetric particles [OPRS05, GR06], would each

make a number of new T -violating phases available, which could then result in T -

violation in the lepton sector of the Standard Model. T -violation within the frame-

work of the Standard Model (a consequence of flavor mixing in the quark sector)

has been observed in the decays of K0 and B0 mesons [YoPDG06], but the observed

amount has been found inadequate to explain the observed matter-antimatter asym-

metry [GHO+94]. If the additional T -violation required to explain matter-antimatter

asymmetry is present in the lepton sector, it is expected to show up as an observable

eEDM. Electro-weak baryogenesis (EWBG) is one of the most plausible models for

generating the cosmological matter-antimatter asymmetry. The limit on the EDMs

of the Tl atom and the neutron set the most stringent constraints on the parameter

space of EWBG. It is expected that a null result from an eEDM search, with a limit

that is lower than the current experimental limit (de ≤ 10−27e cm) by 2 orders of

2See Section A.1 for a discussion of this property.
3EDMs are usually introduced as postulated properties of elementary particles, but they can

also arise through P and T violating interactions between the constituents of a composite system,
like an atom or a nucleus.
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magnitude, would constrain the parameter space of EWBG severely enough to ren-

der this model implausible [PR09]. Achieving a sensitivity that can rule out EWBG

is, arguably, the most concrete goal of any improved eEDM experiment.

1.1 eEDM experiments with atoms and molecules

A considerable body of literature exists concerning the measurement of nuclear EDMs

using free neutrons or diamagnetic atoms and molecules, as well as concerning efforts

to measure the EDM of the muon. A comprehensive review of EDM efforts can be

found in the books by Khriplovich and Lamoreaux [KL97] and Roberts and Marciano

[RM09]. Here I discuss eEDM measurements using atoms and molecules.

The relativistic Hamiltonian for the interaction of the EDMs of electrons in an

atom or molecule with electric fields is

HEDM = −
∑
i

de β ~Σi · ~Ei (1.1)

where β =

(
1 0

0 −1

)
is a 4x4 Dirac matrix,4 ~Σ =

(
~σ 0

0 ~σ

)
and ~σ is the Pauli spin

vector [Sal58]. The summation is carried out over the electrons in the system. The

ith electron has a spin vector ~Σi, and ~Ei is the total electric field acting on it. Close

to the nucleus, ~Ei is dominated by the electric field from the the nucleus, so here

~Ei ≈
( 1

4πε0

)Ze~ri
r2
i

. (1.2)

In a non-relativistic system consisting of point particles held together by elec-

trostatic forces, the expectation value of HEDM is always zero – this is the con-

tent of Schiff’s theorem [PR50, Sch63]. It was pointed out by Salpeter [Sal58] that

in atomic states where the electrons approach the nucleus closely enough to expe-

rience relativistic effects, HEDM can have a non-zero expectation value. Sandars

[San65, San66, San67, San68a, San68b] pointed out that it can also become much

larger than ∼ deElab in appropriately chosen situations. The expectation value of

HEDM in a state of an atom, with a four-component wavefunction |ψ〉 and an angu-

41 denotes the 2x2 identity matrix.
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lar momentum J , can be parametrized as5

〈ψ|HEDM |ψ〉 ≡ −de〈ψ| ~J |ψ〉 · ~Eatom. (1.3)

The quantity ~Eatom is the “internal electric field” in the atom. Its direction is parallel

to ~Elab, and its magnitude depends on the degree of polarization of the atom in the

electric field ~Elab [KL97]. Its magnitude also depends on the amplitude of the wave-

function of the electrons in the state |ψ〉 at the nucleus, which is where the electrons

are accelerated to relativistic speeds and the Sandars effect is most pronounced. This

in turn leads to the effect being strongest for electrons in s orbitals, and a scaling of

Eatom with the atomic number Z as ∼ Z3 [San68b, KL97].

The polarizability of an atom is ∼ 1
4πε0

a3
0 [Pur84].6 Even in the largest lab fields

therefore, the polarization of the atom (and the internal electric field Eatom) are linear

in the polarizing electric field ~Elab. In atoms, therefore, (1.3) can be alternatively

parametrized as

〈ψ|HEDM |ψ〉 ≡ − ~Da · ~Elab ≡ −Rde
~J

|J |
· ~Elab, (1.4)

in terms of the permanent atomic EDM Da induced by the eEDM, or in terms of the

“enhancement factor” R = Da/de. This parametrization is commonly used in the

literature on atom-based eEDM experiments. The enhancement factor is obtained by

relativistic atomic structure calculations, and has been tabulated for the alkali atoms

(Li, Na, K, Rb, Cs, Fr) and other paramagnetic atoms of interest (Tl, Gd, metastable

Xe) [CD09]. Following the suggestion by Sandars, a number of experiments improved

the bounds on the size of the eEDM using atomic beam spectroscopy. A recent

example is the experiment with an atomic beam of thallium that obtained a limit

|de| ≤ 1.6 × 10−27 e cm [RCSD02]. Ongoing experiments with atoms include those

using Cs and Rb trapped in an optical lattice [WFC03], and experiments with bulk

solid-state samples containing rare-earth atoms such as Gd,Eu [Lam02, BDS02].

Polar diatomic molecules can be polarized more easily than atoms. The reason for

this can be understood in terms of a simple picture. Consider a polar molecule such

5Unless explicitly mentioned, we will use units where ~ = 1 everywhere in this thesis.
6States of opposite parity are spaced apart by ∆ ∼ 2π× 100s of THz in energy, and typical dipole

matrix elements between atomic states are D ∼ ea0 = 2π× 1 MHz/(V/cm). From the discussion
in Section A.2, it can be seen that even for the largest electric field strengths achievable in the lab
(Elab ∼ 50 kV/cm), typical atomic states are only weakly polarized.
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as thorium monoxide (ThO), where the heavy Th2+ ion is bound to the O2− oxide

ion, and consider the situation in the molecule-fixed frame where the atomic cores

are not rotating about their center of mass. The presence of ∼ 2e units of charge,

located only a small distance ∼ a0 away on the O2− ion, leads to an electric field

Emol ∼ (1/4πε0) 2e/a2
0 ∼ 10 GV/cm that polarizes the Th2+ ion. In the lab frame,

where the whole collection of particles – atomic nuclei, core electrons and valence

electrons – is in an eigenstate of the total angular momentum, the polarization of

the Th atom by the O atom averages out and the expectation value of the static

polarization vanishes. When a lab field ~Elab is applied, energy eigenstates of the

molecule have polarization oriented along/against ~Elab. When this happens, the

polarization of the Th atom that existed in the molecule-fixed frame (or some fraction

of it, depending on how strongly the molecule is oriented) gets oriented along/against

the lab electric field too. The only function of the lab electric field is to orient the

molecule-fixed dipole, while the strong electric interaction between the two ions takes

care of polarizing the Th atom.

More formally, the large polarizability can be understood as arising from the

presence of closely spaced states of opposite parity in polar molecules – states of

opposite parity can be spaced by ∼ 2π× 10s of GHz (rotational states) or even as

low as ∼ 2π× 10s of kHz (Ω-doublets7) – even though the dipole matrix elements

between these states are still on the order of an atomic unit, D ∼ ea0. The larger

polarization in a lab scale electric field leads to a larger internal electric field. It also

means that ~Emol, the analog of ~Eatom for a molecule, is no longer linearly proportional

to the lab electric field ~Elab when the molecule is strongly polarized. Therefore the

parametrization in terms of the enhancement factor R is insufficient, and we describe

the enhancement due to the Sandars effect in terms of the internal field.

In heavy molecules, where the relativistic effects that lead to large internal electric

fields are important, spin-orbit effects (which also arise due to relativity) tightly

couple the spin ~S of the valence electrons with their orbital angular momentum ~L to

form the total electronic angular momentum ~Je = ~L + ~S. Hence in such a system,

the eEDM ~de lies along ~Je on average. The total angular momentum of the molecule

~J = ~Je + ~R is the sum of the electronic angular momentum ~Je and the nuclear

rotation ~R. Electronic states in a molecule that are described by Hund’s case (c)8

7See Section A.4 for a brief introduction to Ω-doublets, and references.
8The various Hund’s cases are a collection of angular momentum coupling schemes, analogous to

the jj-coupling and LS-coupling schemes in atoms. Different Hund’s cases correspond to different
“good” quantum numbers. See [SZ74, Hou01, BC03] for a discussion of Hund’s cases in molecules.
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are eigenstates of the operator Ω̂, which is the projection of ~Je onto the internuclear

axis of the molecule, n̂.

Ω̂ ≡ ~Je · n̂. (1.5)

In the lab frame the expectation value 〈ψ|Ω̂|ψ〉 = 0 in any eigenstate of the parity

inversion operator or the squared total angular momentum J2.

In a molecular state described by a 4-component relativistic wavefunction |ψ〉,
the expectation value of the relativistic eEDM Hamiltonian HEDM is parametrized

in the following form [MBD06], in analogy with (1.3):

〈ψ|HEDM |ψ〉 ≡ −de〈ψ| ~Je|ψ〉 · ~Emol = −deEmol Ω. (1.6)

Here Ω = 〈ψ|Ω̂|ψ〉 is determined by the extent to which the state |ψ〉 is polarized by

the lab electric field ~Elab. The internal electric field ~Emol = n̂Emol is directed along the

internuclear axis of the molecule.9 Emol is a property of a specific molecular state, and

is calculated using relativistic atomic and molecular theory [Nat09, Mey10]. However,

some heuristics have been developed for guessing at whether a given molecular state

might have a large value of Emol [MBD06]. In particular, it is essential that at least

one of the valence electrons in the molecule should inhabit a σ molecular orbital

derived from an s atomic orbital on the heavy atom in the molecule, in order to obtain

the relativistic Sandars effect [KL97, CJD07, CD09]. YbF, a polar molecule with

an unpaired valence electron, has been the focus of molecular beam experiments to

measure the eEDM [KE94, HKS+11], leading up to a recent improvement of the limit

on the eEDM to de ≤ 1× 10−27 e cm. Polar molecules are also the ingredients of the

9There are a few different versions of this internal electric field used in the literature. It is also
referred to as the effective electric field. A summary of these different versions is included here for
reference:
The quantity Wd is defined in [CD09, KD02] as:

Wd ≡
〈ψ|HEDM |ψ〉

deΩ
. (1.7)

The effective electric field Eeff is defined in [CD09] as:

Eeff ≡WdΩ =
〈ψ|HEDM |ψ〉

de
. (1.8)

This differs by a minus sign from Feff defined in [MBD06]:

Feff ≡ −WdΩ = −〈ψ|HEDM |ψ〉
de

. (1.9)
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PbO experiment at Yale, which has a projected sensitivity of ∼ 10−28 e cm [DBB+00,

KBB+04, Ham10]. Other eEDM experiments currently using polar molecules are the

HfF+/ThF+ [LBL+10], WC [LMP+09] and PbF [SR06] experiments.

1.1.1 Measuring the eEDM-induced energy shift in a molecule

Consider a pair of states in a molecule, |a〉 and |b〉, wherein the expectation value of

Ω̂ is oppositely directed and has a magnitude Ω0:

〈a|Ω̂|a〉 = −〈b|Ω̂|b〉 = Ω0. (1.10)

As mentioned above, Ω0 = 0 if |a〉, |b〉 are eigenstates of parity. However, if these

are states in a molecule that has been polarized by an external electric field, then Ω0

can be non-zero. The energy difference between these states due to an eEDM can

be calculated using (1.6). It corresponds to an angular frequency ωEDM given by

ωEDM = 2 deEmolΩ0. (1.11)

This frequency can be measured experimentally, and constitutes the basic signal of

any eEDM experiment with a polar molecule. For a given signal-to-noise ratio SNR,

the fundamental limit to the statistical uncertainty of the measurement of ωEDM is

given by

δω =
1/τ

SNR
. (1.12)

Here τ is the coherence time, the duration for which the wavefunctions of the states

|a〉 and |b〉 evolve in phase. The SNR in turn has a fundamental limit, SNR =
√
N

for measurements made on an ensemble of N independent molecules.10 Using (1.6),

the uncertainty in the measurement of ω, δω, can be related to the uncertainty in

the eEDM, δde:

δde =
1/τ

2EmolΩ0

√
N
. (1.13)

δde is the principal figure of merit for the statistical sensitivity of any eEDM exper-

iment.

10This dependence on N is derived in Section 2.3.1 after the measurement scheme has been
discussed.
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1.1.2 The choice of ThO for an eEDM experiment

The primary goal of the work presented in this thesis was to design an experiment

that could improve the limit on the eEDM by a significant factor compared to the

above experimental approaches. Initially, the work was aimed at improving the de-

sign of the PbO experiment. However, around that time, important advances in the

techniques of generating intense cold molecular beams were made at Harvard in the

Doyle group [PD07]. In this approach, molecules in the gas phase are produced by

pulsed laser ablation of a solid precursor target, inside a copper cell cooled to 4 K that

contains a buffer gas of helium. Collisions with helium gas cool the hot molecules

produced in ablation. An aperture in the side of the cell causes hydrodynamic flow

of helium gas out of the cell and into the molecular beam region. This hydrodynamic

flow can efficiently entrain most of the cold molecules produced inside the cell and

extract them out into a molecular beam. But to take advantage of the high phase

space density available using buffer gas cooled beams, a molecule with a long-lived

EDM-sensitive state is required, sufficiently long that time of flight-limited spin pre-

cession can be observed in a ∼ 30 cm scale molecular beam apparatus.11 With typical

forward velocities of about 200 m/s obtained with hydrodynamically extracted buffer

gas cooled beams, this translates to a state lifetime that has to be comparable to ∼
2 ms. PbO was therefore not a viable candidate as its EDM-sensitive a(1) state has

a lifetime that is ∼ 80 µs, and a new molecule was sought that was best suited to a

molecular beam eEDM experiment with a buffer gas cooled beam.

First, here is a wish-list of the desirable features of an eEDM-sensitive molecule.

Emol scales as Z3 with the atomic number Z of the positive ion in the molecule,

so the positive ion in the molecule has to be derived from a heavy relativistic atom in

order to obtain the eEDM enhancement. Further, as mentioned above, the molecular

orbital of the positive ion that contributes to the eEDM enhancement has to be

derived from an atomic s orbital. Atomic s orbitals, when strongly mixed with

p states by the electric field from the negative ion, are mapped onto σ molecular

orbitals. A valence ns σ orbital is a necessary feature of an eEDM-sensitive molecular

state.

Electronic states in a Hund’s case (c) diatomic molecule with Ω ≥ 1 have closely

spaced levels of opposite parity (Ω-doublets), often separated in energy by < 1 MHz,

which can be polarized in laboratory electric fields . 10 V/cm. A simple picture of

11This length scale is set by mundane/real-world constraints, such as the length of the region
where a uniform E-field can be obtained, the volume that can be magnetically shielded, etc.
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these doublet states is provided in Section A.4, and more detailed calculations can

be found in [LL81, BC03]. As these levels can be very easily polarized, a molecule

with Ω-doubling in the eEDM-sensitive state is desirable for taking full advantage of

Emol.
The spin coherence time τ is ultimately limited by the radiative lifetime of the

state in which the measurement is performed. Therefore one of the constraints is

that the molecular state that is used be sufficiently long-lived. The coherence time

has some effect on the choice of the measurement scheme. For example, molecular

states with a value of τ in the range of 10 ms-1 s are well-suited for experiments

with trapped molecules/molecular ions, where the technical limit to the achievable

coherence time is on the order of a few seconds. Molecular beam experiments, where

the technical limit on the coherence time is set by the time of flight of molecules

through a reasonably-sized apparatus, are best suited to states with coherence times

in the range of 100 µs to 10 ms (with some dependence on the choice of beam

source).12

The number of molecules interrogated during the measurement, N , can be written

as N = ṄT , where Ṅ is the count rate and T is the integration time of the experi-

ment. Choosing a molecular species that can be produced in numbers large enough

to yield good SNR is an important requirement, as is ensuring that the interrogation

technique samples a large fraction of the molecules that are produced.

However, statistical sensitivity is not the only relevant metric. The measure-

ment scheme, details of the way the apparatus is constructed and the choice of

atomic/molecular system will also affect the ability of the experiment to reject sources

of systematic errors. It can be argued that the main purpose of having a high statis-

tical sensitivity in the eEDM experiment is to allow the characterization and testing

of potential systematics without requiring an unduly long integration time. The po-

tential systematics will be examined in detail in Chapter 3, but as far as the choice

of molecule is concerned, the following features are desirable:

• Ω-doublets: The first advantage of a molecule with Ω-doublets is due to

their large electric polarizability. In addition to enhancing the effect of an

electron EDM, a large polarizability (especially if the induced dipole moment

is saturated) ensures that the internal electric field experienced by the electron

is immune to fluctuations in the magnitude of the lab electric field. Many

12A longer time (e.g. use of a ground state) does not hurt, but these shorter times are not a real
disadvantage when working with beams.
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systematic effects, on the other hand, should scale in some way with the lab E-

field. Third, a large tensor Stark shift13 in the EDM sensitive state ensures that

the effect of motional magnetic (~v× ~E/c2) and motional electric fields (~v× ~B),

which are transverse to the main ~E , ~B lab fields, is suppressed [PS70]. The

existence of a tensor Stark shift does not require Ω-doubling, but Ω-doubling

results in a large tensor Stark shift being obtained with modest electric fields.

Fourth, a large polarizability implies the use of small electric fields applied

in the lab, which further mitigates the effect of ~E-correlated magnetic fields

produced by leakage currents.

The principal advantage of Ω-doublets for systematic error rejection arises from

the fact that the eEDM-induced energy shift in the molecule, ∝ EmolΩ, can be

reversed by making the measurement using pairs of states in different compo-

nents of the doublet. This is explained in detail in Section 2.2.1. This feature

allows the eEDM-induced energy shift to be reversed purely spectroscopically,

without reversing any laboratory ~E , ~B fields. Thus it provides a powerful fil-

ter for systematic effects. Such a comparison between the components of an

Ω-doublet also turns out to be capable of rejecting systematic errors from

troublesome geometric phases, as shown in Section B.8. So far, this is the only

method known to us that can reliably reject systematic errors picked up due

to geometric phases.

The requirement that the molecule have both Ω-doublets (which require non-

zero orbital angular momentum about the internuclear axis) and s-derived σ

orbitals (to obtain relativistic enhancement) naturally leads to the choice of a

molecular state that has 2 valence electrons occupying σσ∗ (or σπ, σδ, ...)-type

molecular orbitals arising from the corresponding s2 (or sp, sd, ...)-orbitals of

the heavy atom. One of the valence electrons undergoes the relativistic eEDM

enhancement, while the other valence electron orbits far away from the nucleus

and leads to the Ω-doubling/polarizability of the molecule. Finally, these two

electrons need their spins to be in a triplet state so that the state as a whole

has a non-zero electronic spin (and therefore a non-zero eEDM).

13Any system with J ≥ 1 exhibits a tensor Stark shift, where the energy shift of a state |J,mJ〉
in an electric field E is

W (mJ) = −1

2
αt

3m2
J − J(J + 1)

J(2J − 1)
E2 +O(E4). (1.14)

Here αt is referred to as the tensor polarizability.

10



• 3∆1 electronic state: In addition to closely spaced Ω-doublets, a molecule

in a 3∆1 electronic state has a very small magnetic moment [Cra34]. In a 3∆1

state, the spin and orbital angular momentum projections on the internuclear

axis point in opposite directions, resulting in a net angular momentum projec-

tion of 1~. But as the electron’s spin gyromagnetic ratio is twice as large as

the orbital gyromagnetic ratio, the magnetic moments of the spin and orbital

degrees of freedom cancel each other out to a large extent. Such a state has the

advantage of suppressing systematic errors due to residual B-fields. The effects

of Johnson magnetic noise from nearby conductors are also suppressed, which is

advantageous for obtaining a small statistical uncertainty in the measurement.

The advantages of 3∆1 states for eEDM experiments were first explained in

[MBD06].

• Convenient optical transitions: As will be described in Chapter 2, all the

mechanics of populating an eEDM-sensitive state, spin preparation, detection

by laser-induced fluorescence etc. involve lasers tuned to various optical transi-

tions in the molecule. Hence a molecule which has transitions that permit these

tasks (for example, by providing favorable pathways for one-way state transfer,

spin-orbit-mixed intermediate states that allow singlet-triplet coupling, etc.),

and has them at wavelengths that are accessible using easily available laser

sources, is greatly desirable. This might appear to be entirely motivated by

cost or experimental ease, but the choice of laser wavelengths can have impor-

tant effects on the duty cycle of the experiment. Therefore, one of the factors

influencing the choice of a molecule was the availability of diode lasers at the

wavelengths of all the relevant transitions.

To summarize, a suitable molecule for the experiment was required to have the

following properties:

• 3∆1 molecular state, derived from sd orbitals of the heavy atom.

• Large atomic number Z of the heavy atom, to obtain relativistic enhancement

of the eEDM.

• Ground, or long-lived metastable, 3∆1 state to ensure a coherence time τ & 2

ms.

• Laser diode accessible optical transitions, with convenient state preparation

and detection transitions.
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Figure 1.1: Electronic states in the ThO molecule, shown schematically (based on
[EL84]). The metastable H 3∆1 state is the one in which the valence electrons
experience a strong EDM-enhancing internal field Emol. Bold arrows indicate transi-
tions that have been observed using laser absorption or used to induce fluorescence.
Dotted lines indicate transitions where spontaneous decay has been detected by
laser-induced fluorescence or inferred from optical pumping effects. Numbers on the
arrows indicate their wavelengths in nm.

• Amenable to production in large numbers in a buffer gas cooled-beam, from a

solid/stable precursor.

The starting point of the search for a candidate molecule was the observation that

TiO has a 3∆1 ground state (although Z(Ti) is too small to be useful). Therefore,

molecules iso-electronic with TiO were examined systematically and the choice was

narrowed down to the following: ZrO, YF, ScF, HfO, LaF, ThO. All of these have

either ground or low-lying metastable 3∆1 states. Of these, the latter three are

the only ones with large enough Z to obtain a significant relativistic enhancement.

Further, LaF was ruled out because the dominant stable isotope (139La, 99.9%)

has a large nuclear spin (I = 7/2), which would significantly dilute the available
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population of molecules. Of the remaining two, HfO has the disadvantages that the

principal strong transition for monitoring the ground state lies at the inconvenient

(for diode lasers) wavelength of 613 nm (X 1Σ → b 3Π+
0 ), and the guesstimated

radiative lifetime of the metastable a 3∆1 state is < 1 ms, too short to provide

a useful coherence time. Fortunately, ThO has all the above desired features, in

addition to containing the heaviest atom that is (almost) not radioactive.

The structure of the electronic states in ThO is shown in Fig.1.1 [EL84]. The

metastable H 3∆1 state in ThO arises from an atomic 6d7s configuration in the

Th atom [MWGP87, KDSP94] and has the expected large relativistic EDM en-

hancement. The size of the internal field (Emol = 104 GV/cm) has been verified by

theoretical calculations [MB08]. Being an Ω = 1 state, the H state also has closely

spaced Ω-doublets that can be easily polarized. Radiative decay of the H state to

the ground state is suppressed because of their small energy separation (it is only

∼ 5300 cm−1 above the ground X 1Σ state), and because the radiative transition

requires a spin flip to go from the paramagnetic H state to the diamagnetic ground

state. The measurements described in Section 4.2 indicate that the lifetime of the

H state is τH = 1.8 ms. The multitude of electronic states with various degrees of

spin-orbit mixing means that there are very convenient pathways for one-way optical

pumping/coherent state transfer into the H state, and detection of fluorescence from

the H state that is blue-shifted compared to the pump laser (a huge convenience

for suppressing background from laser light scatter). Further, these transitions are

all located at wavelengths accessible using diode lasers (another convenience due to

their low cost and easy maintainability). Finally, it is not an insignificant advantage

that the spectroscopy of the ThO molecule has been thoroughly studied both theo-

retically and experimentally, and the constants for the molecular states are known

precisely [MWGP87, EL84, GHKH05, WM97, HH79, PNH02].

This thesis is structured as follows. The features of the measurement scheme with

the ThO molecule are described in Chapter 2, along with an analysis of the expected

statistical sensitivity. Chapter 3 contains some estimates of potential systematic

errors that could affect the measurement. Some measurements made on the ThO

molecule, which feed into these analyses, are described in Chapter 4. Chapter 5

contains a description of some of the parts and subsystems of the experimental

apparatus for the eEDM measurement that I designed and constructed. Appendix A

contains some miscellaneous results for reference. Appendix B describes the method

of calculating geometric phases in terms of energy shifts, with examples leading up
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to the calculation of geometric phases for Ω-doublet states in a polar molecule.
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Chapter 2

Overview of the experiment

All my means are sane, my motive and my object mad.

Moby Dick

The various pieces of the experiment, namely the hardware that constitutes the

apparatus and the pieces of the measurement scheme, are reviewed in this chapter.

After the measurement scheme has been described, the factors that affect the statis-

tical uncertainty of the measurement are discussed, followed by an estimate of the

expected statistical sensitivity of the experiment to an eEDM.

2.1 Overview of the apparatus

A schematic of the eEDM apparatus is shown in Figure 2.1. The coordinate system

that is used with reference to the experiment is as follows: x̂ is the direction of

propagation of the molecular beam, and defines the beamline. It is horizontal in the

lab. ŷ is the vertical direction in the lab. ẑ is the direction of the main E and B-fields

in the experiment. It is horizontal in the lab. The parts of the experiment that are

shown in the schematic are the following.1

1People who were involved in developing the various parts of the apparatus are listed here:
Beam source (Hutzler, Parsons, Petrik, Vutha, Campbell), Lasers (Gurevich/Spaun/Hess), Laser
lock system (Gurevich/Spaun/Hess,Vutha), Magnetic shielding (Vutha, Kirilov), B-field coils
(Kirilov, Vutha), Interaction chamber (Vutha, Spaun), E-field assembly (Vutha, Kozyryev),
Collection optics (Hutzler, Vutha), Control electronics (Hess/Spaun/Gurevich).

Where this information was available to me, people are listed in decreasing order of involvement
(comma-separated list). I apologize for any inadvertent omissions or errors in these credits.
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Figure 2.1: Two overviews of the experimental apparatus. The upper view is a
schematic, and the lower shows a view of a CAD assembly of the experiment.
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• Beam source

In the molecular beam source, ThO molecules are produced by laser ablation of

a ThO2 precursor, using a pulsed Nd:YAG laser at 532 nm. The ThO molecules

are thermalized to the temperature of the production cell, which is cooled by a

pulse tube refrigerator (PT415, Cryomech), by means of neon buffer gas. A hole

in the wall of the cell results in a directed jet of neon gas, which entrains the

ThO molecules into its flow as it exits the buffer gas cell. Due to the mismatch

in mass between the Ne atoms and ThO molecules, the ThO molecules emerge

with a smaller angular divergence compared to the Ne atoms. The beam is

skimmed in order to contain within the source chamber those Ne atoms that

are outside the solid angle occupied by usable ThO molecules. These Ne atoms

are cryo-pumped inside the source chamber. The skimmed beam is collimated

and aimed into the interaction region vacuum chamber. This beam source and

the characteristics of the molecular beam produced by it are described in detail

in [HPG+11].

• Lasers

There are a number of different lasers used in the experiment. These are the

X → C laser for probing the population in the ground state (690 nm), the

X → A optical pumping laser (943 nm), the H → C laser (1090 nm) for

preparing and (possibly for detecting) the spin superposition in the H state,

and the H → E laser (908 nm) for detecting the state precession. These lasers

are commercial or home-built external cavity diode lasers (ECDLs). When

more than ∼ 100 mW is required out of the diode lasers, they are amplified

using either tapered amplifiers or fiber amplifiers. The frequency of these lasers

is stabilized by locking them to an optical cavity, which in turn is stabilized

using a reference laser (either a He:Ne laser or an I2-stabilized YAG laser).

Multiple lasers are locked to the same cavity, and combined (separated) using

off-the-shelf edge-pass optical filters on the input (output) of the cavity. The

transmission of each laser through the cavity is separately monitored using

amplified photodiodes (PDA-36A, Thorlabs). The output of the photodiodes

is digitized with an analog-to-digital converter and the control system for the

frequency stabilization is implemented in software.

• Magnetic shielding

Magnetic shielding, in the form of 5 nested mu-metal cylinders, encloses the in-
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teraction region. Its purpose is to reduce the influence of low-frequency B-field

fluctuations over the volume sampled by the molecules during their precession

in the H state. The design and construction of the magnetic shields is described

in Chapter 5.

• B-field coils

This is a set of coils wound on a cylindrical form that is 30 in. in diameter and

32 in. long. The coils are enclosed by the magnetic shields. The purpose of

the coils is to provide a uniform B-field over the volume sampled by the ThO

molecules during their precession. There are 2 main coils and 4 auxiliary shim

coils to reduce the fringing of the B-field from the main coils. There are also a

set of gradient coils directly mounted onto the interaction vacuum chamber to

artificially apply B-field gradients over the measurement volume to check for

systematics.

• Interaction chamber

The spin precession measurement is performed on the ThO molecules in this

vacuum chamber. As described later in this chapter, lasers are used to pump

the molecules into the H state, prepare their spin and measure the angle of

spin precession after a free flight path, L = 22 cm. The chamber is contained

within the magnetic shields and the B-field coil. It encloses the electric field

plate assembly and the light collection optics. It is described in Chapter 5.

• E-field assembly

A pair of parallel plates, 9 in. (y) x 17 in. (x) and positioned parallel to the

xy-plane, provide a uniform ẑ-directed E-field over the volume sampled by

the molecules during their precession. These plates are made out of borofloat

glass, and coated with a transparent conducting indium tin oxide layer on the

surfaces facing the molecular beam. They are transparent to allow the optical

pumping, state preparation and detection lasers to be sent along the direction

of the E-field, and to allow fluorescence from the molecules to be collected at

the end of their precession path. They are described in detail in Chapter 5.

• Collection optics

The precession of the spin of the molecules in the H state is detected at the

end of their 22 cm long flight path in the interaction region. Laser-induced

fluorescence, with an intensity depending on the angle between the molecule’s
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spin and the laser’s polarization, is obtained from the molecules in the H state.

The photons emitted by the molecules are the main signal in the experiment.

These photons are collected by a set of compound 2 in. lenses located ∼ 3

in. away from the molecules. There are 8 such lenses, 4 on either side of

the electric field plates. These lenses focus the light into 10 mm diameter

optical fiber bundles, which are flexible and can be used to convey the photons

from the fluorescence emission region to the downstream end of the interaction

vacuum chamber. The fiber bundles then transfer the photons into quartz

lightpipes that feed through the vacuum system and penetrate the magnetic

shields. Outside the magnetic shields, the photons from the lightpipes are

detected by large-area (23.5 mm x 23.5 mm) photomultiplier tubes (R8900-20,

Hamamatsu).

2.2 Measurement scheme

We focus on the H 3∆1 state in ThO, which has a large eEDM enhancement and is

favorable for the reasons explained in the Introduction. ThO molecules in the cold

beam source are produced in the X1Σ+, v = 0 state with a rotational temperature of

∼ 3 K. At this temperature, 95% of the molecules are produced in states with J ≤ 3.

After leaving the cryogenic beam source, the molecules fly ballistically through the

rest of the vacuum apparatus. The molecular beam is collimated before it enters the

magnetically shielded interaction region. In this interaction region, the states in the

molecule are perturbed by E and B-fields. So the structure of the relevant molecular

states, when they are in the interaction region, is discussed first.

2.2.1 Effect of E and B fields on the molecule

The B-field applied over the interaction volume is Bz ∼ 10 mG, as will be described

later. It only has a weak effect on the states of the molecule, corresponding to a ∼
20 kHz Zeeman shift for typical paramagnetic states in the molecule (with magnetic

moment ∼ 1 µB) and a ∼ 200 Hz Zeeman shift in the magnetically insensitive H

state.2 The E-field that is used during the measurement, Ez ∼ 100 V/cm, has a

stronger effect on the molecules.

2The magnetic moment of the H state is µH = 8.5(5)× 10−3µB . See Chapter 4 for the details
of this measurement.
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In the absence of an electric field, states in the molecule are eigenstates of the

squared angular momentum operator J2, its projection along the ẑ-axis in the lab

Jz (without loss of generality), and the parity operator P . The eigenvalues of the

P operator are p = ±1. In an E-field, quantum states are no longer eigenstates of

J2 or P , since both inversion symmetry and isotropy are broken by the interaction

with the electric field, described by the Hamiltonian HE = − ~D · ~E . States continue

to be eigenstates of Jz, since azimuthal symmetry around the axis of the E-field is

maintained.

In a given electronic state in ThO (where all the electronic states can be described

in the Hund’s case (c) basis), the rovibrational states can be written as

|ψ〉 = |Jp,mJ ,Ω〉|Ω; Γ〉 (2.1)

where mJ is the eigenvalue of the Jz operator and Ω is the eigenvalue of the operator

Ω̂ ≡ ~Je·n̂ introduced before. The first ket in the product describes the transformation

properties of the state under rotations and is described by spherical top functions,

while the second ket describes the state in the molecule-fixed frame (see Section A.3

and [Hou01]). Γ is a placeholder for quantum numbers of the state in the molecule-

fixed frame, such as the vibrational quantum number v and others.

In electronic states with no Ω-doubling (i.e. Ω = 0 states), such as the X,E,A

states, the parity of a rotational state |J mJ〉 is p = (−1)J (similar to the usual

spherical harmonic wavefunctions). Therefore the nearest opposite parity state to a

given rotational state is the next rotational state |J ± 1 mJ〉. The typical rotational

constant in these electronic levels is B ∼ 2π×10 GHz,3 which means that the energy

separating opposite parity states is ∆pq ∼ (J+2)B. In comparison, a typical electric

dipole matrix element between these states is Dpq ∼ 2π× 1 MHz/(V/cm), which

means that this system is in the weakly polarized regime described by (A.9). The

amount of mixing between the wavefunctions of neighboring rotational states in such

Ω = 0 electronic states is ≤ 10−2 (in amplitude) for the electric fields, E ≈ 100 V/cm,

that are present in the interaction region.

The situation is different in electronic levels that have Ω > 0 (the C,H,G states).

As a result of Ω-doubling, opposite parity states can be spaced apart in energy by

an amount ∆pq that is small or comparable to DpqE ≈ 2π× 100 MHz. Particularly

3The energy of a rotational state |J mJ Ω〉 is E(J,mJ) = B J(J + 1), where B is the rotational
constant of the electronic and vibrational level in which the rotational level is located. Recall that
we are using units where ~ = 1.
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for the low-lying rotational states in the H and G electronic states,4 ∆pq � DpqE
and the rotational levels are in the strongly polarized regime described by (A.10).

We restrict our attention now to the H, v = 0, J = 1 states, which is where the

eEDM measurement sequence occurs. The structure of the H, v = 0, J = 1 manifold

is shown in Figure 2.2. In the absence of an electric field, the states are well described

by the labels |Jp,mJ〉. The electric field in the interaction region is large enough to

strongly polarize the |1±, |mJ | = 1〉 states (via mixing with the |1∓, |mJ | = 1〉 states),

but only weakly polarizes the |1±,mJ = 0〉 states (via mixing between the distant

|2∓,mJ = 0〉 states).5 In the strongly polarized regime, the mJ = ±1 states are fully

mixed with their opposite parity twins; when fully mixed, they become eigenstates of

Ω̂ with an eigenvalue |Ω| = 1. Note that these states, with 〈ψ|Ω̂|ψ〉 6= 0, are exactly

the kind where the eEDM Hamiltonian has a non-zero expectation value. (Recall

that 〈HEDM〉 ∝ EmolΩ.) The mJ = 0 states are approximate eigenstates of parity.

Therefore the mJ = 0 states continue to be described by |Jp,mJ〉 labels, whereas the

mJ = ±1 states are described by the labels |J,mJ ,Ω〉 (or equivalently, by the labels

|J,mJ ,N = mJΩ〉). For definiteness the mJ = ±1 states, when strongly mixed by

an E-field, will henceforth always be described using the |J,mJ ,N = mJΩ〉 labels.

Also note that labeling these states by the quantum number J is a convenient

fiction. In reality, the states in the J = 1 manifold are also mixed with opposite parity

states in the J = 2 manifold by the electric field. This amplitude mixing between

J = 1 and J = 2 states is at the∼ 10−2 level, similar to that in Ω = 0 electronic states

in the weakly polarized regime. Nevertheless, this can lead to important systematic

effects, such as the dependence of the g-factors of the polarized Ω-doublet states

linearly on the lab E-field [BHJD09, Ham10]. In the following, we will continue to

label states using the quantum number J , with the caveat that in an E-field the

states are no longer eigenstates of the squared total angular momentum operator J2.

The two states with N = +1 are lowered in energy in the E-field. The states with

N = −1 are raised in energy. An easy way to remember which way these states are

shifted in energy by an E-field is to notice that the expectation value of the dipole

4These states correspond to 2Σ+1ΛΩ ≈3 ∆1 and 3Φ2 configurations in the Hund’s case (a) basis
respectively. As described in Section A.4, the source of Ω-doubling is the projection of the orbital
angular momentum about the internuclear axis, Λ. The H and G states have Λ > 1 and therefore
have a small zero-field Ω-doublet splitting, ∆pq . 2π× 1 MHz. The C state is derived from a
1Π1 +3 Π1 configuration (i.e. Λ = 1) and therefore has a larger Ω-doublet splitting, ∆pq ∼ 2π× 50
MHz.

5The mixing between the |J,mJ = 0〉 states in the same J manifold is parity-allowed, but for-
bidden due to angular momentum conservation. This can be verified using (A.16) in Section A.3.
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moment6 in these polarized states, 〈ψ|D|ψ〉 ∝ 〈ψ| N
J(J+1)

|ψ〉.7 Since the Hamiltonian

for the electric dipole interaction is HE = − ~D · ~E , states which are lowered (raised)

in energy correspond to N = 1 (N = −1). The states with N = ±1 are shifted in

energy from their zero-field positions by an amount that is referred to as the “tensor

Stark shift” ∆st. Note that, for the pair of states with a given value of N (say

N = +1), since they have oppositely signed values of mJ they also have oppositely

signed values of Ω. Therefore this pair of states is exactly of the form useful for

measuring the eEDM as described in (1.11) (with Ω0 = 1).

2.2.2 State preparation and detection

Now back to the story of the molecules along the beamline. Inside the interaction

chamber, in the volume where the E and B-fields are uniform, the molecules are

optically pumped into the H state. This is done by driving the weakly allowed

X1Σ+, v = 0 → A3Π+
0 , v = 0 transition at 943 nm. The A state can spontaneously

decay back only to X or into the H state. The Franck-Condon factor for decay

from A, v = 0  H, v = 0 is 0.98.8 Thus, optical pumping from X → A  H is

a convenient way to obtain almost one-way population transfer into the H, v = 0

state. The spontaneous decay from the A state produces a mixed state consisting of

the rotational sublevels of H, J = 1.9 For the E-fields used in the experiment, the

A, J = 0+ state is well described as a parity eigenstate. The H, |Jp = 1−,mJ = 0〉
states are weakly polarized and are approximate eigenstates of parity, as discussed

above. In the H state, |J = 1,mJ = ±1〉 are fully polarized. Therefore, spontaneous

decay from the A, J = 0+ state mainly populates the states |1−, 0〉, |1,±1,N = ±1〉
in the H, v = 0, J = 1 manifold shown in Figure 2.2. This is the situation by the

time the molecules are past the optical pumping laser.

Next, the quantum state used for the measurement of the eEDM is prepared.

This state is derived from the |J,mJ ,N〉 = |1,±1,±1〉 states. The state of the

6This is the induced electric dipole moment e~r, corresponding to the electric polarization of the
molecule. It arises due to the spatial displacement of the charges in the molecule. This is not the
same as the eEDM, which is related to the spin degree of freedom of the electrons.

7This expression can be obtained using (A.16) from the Appendix.
8The A − H Franck-Condon factors were not evaluated in [WS72]. This value was calculated

using the overlap of simple harmonic oscillator wavefunctions, with the constants in [EL84]. The
code used to calculate the A − H Franck-Condon factors was tested against the calculated FCFs
for other ThO transitions listed in [WS72].

9When the states in the H,J = 1 manifold are strongly polarized, the branching probabili-
ties for decay into the final states in the H,J = 1 manifold are proportional to the following:
|J = 1−,mJ = 0〉 ≡ 1/3, |J = 1,mJ = ±1,N = ±1〉 ≡ 1/6. These can be calculated using (A.16).
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Figure 2.2: a) The structure of the J = 1 Ω-doublet in the H state when E = 0,
B = 0. States are labeled as |Jp,mJ〉. b) The states in non-zero ẑ-directed E ,B fields.
The tensor Stark shift ∆st, Zeeman shift µzBz and the eEDM-induced shift deEmolΩ
are shown (not to scale). The mJ = 0 states are not perturbed (or only weakly
polarized by mixing with J = 2 levels), and continue to be denoted by |Jp,mJ〉
labels. The mJ = ±1 states are shown in the strongly electrically polarized regime,
and are labeled |J,mJ ,N = mJΩ〉. The particular way in which the eEDM energy
shift deEmolΩ behaves in these states makes it evident why such an Ω-doublet is useful
for an eEDM measurement.
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molecules is coupled to the polarization of the strong state preparation laser driv-

ing the H, |J = 1,mJ ,N〉 → C, |J = 1−, 0〉 transition. As a result, the molecule is

initially prepared by depleting the coherent superposition of |mJ = ±1,N〉 that

couples to the laser polarization ~εsp, leaving behind a dark state. This depletion

process is effective because the excited state (C) has a number of decay pathways

into other electronic states (X,H,Q) and various rovibrational states within those

electronic states. With the laser polarization ~εsp = ŷ for example, the initial state of

the molecules is set to be

|ψNi 〉 =
|mJ = +1,N〉+ |mJ = −1,N〉√

2
. (2.2)

The labelN = +1 (N = −1) corresponds to the lower (upper) Ω-doublet component.

The tensor Stark shift ∆st is large enough that levels with different values of N are

spectrally resolved by the state preparation and detection lasers. Hence a particular

value of N is chosen by appropriate tuning of the laser frequency.

The molecules in the beam then travel through the interaction region, where the

relative phase of the two states in the superposition is shifted by the interaction of

the magnetic moment ~µN with ~B, and the eEDM ~de with ~Emol. In addition to this

phase shift, there can be additional phase shifts picked up due to off-resonant energy

shifts. The magnetic moment is written with a explicit N subscript to remind one

that the magnetic moments are not identical in states with opposite values of N
[BHJD09, Ham10].

After free evolution during flight over a distance L, the final wavefunction of the

molecules is

|ψNf 〉 =
eiφ|mJ = +1,N〉+ e−iφ|mJ = −1,N〉√

2
. (2.3)

For a molecule with velocity vx along the beam axis, the precession phase φ can be

expressed as

φ = φr +

∫ x=L

x=0

(µNB + deEmol)
dx

vx
≡ φr + φB + φE . (2.4)

φE arises due to the eEDM and is small by assumption. φB is the phase added by the

static B-field in the experiment. φr is (an assumed small) phase error, which models

the phase shifts picked up due to off-resonant energy shifts and other interactions.

The phase φ is detected by projecting the final state |ψf〉 onto the detection state
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|ψNd (χ)〉 =
eiχ|mJ = +1,N〉 − e−iχ|mJ = −1,N〉√

2
. (2.5)

This is done by illuminating the molecules with a detection laser (with polarization

~εd) tuned to the H, v = 0, J = 1 → E, v = 0, J = 0 transition, and monitoring the

laser-induced fluorescence emitted in the spontaneous decay from E  X.10 The de-

tection state
∣∣ψNd 〉 is the “bright state” – the superposition of H |J = 1,mJ = ±1,N〉

that is coupled to the excited electronic E state by the detection laser – and is set

by the polarization of the detection laser, ~εd. χ is the angle between the laser polar-

izations ~εsp and ~εd.
11.

The wavefunction of the E state has a small amount of 3Π0 content (∼ 1.5%),

sufficient that the H 3∆1 → E transition can be driven with a strong laser, and

a large amount of 1Σ content (∼ 50%) so that the decay from E → X 1Σ has a

large branching ratio [KDSP94]. Excitation of laser-induced fluorescence with such

a transition allows for efficient rejection of scattered light from the detection laser,

since the emitted fluorescence photons are at a much bluer wavelength than the laser.

This means that the laser scatter can be efficiently filtered, without contamination

of the signal by effects such as re-fluorescence of the filter.

The fluorescence photons from the E state are emitted isotropically. A fraction

of them are collected by the light collection optics and detected by photodetectors.12

The detection sequence is as follows: the molecular state |ψf〉 is projected onto

10At the time of writing, the choice of the detection transition was not completely resolved. The
choices are the H → C transition (1090 nm), H → E transition (908 nm) or potentially, the H → F
transition (767 nm). Each transition has its pros and cons, in terms of the laser intensity required
to saturate the transition, spatial distribution of the emitted fluorescence, susceptibility to light
shifts etc. In the rest of this thesis, the discussion will assume that the H → E transition is used.
The results and discussion in this following section are general and can be carried over to the other
detection transitions, with appropriate modifications to the relative phase between |mJ = ±1,N〉
in |ψd〉 to account for polarization-dependent matrix elements between the H and excited states.

11This is analogous to the RF offset phase between separated oscillatory field regions used in
the Ramsey technique [Ram85]. It corresponds to rotating the detection basis with respect to the
state preparation basis. Only the relative angle between the state preparation and detection bases
is physically meaningful.

12The photodetectors could be photomultiplier tubes, which have a large noiseless internal gain,
or silicon/avalanche photodiodes, which are used with external amplifying circuitry. Regardless of
the actual device, the signal is obtained as a current out of the detector that is proportional to the
photon detection rate.
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Figure 2.3: The states |a〉, |b〉 are degenerate, and respectively represent the bright
and dark superpositions of |mJ = ±1〉. A strong drive laser couples only |a〉 to an
excited state |E〉, which spontaneously decays to the ground state |X〉 emitting a
photon. Consider the general superposition state |ψ〉 = α|a〉 + β|b〉. In terms of
dressed states (combined states of the molecule-radiation field) of the form |Ψ〉 =
|molecule〉|photon〉, the wavefunction at time t is

|Ψ(t)〉 = α
( |a〉|1〉+ |E〉|0〉√

2
+ e−iΩRt

|a〉|1〉 − |E〉|0〉√
2

)
+ β|b〉|1〉. (2.6)

Fluorescence is given off when E decays to X. The fluorescence emission rate ΓEX
is given by Fermi’s Golden Rule:

ΓEX ∝ |〈X|D|ψ〉|2

∝ |〈X|D|E〉〈E|ψ〉|2

∝ D2
XE|
√

2α sin
(ΩRt

2

)
|2

∝ D2
XE|α|2. (2.7)

The last step is due to the time-average over sin2
(

ΩRt
2

)
. The fluorescence emission

probability is proportional to |〈a|ψ〉|2. The projective part of the measurement is
due to spontaneous emission.
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Figure 2.4: The measurement can be pictorially represented on the Bloch sphere
formed by the two states |mJ = ±1,N〉. In this subspace, the pseudo-spin vector
precesses around the B-field (due to the magnetic moment µN ) and the internal E-
field Emol (due to the eEDM). The angle by which the pseudo-spin vector precesses
around the z-axis of the Bloch sphere is φ, where φ is defined in (2.4).
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one of the orthogonal states |XN 〉, |YN 〉, defined as follows.

|XN 〉 =
∣∣ψNd (χ = 0)

〉
, |YN 〉 =

∣∣ψNd (χ = −π/2)
〉

PX = |〈XN |ψf〉|2 = sin2 φ, PY = |〈YN |ψf〉|2 = cos2 φ (2.8)

If the populations (PX , PY ) in both these basis states is measured in rapid succession,

before a packet of molecules leave the volume illuminated by the detection laser, then

the precession phase can be measured using the asymmetry, A, defined as

A ≡ PY − PX
PY + PX

= cos 2φ. (2.9)

This method, of measuring both PX and PY on the same pulse of molecules, normal-

izes against fluctuations in the intensity of the molecular beam.

Effect of the velocity distribution

The analysis was carried out up to this point assuming that all the molecules in the

beam have the same velocity ~v. The effect of the velocity distribution is considered

now. In the experiment, the molecules are produced from the beam source with

a distribution of forward (along the beamline, the x-axis) and transverse velocities

(along the y, z-axes). These distributions can be considered as independent.

The distribution of the transverse velocity component f(vz) affects the interaction

of molecules with the state preparation and detection lasers due to the Doppler ef-

fect.13 The distribution f(vy) could potentially affect the interaction of the molecules

with the lasers, as molecules with different vy spatially separate and sample different

parts of the wavefront of the laser beams. It is assumed that the E- and B-fields

are sufficiently uniform over the volume sampled by the ensemble. Note that the

transverse velocity does not affect the transit time through the experiment. The

measurement can be made insensitive to the distribution of vy,z components of the

molecular velocities by a) first collimating the molecular beam to obtain a small

spread of vy,z, b) expanding the wavefronts of the state preparation and detection

lasers to ensure that the wavefronts are uniform over the region sampled by the

collimated molecular beam along the y-direction, and c) having sufficiently large in-

tensities in the laser beams in order to saturate the state preparation and detection

13Note that the lasers propagate along the ẑ direction
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transitions,14 so that the excitation is insensitive to the Doppler effect.

The forward velocity distribution f(vx) affects the transit time through the in-

teraction region, and therefore the phase that is picked up by different molecules in

the ensemble. This is considered now. The forward velocity is separated into its

mean and deviations about the mean: vx = vx + ṽx. The deviations ṽx are normally

distributed with a standard deviation ∆ṽx. This is due to the following physics: in

a buffer gas cooled beam, the molecules undergo collisions with the buffer gas in the

production cell and during the expansion out of the cell, which thermalizes them to a

temperature Tbeam.15 The distribution of one velocity component of a gas at thermal

equilibrium is described by the Maxwell-Boltzmann distribution, which is a normal

distribution.

The phase shifts φE , φr are small compared to φB by assumption, and so they can

be ignored in the following analysis. The precession phase in (2.4) is

φ ≈ µN

∫ x=L

x=0

B dx

vx

=
[
1− ṽx

vx
+
( ṽx
vx

)2

+ . . .
] ∫ x=L

x=0

dx
µNB
vx

≈
[
1− ṽx

vx

] ∫ x=L

x=0

dx
µNB
vx

(2.10)

The last step is justified because in buffer gas cooled beams, vx ≈ 170 m/s, and the

standard deviation of ṽx, ∆ṽx ≈ 20 m/s [HPG+11]. Therefore, the second order and

higher terms in ṽx/vx only have a small effect and we can write ∆φ = φ∆ṽx
v

for the

standard deviation of the phase due to the velocity distribution.

Equation (2.9) for the count rate can be averaged over the ensemble of velocities

by combining the definition cos x = (eix+ e−ix)/2, with the following standard result

from probability theory:

If X is a random variable, then 〈exp(isX)〉 ≡ MX(s) where MX(s) is the char-

acteristic function of the probability distribution of X. If X is normally distributed,

14See [BKD08] for a discussion of optical saturation in a two-level system.
15Tbeam is set by the expansion dynamics. In an effusive molecular beam, this temperature

is equal to the temperature of the buffer gas in the production cell. In fully supersonic beams,
this temperature can be calculated from the standard formulae for isentropic expansion [LL87].
For hydrodynamically extracted buffer gas beams, numerical/analytical methods can be used to
calculate the temperature [HPG+11, BSD11].
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with mean 〈X〉 and standard deviation ∆X, the characteristic function is

MX(s) = exp(is〈X〉) exp
(
− s2∆X2

2

)
. (2.11)

Therefore we find that

〈cos 2φ〉 = exp(−2∆φ2) cos(2φ) (2.12)

and (2.9) becomes

〈A〉 = exp(−2∆φ2) cos 2φ = C cos 2φ. (2.13)

Here the contrast C has been defined. The effect of the contrast is to modify PX

from sin2 φ into

PX =
1− C

2
+ C sin2 φ. (2.14)

This makes it evident why C is called the contrast.16

For the buffer gas cooled beam reported in [HPG+11], the contrast due to the

finite spread of velocities is predicted to be C = 0.98 for φ ≈ π/4. For small precession

phases, therefore, the effect of the velocity spread should be negligible, though this

remains to be verified experimentally.

2.3 Phase noise

Some sources of phase noise, that contribute to the uncertainty in the measurement

of the precession phase φ, are examined in this section.

2.3.1 Projection noise

Consider a beam of exactly N particles that are emitted by a source. Let the state

space of the particles have 2 orthogonal basis states |a〉, |b〉. Assume that the particles

are (independently) projected onto |a〉 by some means and that the number that

are projected, Na, is measured. Assume that each particle in the beam is in a

16Other contributions to a reduction of contrast include: elliptical polarization in the state prepa-
ration/detection lasers (e.g. in the detection laser, this would result in the excitation of |YN 〉 when
~εd is set to nominally excite |XN 〉), and incomplete depletion of the bright superposition during the
state preparation stage (which would add a background of unpolarized molecular spins).
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state, |ψ〉 = |a〉+|b〉√
2

. When the particles are projectively measured, each particle is

projected onto |a〉 with a probability 1/2 or onto |b〉 with a probability 1/2. Due to

this probabilistic process, described by a binomial distribution, there are deviations

in the value measured for Na every time the experiment is repeated. The mean value

measured is Na = N/2 as expected, but Na now has a non-zero standard deviation

∆Na =
√
N/4 determined by the binomial distribution. This is termed quantum

projection noise (QPN) [IBB+93]. It arises even if there are absolutely no fluctuations

in the number of particles emitted by the beam source.

We now estimate the phase noise due to QPN for a general state |ψ〉 = cosφ |a〉+
sinφ |b〉.17 The mean value measured for Na is Na = N cos2 φ. The standard devi-

ation is ∆Na =
√
N cos2 φ sin2 φ, for this process governed by the binomial distri-

bution. This leads to an uncertainty in the measurement of the phase that can be

calculated as follows.

∆Na = 2N cosφ sinφ∆φ ≡
√
N cos2 φ sin2 φ

⇒ ∆φ =
1

2
√
N
. (2.15)

This represents the quantum mechanical limit to the measurement of the precession

phase using N independent particles. Note that this projection noise contribution is

independent of the value of the precession phase angle, φ.

If, due to averaging over the velocity distribution, the mean value measured for

Na is Na = NC cos2 φ+N (1−C)
2

, then the uncertainty in the phase measurement is

∆φ =
1

2 C
√
N
. (2.16)

2.3.2 Effect of finite detection efficiency

Consider the process described in the previous section, but now including a finite

efficiency for detecting the molecules. Assume that, when the state |ψ〉 = cosφ |a〉+
sinφ |b〉 is projectively measured by interrogating the population in |a〉, photons

emitted in the process are detected with an efficiency pd.
18 In such an experiment,

17Here, if |ψ〉 represents |ψf 〉, then |b〉 (|a〉) represents the detection basis state |XN 〉 (|YN 〉).
18This efficiency factor includes effects such as the e.g. the finite acceptance of the light collection

optics, the loss of photons in the light pipes and fiber bundles, and the finite quantum efficiency of
the detector. For the first-generation ThO experiment, this efficiency is pd ∼ 1%.
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the probability of measuring a photon is pγ = pd cos2 φ.19 The detection of photons

from the molecules is governed by a binomial process, with probability pγ. Therefore,

when N molecules are independently interrogated, the mean value measured for Na

is Na = Npγ = Npd cos2 φ, and the standard deviation in Na is
√
Npγ(1− pγ). We

estimate the phase noise due to this binomial process as above.

∆Na = 2Npd cosφ sinφ∆φ ≡
√
Npd cos2 φ (1− pd cos2 φ)

⇒ ∆φ =
1

2
√
N

√
1− pd cos2 φ

pd sin2 φ
. (2.17)

In general, the phase noise now depends on the value of the precession phase angle.

In the case when φ ≈ π/4 (cos2 φ = sin2 φ = 1/2), as is relevant for the eEDM

experiment when biased to be sensitive to the eEDM-induced phase, this expression

becomes

∆φ =
1

2
√
N

√
2− pd
pd

. (2.18)

In the limit of small detection efficiency (pd � 1), this becomes

∆φ ≈ 1

2
√
Npd/2

=
1

2
√
Na

. (2.19)

As intuitively expected, this is equal to the contribution from shot noise on Na

detected molecules.

In the limit of ideal detection (pd = 1), regardless of the value of φ, (2.17) becomes

∆φ =
1

2
√
N

(2.20)

as expected from the discussion in Section 2.3.1. For non-zero but finite detection ef-

ficiencies, (2.17) can be used to estimate the phase noise contribution from projection

noise.

19The probabilities of the various outcomes of the experiment are as follows: (a) P(molecule
projected on to |a〉, and photon is detected) = pγ = pd cos2 φ; (b) P(molecule projected on to |a〉,
but photon is not detected) = (1− pd) cos2 φ; (c) P(molecule projected on to |b〉, so no photon is
emitted) = sin2 φ. These probabilities add up to 1.
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2.3.3 Magnetic noise

We examine the effect of phase fluctuations arising from fluctuations in the magnetic

field. We restrict our attention in this section to fluctuations in Bz.20

We separate the magnetic field into its mean value, plus fluctuations from the

mean

B = B + B̃ (2.21)

and find that the resultant fluctuations in the precession phase (2.4) are given by

φ̃B = µNBτ ×
(1

τ

∫ τ

0

dt B̃
)
. (2.22)

Here τ = L/vx is the time of flight of molecules with a velocity vx in the interaction

region, between the state preparation and detection lasers.21 An important point

to note is that magnetic field fluctuations, B̃, are averaged over the time of flight

through the interaction region. In the frequency domain, this corresponds to a low-

pass filtering of the noise spectrum of the magnetic field, and means that only spectral

components within a bandwidth ∆f ∼ 1/τ around DC contribute to the magnetic

field fluctuations.

B̃ is a random variable that fluctuates in time.22 It can be considered to consist of

two components. The first is white Gaussian noise, B̃WGN , in which every frequency

component of the noise has a zero-mean Gaussian distribution of amplitudes, and

the variance is identical for every frequency component. Thermal noise (magnetic

Johnson noise) is well described by such a distribution. The second is colored noise

BCN , which typically tends to dominate over white noise at low frequencies.23 Its

moments are harder to calculate a priori. Since the phase measurement low-pass

20Due to the tensor Stark shift, fluctuating components of the magnetic field along the x and
y− axes lead to common-mode shifts in the energies of |J = 1,mJ = ±1〉 states, and so these do
not contribute to the phase difference that is measured. There can be shifts due to fluctuating
transverse E and B-field components which are not common-mode - these are treated in Chapter 3
in relation to systematic errors.

21With L = 22 cm, and vx = 170 m/s, τ = 1.3 ms.
22Spatial variations of B along the path of the molecules are effectively converted into temporal

fluctuations in the rest frame of the molecules. However, since all the spatial variations are between
x = 0 and x = L, and since the phase is an integral over the path of the molecules, the spatial
variations are all averaged out.

23This can arise from a number of technical, yet unavoidable, causes. For example, 1/f noise
in the current supplies, relaxation of the grains in the magnetic shielding after demagnetization,
motion of magnetic materials in the lab environment, and so on.
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filters the magnetic noise, B̃CN tends to dominate the effects in the measurement.

In the following we assume that B̃ can be described in terms of its rms value alone

- we ignore higher moments than the second, which is equivalent to assuming that

the spectral components of both white and colored noise are normally distributed.

We define B̃τ = 1
τ

∫ τ
0
dt B̃ for convenience, and calculate its rms value now. The

magnetic field noise in terms of its spectral components is

B̃(t) =

∫ ∞
−∞
B̃(ν) e−i2πνt dν. (2.23)

The integral B̃τ can be rewritten as

B̃τ =
1

τ

∫ τ

0

B̃(t) dt =

∫ ∞
−∞
B̃(ν) e−iπντ sinc(ντ) dν. (2.24)

The variance of B̃τ is

(∆B̃τ )2 = 〈
∫ ∞
−∞
B̃(ν) e−iπντ sinc(ντ) dν

∫ ∞
−∞
B̃(µ) e−iπµτ sinc(µτ) dµ〉 (2.25)

where 〈. . .〉 denotes an average over the distribution of amplitudes of the spectral

components B̃(ν). Using the fact that different spectral components of the noise are

uncorrelated, 〈B̃(ν)B̃(ν)〉 ≡ B̃ν
2
δ(µ+ ν), we find that the rms value of B̃τ is

∆B̃τ =

√∫ ∞
−∞
B̃ν

2
sinc2(ντ) dν. (2.26)

Here B̃ν is the spectral density of the B-field noise.24 In the case of white Gaussian

noise, the equation can be simplified to ∆B̃τ = B̃ν/
√
τ , where ∆ν = 1/τ = 770 Hz,

is the effective low-pass bandwidth discussed before.

Using the methods described in Section A.5, a conservative estimate of the

spectral density of B̃WGN due to conductors around the molecules is B̃ν . 300

fT/
√

Hz, leading to ∆B̃τ . 10 pT. The resultant phase fluctuations have an rms

value ∆φ . 10−9 rad. We shall see that this is significantly smaller than targeted

sensitivity of the experiment.

24The spectral density Iν of a quantity I is defined here as the root mean square value of I
measured in a bandwidth ∆ν centered at a frequency ν, divided by

√
∆ν. It has units of [I]/

√
Hz.
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2.4 eEDM sensitivity of the experiment

The eEDM-induced phase φE can be separated from the precession phase as follows.

We assume that the B-field is set so that φB = ±π/4. This bias phase enhances the

sensitivity of A to small phase offsets. (We assume that φB is set perfectly, lumping

any errors in this bias phase from the magnetic field into the residual phase φr.) We

then have from (2.9)

A = C cos 2(φB + φE + φr)

= −C sgn(B) · sin 2(φE + φr)

' −2 C sgn(B) · (deEmolτ + φr). (2.27)

Recall that Emol ∝ sgn(Elab) · sgn(N ). The eEDM contribution to the precession

phase is extracted as the part that is odd under reversals of both Elab and N . Any

components of the phase error φr that are odd under these reversals will contribute

to the systematic error - such effects are examined in Chapter 3.

Using (2.16) and (2.19) for the fundamental phase noise, the statistical uncer-

tainty in the measurement of an eEDM can be written as

∆de =
1

2 C Emolτ
√
ṄdT

(2.28)

where T is the integration time of the measurement, and ṄdT is the total number of

photoelectrons detected (= molecules detected) during the projective measurement.

The statistical sensitivity achievable with an eEDM experiment using a beam

of ThO molecules can now be estimated. Table 2.1 contains a list of the various

parameters that enter the estimate of the statistical sensitivity. The model used for

the molecular beam is that Nbeam molecules, in a single quantum state, are emitted

due to one pulse of laser ablation into a solid angle Ωb by the molecular beam source.

It is assumed that pulses of molecules are emitted from the source with a repetition

rate R, set by the ablation laser. In estimating the sensitivity, it is assumed that R

= 10 Hz, although higher repetition rates are technologically possible.

The molecules from the beam source traverse a length L0 of the apparatus before

they are pumped into the H state. This length L0 reduces the number of molecules

that survive the flight to the end of the apparatus. L0 is set by the length of the

vacuum fittings required to penetrate the magnetic shields, and by the vacuum hard-
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ware needed in the region where the molecular beam is collimated and characterized.

L0 = 60 cm is an assumed value. It is assumed that the state-transfer (optical pump-

ing) and state preparation lasers are located close to each other. The length L of the

flight path between state preparation and detection lasers, over which the molecules

precess in the E and B-fields, has been introduced before. L = 22 cm is set by the

design of the B-field coils.

es, ep are the efficiencies for state-transfer and state preparation respectively. es

for the optical pumping scheme of transfer from X → A  H is measured to

be ∼ 40%.25 ep is calculated from the rotational branching ratios for decay from

A, J = 0 → H, J = 1 sublevels in the E-field, assuming that the dark state can

be prepared with unity efficiency. eg, eq are respectively the geometric efficiency for

collecting photons emitted from the molecules (set by the solid angle covered by

the light collection optics), and the quantum efficiency of the detector. cEX is the

Franck-Condon factor for decay from E, v = 0  X, v = 0, which yields photon

at 613 nm (decays into other vibrational states yield photons that are at different

wavelengths – I have assumed that only photons at 613 nm are detected).

Assuming that a 24 hr integration time is used for the experiment, the eEDM

uncertainty that is achievable is estimated to be δde = 3.3 × 10−29 e cm. This

corresponds to an uncertainty δφE ≈ 10 µrad.

Improvements are foreseeable in some of parameters that enter this estimate, and

these will be mentioned in Chapter 6.

25This was measured by Ben Spaun, by comparing the signal heights of laser-induced fluorescence
from the ground state (using the X, J = 1→ C, J = 1 transition), and from the H state (using the
H,J = 1 → E, J = 0 transition) after optical pumping on the X,J = 1 → A, J = 0  H,J = 1
transition.
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Parameter Estimate

aMolecules/pulse in X|1, 0〉 state, Nbeam 5.6× 1010

aBeam forward velocity, vx 170 m/s
aBeam divergence, Ωb 0.35 sr
Ablation laser repetition rate, R 10 Hz
Beam length before interaction region, L0 60 cm
Flight length in interaction region, L 22 cm
Detected area of beam, A 1 cm2

Detected solid angle of beam, Ωd 1.9× 10−4 sr
Coherence time, τ = L/vx 1.3 ms
bSurviving H state fraction after flight,
f = e−τ/τH 0.49

State transfer efficiency, es 40 %
State preparation efficiency, ep 16.6 %
cFranck-Condon factor
E, v = 0→ X, v = 0, cEX 0.87

Geometric efficiency
of fluorescence collection, eg 10 %

dQuantum efficiency
of photon detection, eq 10.5 %

Photoelectron counts/s,

Ṅd = NbeamR
Ωd

Ωb
f esepcEXegeq 2.4× 104/s

Contrast, C 0.98
eInternal field in ThO, Emol 104 GV/cm

eEDM uncertainty (T = 1 s), ∆de 9.6× 10−27 e cm
eEDM uncertainty (T = 24 hr), ∆de 3.3× 10−29 e cm

Table 2.1: An estimate of the statistical uncertainty in the measure-
ment of an eEDM, achievable with a ThO molecular beam experiment.
This estimate uses currently verified numbers where available and con-
servative estimates otherwise. Parameters in bold are independent
input parameters. Note that this estimate does not correspond to the
sensitivity of the experiment at the time of writing.
a Based on parameters reported in [HPG+11].
b The lifetime of the H state, τH = 1.8 ms (see Section 4.2).
c Value from [WS72], verified using overlap of simple harmonic oscillator
wavefunctions for E,X with the constants in [EL84].
d Hamamatsu R8900-20 photomultiplier tube, at λ=613 nm.
e The value of Emol for the H state in ThO is calculated in [MB08].
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Chapter 3

Potential systematics

The only way to rectify our reasonings is to make them

as tangible as those of the Mathematicians, so that we

can find our error at a glance, and when there are

disputes among persons, we can simply say: Let us

calculate.

Gottfried Leibniz, The Art of Discovery

Some sources that lead to a phase offset φr, which could potentially mimic an

eEDM signal, are examined in this chapter. This is not an exhaustive list, but merely

some of the sources that were considered at the beginning of the experiment. System-

atic errors have devious ways of sneaking into a measurement, and a priori estimates

only reveal the limits of the experimenter’s paranoia/imagination. Nevertheless, the

size of systematic errors generated by any proposed mechanism can always be quanti-

tatively calculated. We first consider some harmless sources of phase offsets, followed

by a discussion of nefarious ways in which these effects can combine to result in an

eEDM-like signal. In all the discussions in this chapter, the aim is to distinguish

phase offsets φr from the eEDM-phase φE = deEmolτ , using the following properties

of φE :
1

• It reverses sign under N reversal.

• It reverses sign under reversal of the lab electric field, ~E .

• In the strongly electrically polarized regime, it is independent of the magnitude

of ~E .
1These properties are due to (2.27).
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• It is independent of the sign and strength of the B field.

Any component of φr that mimics this behavior will lead to a systematic error.

Also recall from Section 2.4 that the expected sensitivity of the first-generation ThO

experiment is δφE = 10−5 rad, corresponding to δde = 3.3 × 10−29 e cm. Allowing

for improvements and with a general optimism about future advances in technology,

we will assume that a statistical sensitivity δφE ∼ 10−6 rad can be achieved in some

incarnation of the experiment with ThO. Any offset phases φr that approach this

value will be considered as potentially dangerous systematic errors.

An important note with regard to E-linear effects: phase shifts that are quadratic

in ~E can lead to effects that seem linear in the part of ~E that is under the experi-

menter’s control, if there is a non-reversing electric field ~Enr along with the nominally

reversing lab field ~Er: E2 = (~Er + ~Enr)2 = E2
r +E2

nr + 2~Er · ~Enr. The cross term 2~Er · ~Enr
appears to be linear in the lab electric field.

3.1 Harmless components

3.1.1 Electric quadrupole shifts

A state of an atom or molecule with J ≥ 1, such as the H, J = 1 state in ThO,

can have non-zero matrix elements of the quadrupole moment operator between its

sublevels. The Hamiltonian for the interaction of a quadrupole moment Q with an

electric field gradient is

HQ = −
∑
i,j

Qij∇iEj = −
∑
µ

Q2,µ(∇E)∗2,µ (3.1)

where the second equation is written in the spherical tensor basis.

An electric field gradient can arise in the experiment due to imperfections or mis-

alignments in the field plates. Since the field gradient is produced in these situations

by the imperfect geometry of the electrodes, ~∇~E scales linearly with the applied

electric field ~E . As a result of this interaction, the components Q2,±2 of the electric

quadrupole moment can potentially lead to a frequency shift between |mJ = ±1〉
that can appear to be linear in the lab electric field.

The matrix elements of the quadrupole moment between states in the |J,mJ ,Ω〉
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basis are of the form

〈J,m′J ,Ω′; Γ|Q2,µ|J,mJ ,Ω; Γ〉 = 〈J,m′J |2, µ; J,mJ〉 〈J,Ω′|2, q; J,Ω〉 QH,q (3.2)

using (A.16). QH,q are spherical tensor components of the intrinsic quadrupole mo-

ment of the H state. First we consider the two states with N = +1, i.e. the sublevels

|mJ = ±1,Ω = ±1〉.2 The matrix elements of the quadrupole Hamiltonian can be re-

stricted to this subspace, since all other off-diagonal matrix elements are suppressed

greatly by the tensor Stark splitting. The Hamiltonian is

H = HQ +HZeeman +HEDM

=

(
Q‖ Q⊥

Q⊥ Q‖

)
+

(
µNB

−µNB

)
+

(
deEmol

−deEmol

)

= Q‖ 1 +Q⊥ σx + (µNB + deEmol) σz (3.3)

in terms of the Pauli matrices. It can be immediately observed that the quadrupole

interaction has two effects: first, it rotates the axis of the pseudo-magnetic field

around which the two-state system’s pseudo-spin precesses, leading to a loss of con-

trast; second, it increases the length of the pseudo-magnetic field, which adds phase

offsets to the measurement.

The Zeeman splitting between |mJ = ±1〉 is 2µNB (∼ 2π× 200 Hz with a π/2

bias magnetic field). The matrix elements of the quadrupole Hamiltonian are

Q‖ =
−1

10
QH,0 (∇E)0, Q⊥ =

−3

5
QH,2 (∇E)∗2. (3.4)

Q‖ only leads to a common-mode shift and can be neglected. We will consider Q⊥ to

be the sole effect of the quadrupole interaction from now on. Note that Q⊥ contains

the component (∇E)∗2, which is related to ∇xEy. Since the Ey component of the lab

field itself arises due to geometrical imperfections from the main field Ez, we expect

this component of the field gradient to be very small. The quadrupole moment of the

H state in ThO is unknown. An estimate of its size can be made using dimensional

considerations as: QH ∼ ea2
0 = 6.8 mHz/(V/cm2). Even with the large value (∇E)∗2

2The quadrupole Hamiltonian for the states with N = −1 is obtained by replacing QH,2 by
QH,−2 in (3.4). The absolute values of these reduced matrix elements in the molecule-fixed frame
are equal: |QH,2|2 = |QH,−2|2.
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= 1 V/cm2 therefore, the matrix element of the quadrupole Hamiltonian is Q⊥ ≈
2π× 4 mHz.

The initial state |ψi〉 is written in terms of the basis vectors as(
c1(0)

c−1(0)

)
=

1√
2

(
1

1

)
(3.5)

After precession for a duration τ , the state vector evolves into |ψf〉 given by:(
c1(τ)

c−1(τ)

)
= U(τ)

(
c1(0)

c−1(0)

)
(3.6)

Here

U(τ) = V

(
exp(i

∫ τ
0
κ dt)

exp(−i
∫ τ

0
κ dt)

)
V † (3.7)

and we have defined

V =

(
cos θ/2 − sin θ/2

sin θ/2 cos θ/2

)
κ =

√
Q2
⊥ + (deEint + µNB)2

tan θ = − Q⊥
deEmol + µNB

. (3.8)

The amplitudes of |ψf〉 in the detection basis can be written as(
cX

cY

)
=

1√
2

(
1 1

1 −1

)(
c1(τ)

c−1(τ)

)
(3.9)

and the asymmetry as

A =
|cX |2 − |cY |2

|cX |2 + |cY |2
. (3.10)

This can be evaluated to obtain

A =
Q2
⊥

Q2
⊥ + (µNB + deEmol)2

+
(µNB + deEmol)2

Q2
⊥ + (µNB + deEmol)2

cos(2

∫ τ

0

κ dt). (3.11)
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The quadrupole interaction results in a (negligibly small) loss of contrast, by a factor

smaller than ∼ 10−6 for the values of Q⊥, µNB estimated above. Its effect on the

precession phase φ = 2
∫ τ

0
κ dt is what we will consider next. Since Q⊥ � µNB, we

can expand the square root in κ and write

φ = 2

∫ τ

0

dt
[
µNB + deEmol +

Q2
⊥

2µNB
+O

( Q4
⊥

(µNB)3

)]
. (3.12)

This expression can also be obtained using perturbation theory on the Hamiltonian

in (3.3). Comparing this with (2.4), we find that the phase offset added due to the

quadrupole interaction is

φr,Q =
Q2
⊥τ

µNB
. (3.13)

This phase offset is very small: φr,Q ∼ 1 nrad. Further, it is quadratic in the field

gradient (∇E)2, and therefore does not result in an eEDM-like systematic. This can

be intuitively understood using (3.3), where we see that the Zeeman shift term µNB
appears along the diagonals of the Hamiltonian, and Q⊥ appears in the off-diagonal

terms. Therefore, in the limit when Q⊥ � µNB, the quadrupole interaction affects

the precession phase quadratically. In comparison, if the experiment was operated

with B ≤ 10 µG, the axis on the Bloch sphere around which the superposition state

|ψi〉 precesses would be dominated by the (local) axis of the electric field gradient.

As the electric field gradient is not easy to measure in the apparatus, this could lead

to worrisome effects. Therefore a small B-field, in addition to being convenient for

adding a bias phase, is also useful to suppress the effect of the quadrupole interaction.

3.1.2 Leakage currents

Compared to eEDM experiments with atoms and non-Ω-doublet molecules, the ex-

periment with ThO has the advantage that small electric fields can be used to com-

pletely polarize the H state. This reduces the concern raised by the inevitable

E-correlated leakage currents and the B-fields produced by them. In addition, the

electric field plate assembly discussed in Section 5.2 is carefully designed to minimize

leakage current paths. Here we estimate the size of the effect caused by leakage

currents, for the sake of illustration.

From the geometry of the electric field plate assembly, the closest approach of

a leakage current to the precession region is ∼ 10 cm. At this distance, the B-field

produced by a leakage current is Bleak ∼ 6 fT/nA. The worst-case estimate, where
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this B-field acts over the entire precession path, leads to a phase offset φr ≈ 10

nrad/nA that is linear in the E-field. However, this phase offset is distinguishable

from φE since

1. It scales with the magnitude of the lab E-field, unlike the phase due to the

internal field Emol.3

2. It does not reverse sign under N reversal.

These features are sufficient to distinguish it from φE . Note also that, even with the

large leakage current of 1 nA, the worst-case phase added by the leakage B-field is

still smaller than the targeted sensitivity of the experiment.

3.1.3 Stress-induced birefringence

Since the state preparation and detection lasers propagate through the glass E-field

plates, any birefringence in them that is linear in the E-field could appear as a

potential systematic. Mechanical stresses can cause the refractive indices of glass to

be slightly different along one axis compared to a perpendicular axis. The stress-

induced optical path difference δ through a glass slab of thickness d under a normal

stress σ is approximately given by

δ = K d σ (3.14)

where a typical value of K is ∼ 2 × 10−12 Pa−1 (Schott Catalog, SF-7 glass). The

thickness of the E-field plates is d = 1.25 cm. Stresses that are correlated with the E-

field can arise due to the coupling of stress-induced birefringence and the electrostatic

stress between the electrodes applying the E-field.

The normal stress due to electrostatic attraction between the plates is

σ = −1

2
ε0E2 (3.15)

The stress is negative (i.e. it tends to draw the plates closer) and quadratic in E . For

any birefringence to be linear in E therefore, there has to be some effect involving

non-reversing components.

3If the leakage current is ohmic, it scales linearly with E . If it is (as is often the case) non-ohmic,
then it scales with a polynomial dependence on E . In either case, these have a different scaling with
E compared to Emol.

43



As an upper bound to the E-linear phase offset due to birefringence, the full

contribution due to birefringence is evaluated. With E = 100 V/cm, we find σ '
5 × 10−4 Pa. The path difference is therefore δ ' 1 × 10−15 cm from each of the

field plates. At λ = 900 nm, this corresponds to an optical phase difference 2πδ/λ =

7× 10−11 rad between the fast and slow axes. The actual systematic effect is smaller

than this, and is therefore negligibly small in comparison with the targeted sensitivity

of the experiment.

3.1.4 g-factor difference between Ω-doublets

It has been shown in [BHJD09, Ham10] that the magnetic moments of the N = ±1

components of an Ω-doublet in an E-field can be different from each other, with a

difference that is linear in the E-field applied to polarize the system. In the H state

in ThO, it arises due to mixing between the J = 1 and J = 2 rotational levels.

Using equation [3.43] from [Ham10] the fractional difference between the magnetic

moments µN=+1 and µN=−1 in the H state is

∆µN
µN

≈ 3DH |E|
10B

≈ 6× 10−3, (3.16)

where DH is the molecule-fixed electric dipole moment of the H state and B is the

rotational constant of the H state. The values DH = 2π× 2.13 MHz/(V/cm), E =

100 V/cm, B = 2π× 10 GHz have been used in the above equation. This effect does

not directly lead to any systematic effects, since the difference in magnetic moments

is independent of the sign of the E-field.

3.1.5 Motional fields

The ~E , ~B fields applied in the lab frame are seen by molecules moving with a velocity

~v, in the non-relativistic limit appropriate for the experiment, as the fields

~B′ = ~B − ~v × ~E/c2 = ~B + ~Bmot
~E ′ = ~E + ~v × ~B = ~E + ~Emot. (3.17)

Note some of their properties.

• The motional fields ~Emot ( ~Bmot) is non-reversing when ~E ( ~B) is reversed.

44



• Due to the geometry of the experiment, ~Emot, ~Bmot are perpendicular to ~E , ~B
respectively. Since the main E ,B-fields are ẑ-directed, these motional fields

appear in the xy plane.

• For nominal values of parameters in the ThO experiment, ~E = 100 V/cm ẑ, ~B
= 25 mG ẑ, vx = 170 m/s, we find that ~Emot ≈ 4× 10−6 V/cm ŷ, ~Bmot ≈ −200

nG ŷ. These are very small fields indeed.

Due to the fact that the perturbing fields are transverse, direct interactions between

H, J = 1 |mJ = ±1〉 states due to these fields are strongly suppressed by the tensor

Stark shift ∆st. For example, a motional magnetic field ~Bmot = B⊥x̂ leads to a an off-

diagonal Zeeman shift between |mJ = ±1〉 which appears in 4th order of perturbation

theory:

∆EN±1 ∼
(µNB⊥)4

∆3
st

∼ 2π × 10−35 Hz, (3.18)

using the parameters for the H state. This is a vanishingly small effect.

3.2 Dangerous combinations

In the real world, perverse combinations of harmless building blocks can lead to

dangerous systematic errors. In this section, we attempt to combine some of the

ingredients discussed so far to construct a systematic error that mimics the behavior

of φE .

3.2.1 Polarization rotations and light shifts

Since the state preparation and detection bases are set by the polarization of the

respective lasers, polarization rotations can add phase offsets. There are different

kinds of rotations: rotations in the xy plane, and rotations in the xz, yz planes. The

latter two can be analyzed as equivalent effects.

• Rotations in the xy-plane: We have already examined stress-induced bire-

fringence effects that can cause such rotations. These rotations can arise for

technical reasons, as uncontrolled offsets in the angle χ between the state prepa-

ration and detection lasers. If these are proportional to the sign of the E-field,

they can potentially appear as systematics. However, as long as the polarization

control of the lasers and the control electronics for the E-field are decoupled,
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it is difficult to imagine ways in which the electric field influences the polar-

ization of the lasers in a way that is proportional to the sign of E but not the

magnitude.

• Rotations in the xz-plane: Consider a laser beam with an amplitude EL,0
and a polarization that has been set to be nominally along the x̂ axis. Assume

that the k̂-vector of the laser is tipped from the ẑ-axis by an angle θ in the

xz-plane, and therefore is not exactly perpendicular to the xy-plane (where the

ẑ-axis is defined by the E-field). Such rotations can arise either due to mis-

alignment, or due to fundamental cross-polarization effects. Cross-polarization

is a result of the vector nature of electromagnetic waves – a simple derivation

is presented in Section A.6, where it is shown that the angle θ due to this effect

is θ ∼ x0λ/w
2 (x0 is the x-width of the laser beam, w the beam waist and λ

the wavelength of the laser).

In the coordinate frame corresponding to the molecule’s quantization axis (which

is set by the E-field), the xz rotation makes the laser’s electric field vector ~EL have

the following components

~EL = EL,0 cos θx̂+ EL,0 sin θẑ. (3.19)

The first term corresponds to a reduced amplitude of the laser’s E-field that couples

to the H, J = 1, |mJ = ±1〉 states. However, due to its dependence on cos θ, it

only leads to a small reduction in the amplitude of the E-field. If the laser beams

have enough intensity so that the H → C state preparation and H → E detection

transitions are saturated, this term has no effect on the measurement.

The second term requires more caution. Since it is ẑ-polarized, it couples the

H, J = 1, |mJ = ±1〉 states to |mJ = ±1〉 states in the C,E electronic states. For

the static electric fields typically used in the experiment (~E ∼100 V/cm ẑ), this does

not resonantly couple the H, J = 1|mJ = ±1〉 levels to any allowed transitions. It

does however lead to off-resonant energy level shifts (light shifts/AC Stark shifts).

The state preparation laser’s frequency is detuned from resonance with the allowed

H, J = 1 |mJ = ±1〉 → C, J = 1 |mJ = ±1〉 transition, by∼ 100s of MHz (depending

on the tensor Stark shift in the C state and the choice of N for the H and C states).

Similarly, in the E state, the laser’s frequency is detuned from resonance with the

allowed H, J = 1 |mJ = ±1〉 → E, J = 1 |mJ = ±1〉 transition, by ∼ 20 GHz.
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Since the detuning that enters this light shift is different for the H, |mJ = ±1〉
states (due to the differential Zeeman shift between the H state and the excited

electronic C or E state), this can lead to a differential phase shift between |mJ = ±1〉.
In addition, this phase shift can be dependent on N , either due to technical errors in

setting the frequency step of the laser to switch betweenN = ±1 states, or due to the

difference in the magnetic moment µN for N = ±1 states in a way that is dependent

on the E field. Further, this detuning can have a dependence on the E-field due to

the tensor Stark shift in the H state.

We estimate the size of this effect now. We will perform the analysis with the C

state in mind, since the detuning is smaller for the H → C transition, but the same

kind of analysis can be used for the H → E transition. Let the transition dipole

moment of the H → C transition be DHC . We assume that the angle θ is small,

and therefore so is the perturbing term in the Hamiltonian Hint ≈ −DHCEL,0θ that

leads to the light shift, compared to the detuning ∆. The light shift ∆E±1 for the

H, J = 1 |mJ = ±1〉 states can be obtained using perturbation theory:

∆E±1 =
D2
HCE2

L,0θ
2

∆N ± δµNB
. (3.20)

Here ∆N is the detuning from the B-field free position of |mJ = ±1〉 states and δµN

is the difference between the magnetic moments of the H state and the C state. Both

these terms have been written with explicit N labels as reminders that they can be

different for N = ±1 states. Since the differential Zeeman shift is small compared

to the detuning, we can expand the denominator in a Taylor series and obtain

∆E±1 =
D2
HCE2

L,0θ
2

∆N

(
1∓ δµNB

∆N

)
. (3.21)

The size of this effect is estimated using realistic parameters: DHCEL = 2π× 10

MHz, θ = 1 mrad, ∆N = 2π× 100 MHz, δµNB = 2π× 10 kHz in a B-field of 10 mG

(dominated by the magnetic moment of the C state). We find that

∆E±1 = (2π × 10−6 Hz) f(N , E)× [1− 10−4g(N ,B, E)] (3.22)

where we have explicitly written dimensionless functions f, g to show the possible

dependence of the light shift on N ,B, E .
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The phase shift due to this light shift is suppressed since the light shifts are

restricted to the regions where the lasers interact with the molecules. Over an inter-

action time Tlaser ∼ 1 mm/vx = 6 µs, the light shift leads to a phase offset between

H |mJ = ±1〉 that is

φrLS ∼ (7× 10−11 rad) f(N , E)× [1− 10−4g(N ,B, E)]. (3.23)

Hence, this phase offset is not problematic as it is small compared to the targeted

sensitivity of the experiment.

3.2.2 Non-reversing E-fields & g-factor difference

Off-resonant energy shifts can be a bothersome source of eEDM-like systematics,

especially in experiments where the electric field Emol experienced by the eEDM can

only be reversed using the laboratory electric field. In such experiments, any phase

offsets φr that are linear in the lab electric field can appear to mimic an eEDM-

induced phase φE . However, ThO has the advantage that the Ω-doubling in the H

state allows the internal field Emol to be reversed by reversing N (e.g. by moving the

state preparation and detection lasers in frequency), without changing anything to

do with the lab electric field. This is a powerful feature that allows the separation

of E-linear phase offsets from φE .

The effect of such perturbations is conveniently treated using the formalism de-

veloped in Section B.8. The energy shift due to E ,B-fields leading to the geometric

phase is shown there to be identical for states with N = ±1, as long as the detuning,

electric dipole moment and magnetic moment are identical. Here we construct a

potential systematic error that might arise due to the fact that the magnetic mo-

ments are not identical. The E-field part of (B.61) for the energy shift between

|mJ = ±1;N〉 is

∆EN±1 =
1

2

[ d2
⊥,NE2

⊥

∆st,N + µz,NBz − ωE⊥
−

d2
⊥,NE2

⊥

∆st,N − µz,NBz + ωE⊥

]
. (3.24)

Explicit dependences onN have been indicated for parameters that could be different

for N = ±1 states. We make the simplifying assumption that ∆st,N ≈ d2
‖E2
z , and

that d⊥,N = d⊥. This leaves just the magnetic moments to be dependent on N . The
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energy shift becomes

∆EN±1 ≈ −
(d⊥E⊥
d‖Ez

)2

(µz,NBz − ωE⊥). (3.25)

The N dependence of the magnetic moment is: µz,N = µz,0 + Nγ|Ez|, where γ =

µz,0
3d‖
20B

following (3.16). Therefore we have

∆EN±1 = −
(d⊥E⊥
d‖Ez

)2

(µz,0Bz − ωE⊥ +Nγ|Ez|Bz). (3.26)

We ignore the geometric phase term ωE⊥ and the N -independent Zeeman shift term

µz,0Bz, and focus our attention on the N -odd energy shift ∆Egf .

∆Egf = −
(d⊥E⊥
d‖Ez

)2

(Nγ|Ez|Bz)

= −(d⊥E⊥)2

d2
‖|Ez|

(NγBz). (3.27)

This term is nominally even under E-reversals, but a combination of reversing and

non-reversing transverse components can make a difference. We write the transverse

electric field vector as ~E⊥ = ~Er⊥ + ~Enr⊥ to denote reversing and non-reversing compo-

nents respectively. A reversing transverse field ~Er⊥ could arise, for example, due to

non-parallelism of the electric field plates. A non-reversing transverse field ~Enr⊥ could

arise from technical sources, such as offsets in the voltages applied to the plates, or

due to effects such as patch potentials.

We ignore E-even terms and focus on the (effectively) E-odd cross term between

reversing and non-reversing components, which leads to the energy shift

∆Egf = −N
(d⊥
d‖

)2 ( ~Er⊥ · ~Enr⊥
|Ez|

)
(2γBz), (3.28)

and the phase shift

φgf = N
(d⊥
d‖

)2 ( ~Er⊥ · ~Enr⊥
|Ez|

)
(2γBzτ). (3.29)

This is a potentially dangerous systematic. Note its properties:

• It is odd under ~E-reversal.
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• It does not scale with the magnitude of ~E , due to the appearance of the “geo-

metric” term ~Er⊥/|Ez|.

• It is odd under N -reversal.

It can be distinguished from φE only by its linear dependence on B. Further, there is

a part of φgf that is independent of the B-field in the lab, since there are inevitable

offsets in the magnetic field. These can arise from offsets in the current supplies and

due to incomplete suppression of the ambient field in the lab by the magnetic shields.

Having constructed this potential systematic, it remains to evaluate its size.

We use the following parameters:

• Ez = 100 V/cm, Enr⊥ = 10 mV/cm, Enr⊥ = 10 mV/cm. The reversing and

non-reversing transverse components are assumed to be collinear, to obtain

a worst-case estimate. Reversing and non-reversing components at this level

are not unreasonable to expect, based on the alignment of the field plates and

plausible non-reversing potentials on the plates.

• µz,0 = 2π× 11.33 kHz/G,

d‖ ≈ d⊥ ≈ 2π× 2.13 MHz/(V/cm),4

B = 2π× 9.8 GHz, the rotational constant for the H state

γ = µz,0
3d‖
20B
≈ 2π × 0.37 Hz/(G V/cm)

Bz = 10 mG

τ = L/vx = 1.3 ms.

With these parameters, (3.29) can be evaluated to obtain φgf . sgn(~E)·sgn(N ) 10−10

rad. While it has the correct symmetries to mimic an eEDM, its magnitude is much

smaller than the targeted uncertainty of the ThO eEDM experiment.

In conclusion, we note that mixed-origin terms such as this one are likely to be

the leading sources of systematic errors in the experiment. A couple of the most

plausible sources have been examined in this chapter and it has been found that,

with conservative estimates of the parameters involved, they do not lead to a sys-

tematic error at the level of the statistical sensitivity that is foreseeable in an eEDM

experiment with ThO.

4See Chapter 4 for details regarding the measurement of the electric and magnetic dipole mo-
ments.
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Chapter 4

Measurements

“I think we just look,” he said. “We find what we find.

Then we think about it.”

Joe Leaphorn, A Thief of Time

This chapter describes some measurements that were made along the way as

inputs for the design of the EDM apparatus, and for estimating the statistical sen-

sitivity and size of systematic effects in the experiment.

4.1 Production of ThO beams

One of the standard approaches to the production of buffer gas cooled beams of

thermodynamically unstable molecules (such as ThO) is by dissociation of a stable

precursor. In the case of ThO, the convenient stable precursor is thorium dioxide

(ThO2). It is a thermal and electrical insulator, and can be made into a tough ceramic

by standard ceramic powder processing methods [BVK+88]. However, ThO2 has a

high melting point (∼ 3600 K) and low vapor pressure at any reasonably attainable

temperatures. Pulsed laser ablation of ThO2 using focused nanosecond pulses (which

can dissociate the target material non-thermally) is a convenient means of directly

producing ThO. This method has been the mainstay of our work with ThO so far.

The cryogenic beam source for the ThO EDM experiment has been extensively

optimized and characterized by the Doyle group. In its latest incarnation the buffer

gas that is used is neon, which has the advantage over helium that it can be easily

cryo-pumped at ∼ 10 K in the cryogenic source chamber and the cryo-pumping main-

tained for a long time without requiring regular bakeouts. In spite of the rather high
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temperature of a neon-based production cell (∼ 17 K),1, rotational cooling obtained

during supersonic expansion out of the cell into the beam region cools the molecules

to a rotational temperature of ∼ 3 K. As the starting temperature for the supersonic

expansion is much lower (∼ 17 K compared to ∼ 300 K for standard supersonic beam

sources), low final temperatures can be obtained without the high backing pressure

and gas pumping requirements of standard supersonic beam sources. A detailed

characterization of the cryogenic ThO beam source is presented in [HPG+11], and a

description of a closely related cryogenic beam source is in [BSD11].

In this Section, some early measurements of ThO production and molecular beam

yield are presented, purely for reference. They have since been superseded by the

more extensive characterization in [HPG+11] and other unpublished measurements.

Figure 4.1 shows one of the first measurements of ThO produced by laser ablation

in a closed cell filled with helium buffer gas. ThO molecules produced by the ablation

were monitored by CW laser absorption at 613 nm on the strong X, v = 0, Ji = 1→
E, v = 0, Jf = 0 P (1) line. An absorption fraction of η ≈ 60% was consistently

obtained at a helium stagnation density of nHe ∼ 1016/cm3 using 10 mJ pulses of

532 nm Nd:YAG laser light focused by an f/10 lens onto a sintered ThO2 ceramic

target. This absorption fraction η can be turned into a measurement of the density

nThO of ThO molecules in the X, v = 0, J = 1 state, using an estimate of the

absorption cross-section σ0 and the length ` of the column of molecules traversed by

the laser, by the formula

nThO = − log(1− η)

σ0`
. (4.1)

The cross section for a Doppler-broadened line between two molecular states, the

initial state with angular momentum Ji and the final state with angular momentum

Jf , at a resonant wavelength λ is [BKD08]

σ0 =
2Jf + 1

2Ji + 1

λ2

4
√
π

γp
ΓD

(4.2)

where γp is the partial linewidth for the transition being probed and ΓD = 2πvth/λ =

2π× 30 MHz is the calculated Doppler width of the transition at 5 K. If τ is the life-

time of the excited state used in the transition, and BR = EBF × FCF × RBF

is the branching ratio (a product of the electronic branching fraction EBF, the

1This temperature is required to obtain a buffer gas density of ∼ 1016/cm3 of neon in the
production cell, in order to thermalize the ThO molecules before they exit the cell.
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Figure 4.1: Absorption measurements of ThO molecules in the X, V = 0, J = 1
state, inside the buffer gas cell and outside, simultaneously probed using absorption
on the P (1) line of the X → E transition at 16 318.30 cm−1.

Franck-Condon factor FCF describing the vibrational branching ratio, and the rota-

tional branching fraction RBF) for the rovibrational transition used, then the partial

linewidth is γp = BR/τ .

Figure 4.1 shows two absorption traces, one measured inside the cell and one

measured z = 2 mm away from the cell aperture in the mini-beam apparatus MB1.2

For the P (1) line that was used, RBF = 1 (calculated using Equation A.16), FCF =

0.87 [WS72] and EBF ≈ 1 (based on the E state’s spin-orbit content in [KDSP94]).

The lifetime of the E state in ThO is unknown. I estimate the lifetime of the E state

based the following: a) the E state has 50% (probability) 1Σ content [KDSP94], b)

the estimated dipole matrix element for a fully allowed 1Σ 1Σ transition is ∼ ea0.

Therefore, DEX ≈ 0.7ea0, leading to the estimated lifetime τ = 300 ns (using Fermi’s

2The “mini-beam” molecular beam sources are described in Chapter 5.
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Golden Rule). The resulting absorption cross section for the P (1) line is

σ0 =
1

3

(613 nm)2

4
√
π

× 0.87

2π × 300 ns× 30 MHz
= 8× 10−12 cm2 (4.3)

which yields a peak ThO density nThO = 4.5×1010/cm3, using the distance from the

target to the probe laser as the size of the cloud of molecules, ` = 2.5 cm. This is

the density of molecules in the X, v = 0, Ji = 1 state, which has ≈ 23% Boltzmann

fraction of the population at 5 K. The total density of molecules (summed over

rotational states) calculated using the X → E absorption signal inside the cell is

nThO,cell = 2× 1011/cm3.

The beam apparatus is operated at a helium flow rate fHe = 10 sccm (stan-

dard cubic centimeters per minute) ' 4 × 1018 atoms/s. The peak absorption

fraction measured outside the cell aperture is ∼ 2%, which yields a peak density

nThO,beam = 1.7 × 1010/cm3 (assuming the same Doppler width as the inside of the

cell, summed over all rotational states). The density of ThO molecules outside the

aperture nThO,beam can be used to estimate the emission rate Ṅbeam, using the area of

the cell aperture that was used (A = 6 mm × 1 mm) and the forward velocity v‖ ≈
160 m/s (using data from [BSD11] for a similar beam source at fHe = 10 sccm), in

the relation

Ṅbeam = α nThO,beam v‖A. (4.4)

Here α is a quantity of order unity that depends on the hydrodynamics of the flow

of buffer gas out of the cell into the vacuum outside.3 Assuming α = 1 this yields

an estimate of the peak molecule emission rate Ṅbeam ≈ 1.6 × 1013/s. The pulse of

molecules lasts ∼ 3 ms, yielding Nbeam ≈ 5× 1010 molecules/pulse emitted into the

beam in the X state (summed over all rotational states).

4.2 Lifetime of the H state

The lifetime of ThO in the metastable H state was measured using a closed cryogenic

buffer gas cell. The cell used for this measurement had no aperture and no flow of

helium gas. The cell was filled with between 40-800 mTorr of helium gas at 5 K

and laser ablation in the buffer gas environment produced ∼ 1011 ThO molecules

3α = 1/4 for an effusive beam. α = 1 for fully developed flow along a streamline [LL87]. The
value of α for entrained hydrodynamic flow is expected to be close to the value for fully developed
flow.
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Figure 4.2: The H state population was monitored by laser absorption on the H → G
transition. The probe laser was overlapped inside the buffer gas cell with an optical
pumping beam exciting the X → A H transition. a) Absorption curves measured
on the H, v = 0→ G, v = 0 R(1) line. Each trace is an average of the signal from 64
ablation laser shots. b) Lifetimes were derived from exponential fits to the decay of
the absorption signal after the optical pumping was shuttered off. (The data point
at 805 mTorr was not used in the fit as it yielded an anomalously low lifetime, likely
due to collisional effects from the buffer gas, and had a large uncertainty.) A linear
extrapolation to zero pressure yielded τcell(p = 0) = 1.81(3) ms.
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in the ground X state. Molecules from the X, v = 0, J = 1 state were optically

pumped into the H state via the A state. The cell was illuminated with a laser

tuned to the X, v = 0, J = 1 → A, v′ = 0, J ′ = 0 P (1) line at 10 600.15 cm−1, for

a variable duration. (Approximately 4% absorption fraction was observed on the

X → A transition.) Molecules in the H state were probed by laser absorption on the

H, v = 0, J = 1 → G, v′′ = 0, J ′′ = 2 R(1) line at 12 694.58 cm−1. Optical pumping

into the H state was observed only when the pump and probe lasers were overlapped

inside the cell. The diameter of the optical pump X → A laser (∼ 10 mW) was

expanded to 7 mm, while the H → G probe laser (∼ 1 µW) had a 0.5 mm diameter

beam and was aimed near the center of the pump laser beam.4 We observed in

initial measurements that the H state was continuously repopulated, at a low level,

following the ablation pulse. This is probably due to radiative or collision-induced

decays from higher-lying electronic states and/or vibrational levels populated during

the ablation pulse, although the shelf states were not unambiguously identified. To

eliminate errors due to this repopulation, we only analyzed the transient decay of

optically pumped molecules in the H state after the optical pumping beam was

rapidly extinguished. A shutter, built using an audio voice coil, extinguished the

X → A pump laser beam in < 500 µs. Exponential fits to the decay, in the time

window immediately after the pump laser was switched off, were used to extract

lifetimes in the cell, τcell. The lifetimes were measured at a number of different buffer

gas pressures, as shown in Fig.4.2, and an increasing trend for the lifetime versus

the buffer gas pressure was observed. In addition to the effects of diffusion (which

are accounted for by the large pump volume which envelopes the probe volumes),

the buffer gas can have two effects – quenching (which depopulates the H state, and

decreases the apparent lifetime) and repopulation from shelf states (which increases

the apparent lifetime). From the buffer gas pressure dependence in the plot in Fig.4.2,

it appears that (net) repopulation effects are at work. Therefore, the observed decay

lifetimes were extrapolated to zero buffer gas pressure and the value at zero pressure,

τcell(p = 0), is reported here. This procedure yielded τcell(p = 0) = 1.81(3) ms for the

R(1) line. The same procedure yielded τcell(p = 0) = 1.74(1) ms for the R(2) line.

4This arrangement was used in order to mitigate the systematic effect of diffusion, where the
diffusion of optically pumped molecules out of the probe laser beam can affect the apparent lifetime.
With the optical pump beam expanded to be larger than the probe beam, the loss of optically
pumped molecules out of the probe beam’s volume is expected to be balanced by the influx of
optically pumped molecules into the probe beam’s volume. With a helium density nHe = 1.6 ×
1017/cm3 (≡ 100 mTorr at 5 K) and an assumed helium-ThO diffusion cross section of σD =
5× 10−15 cm2, the dwell time of molecules within the probe laser’s volume is ∼ 1 ms.
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In the absence of a model for why these two values should differ, we consider this

difference as the systematic error in the measurement. The total error is considered

to be this systematic error added in quadrature with the fit uncertainties. The final

result is τ cell(p = 0) = 1.8(1) ms. In the absence of repopulation effects in the buffer

gas cell that persist for pathologically long times, this value should be the radiative

lifetime τH of the H state.

4.3 Magnetic and electric dipole moments of the

H state

5The advantages of the suppressed magnetic moment, as well as the Ω-doublet struc-

ture and large polarizability, of the H 3∆1 state have been described in Chapter 1.

Measurements of the magnetic moment µH and the molecule-fixed electric dipole mo-

ment DH are described here. The measurements were carried out using a molecular

beam of ThO, produced in the mini-beam apparatus MB2 described in Section 5.1,

probed at a distance of 30 cm from the cell aperture. The lowest rovibrational level

in the H state (H, v = 0, J = 1) was populated by optical pumping from the ground

electronic X 1Σ+, v = 0, J = 1 state via the A 3Π0+ , v = 0, J = 0 state. It was

subsequently probed a few mm downstream by exciting laser-induced fluorescence

(LIF) on the H, v = 0, J = 1 → E, v = 0, J = 0  X transition at 908 nm. Both

the 943 nm light to drive the X → A pump transition and the 908 nm light for the

H → E probe transition were derived from external cavity diode lasers (DL Pro,

Toptica). Fluorescence from E  X at 613 nm was collected with an f/1.0 lens,

channeled through a φ1 in. × 12 in. long quartz lightpipe and a bandpass interfer-

ence filter (FB610, Thorlabs) and monitored with a photomultiplier tube (H6780-20,

Hamamatsu). The pump and probe lasers were perpendicular to the molecular beam

and the transverse Doppler width on the H → E probe transition was ∼ 5 MHz.

With the pump laser locked to resonance, the probe laser’s frequency was tuned.

The frequency steps were calibrated by monitoring the laser’s transmission through

a scanning confocal interferometer, which was actively stabilized to a 1064 nm YAG

laser (in turn locked to an iodine cell) [Far07]. The free spectral range of the in-

terferometer was independently measured by two methods, a) from a measurement

its length, and b) from measurements of spectra with RF sidebands added to the

5This section is based on [VSG+11].
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Figure 4.3: Levels and transitions used in the measurement of the electric and mag-
netic moments of the H state. Molecules were optically pumped into the H state
using the X → A transition at 943 nm. The structure of the H state in the electric
and magnetic fields was probed using laser-induced fluorescence (excitation using
H → E at 908 nm, photons emitted from E  X at 613 nm).

laser by current modulation [Gur11]. The frequency of the lasers was stepped using

piezoelectric actuators mounted on the grating. The voltage to frequency conversion

factor for the piezos obtained by the two methods (a) and (b) disagreed by 1%. This

is considered as the systematic error in the frequency calibration.

4.3.1 Magnetic dipole moment

The size of the g-factor estimated before the measurement was ∼ 0.01-0.1 µB (∼ 10-

100 kHz/G), based on the spin-orbit admixture data for the H state in [PNH+03].

Initial attempts to split the zero-field resonance line using a B-field of up to 70 G

(provided by a 100 turn coil) did not succeed. So a compact permanent magnet

assembly using NdFeB magnets6 was constructed in order to provide a larger B-field.

It consists of 8 magnets, each 0.125 in. x 0.125 in. x 1 in. arranged with their poles

as shown in Fig.4.4. This geometry was chosen in order to obtain a uniform B-field,

while allowing access for the molecular beam, probe laser and light collection optics

along three mutually perpendicular directions. The separation and alignment of the

magnets was adjusted using spacing screws to obtain a uniform magnetic field over

the region probed by the laser. After assembly, the permanent magnets (which are

6A useful trick for assembling permanent magnets in unstable configurations: if assembled on
the surface of a (steel) optics table, they tend to stay in place during assembly, even if adjacent
pairs of magnets strongly repel/attract each other.
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3 mm

25.4 mm

2.8 mm

Figure 4.4: a) The magnet assembly used in the measurement of µH . Arrows on
the NdFeB magnets indicate the direction of magnetization. b) The ẑ component of
the B-field, Bz, measured along the x-axis. The shaded area indicates the calculated
acceptance of the LIF detection optics. c) Measured (red squares) and calculated
(solid green line) values of Bz along the y-axis. The shaded area indicates the LIF
excitation region, defined by the probe laser’s intensity profile. d) Calculated values
of Bz along the z-axis. The shaded area indicates the probe laser’s intensity profile.
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Figure 4.5: a) Zoom in on the center of curve in Fig.4.4b. b) Zoom in on the center
of the curve in Fig.4.4c. The calculated curve is the solid green line.

Figure 4.6: Photograph of the magnet assembly, mounted on a KF40 flange. The
view is along the direction of propagation of the probe laser (x̂-axis in Fig.4.4a).
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usually nickel coated to prevent corrosion) were sprayed with flat black chalkboard

paint (7704T162, McMaster-Carr) to reduce laser light scatter, and baked at 70 oC

in vacuum to reduce outgassing from the paint.7 The magnet assembly was epoxied

onto a φ0.5 in. brass post, which was mounted in a standard aluminum optics post

holder, in turn mounted onto a KF40 vacuum flange. This arrangement allowed

us to conveniently insert and orient the magnets in the KF40 6-way cross which

formed the probe region. The magnet was oriented so that ~B ‖ ~v, the velocity of

the molecular beam, in order to avoid spurious effects due to motional electric fields

(~Emot = ~v × ~B) polarizing the molecular state. About 120 mW of probe laser power

was collimated (intensity FWHM = 0.6 mm) to spatially select a well-defined region

near the center of the magnet assembly;8 The k-vector of the probe laser was aligned

along x̂ in Fig.4.4a. The polarization ε̂ of the probe laser was adjusted to be parallel

(perpendicular) to the B-field in order to probe the unshiftedmJ = 0 (Zeeman-shifted

mJ = ±1) states. The LIF collection lens was epoxied (using optically transparent

Epo-tek 301) to the end of a 1 in. quartz lightpipe, which was fed into vacuum through

a 1 in. quick-disconnect feedthrough on a KF40 flange. The lens and lightpipe were

along the ŷ direction in Fig. 4.4a. The distance of the lens from the center of the

magnet was set to be equal to its focal length, f = 25.4 mm.

The spectra of LIF collected from the H, J = 1 state in the magnetic field region

are shown in Fig. 4.7. Spectra with ε̂ ‖ ~B and ε̂ ⊥ ~B were simultaneously fit to

a sum of 3 gaussian lineshapes using a nonlinear least squares routine. As these

routines can only use y-error bars for the optimization, the x-error bars (which are

not negligible) were converted into equivalent y-error bars using the slope of the data

trace (numerically evaluated from adjacent pairs of data points and smoothed over

a neighborhood of 4 points). These derived y-error bars were added in quadrature

with the bare y-error bars. The line centers and linewidths were constrained to have

the same value for both data sets. We included ‘minority’ peaks corresponding to

the orthogonal polarization (i.e. the mJ = 0 peak in the ε̂ ⊥ ~B fit, and the mJ = ±1

peaks in the ε̂ ‖ ~B fit) to model the effect of elliptical polarization (due to an imperfect

waveplate and birefringence in vacuum windows). The measured ratio of unwanted

to desired polarization (≈ 15%) was in fair agreement with that deduced from the

7A higher temperature than this was avoided in order to leave the permanent magnets unaffected.
They have a Curie temperature of ∼ 100 oC. The field profiles of the magnet assembly shown in
Figure 4.4 were measured after the bakeout.

8The saturation intensity of the H → E transition was measured by Ben Spaun to be ∼ 1
W/cm2. The intensity in the probe laser beam is estimated to be 0.4 W/cm2.
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Figure 4.7: Spectra of LIF from the H, J = 1 state in a magnetic field Bz = 1.9(1) kG,
acquired with 16 averages per data point. The x-error bars account for the standard
error in the laser’s frequency offset (derived from the rms frequency excursion of the
lock’s error signal) and y-error bars indicate the standard error of the LIF signal due
to shot-to-shot fluctuations in the yield of molecules in a pulse. a) The probe laser’s

polarization ε̂ ‖ ~B; in this configuration the mJ = 0 sublevel is probed. b) With the

laser polarization ε̂ ⊥ ~B, the mJ = ±1 sublevels are probed. The fit to the spectrum
in (b) yields ∆ν± = 22.66(41) MHz for the Zeeman splitting between mJ = ±1.
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relative size of the minority peaks (≈ 20%). We verified that changes in the size of

the minority peaks did not affect the Zeeman shift extracted from the fit, to within

its uncertainty. Allowing the width of the minority peaks to be a free fit parameter

(rather than constraining them to have the same width as the majority peaks) shifted

the fit value of ∆ν± by 0.33 MHz; this effect is included as a systematic contribution

to the fit uncertainty. The fit frequency separation between the mJ = ±1 peaks in

Fig.4.7b is ∆ν± = 22.66(41) MHz. Changing the lineshape function to a lorentzian

(instead of a gaussian) yielded ∆ν± = 22.20(27) MHz (including the systematic

uncertainty due to the peak shift after relaxing the constraint on the widths of the

peaks, as above). These values agree to within the stated uncertainties. The value

obtained with gaussian lineshapes is used to obtain the magnetic moment in the

following, as it is expected to be a better physically motivated description of the

transverse Doppler distribution of the collimated molecular beam. ∆ν± is related to

the intrinsic magnetic moment of the H state, µH , by the formula h∆ν± = 2µHB
J(J+1)

,

which can be derived using (A.16).

The magnetic field sampled by molecules in the experiment was characterized as

follows. The magnetic field profiles in Fig.4.4b,c were measured with a Hall probe

(Lakeshore, HGT-2010) whose active area (0.127 mm × 0.127 mm) is small compared

to the area illuminated by the laser beam. Spatial selectivity along the x-axis was

provided by the LIF detection optics, as shown in Fig.4.4b. The acceptance of

the optical system was modeled with ray-tracing software (LightTools). The lens

and lightpipe were included using built-in models, and the measured distance from

the end of the lightpipe to the front face of the PMT (and the distance from the

PMT window to the photocathode) were mocked up as an air gap. The light paths

were modeled in reverse: with a uniform extended light source at the position of

the photocathode, the calculated light intensity distribution at the focal plane was

normalized and used as the acceptance function of the light collection system. The

angular acceptance of the optical filter was included in the model by restricting the

range of angles of light rays emitted by the extended source. This approach allowed

the acceptance of the light collection system to be obtained in one shot, instead of

having to map it out by scanning a point source at a number of points on the focal

plane of the collection lens. The simulated acceptance function is shown in Fig.4.4b.

Most of the LIF photons were collected from molecules near the center of the magnet

assembly, with small contributions from the wings. The symmetric appearance of

the Zeeman shifted peaks in Fig.4.7b confirms that the contribution of the wings of
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the acceptance function was small, as a large contributions from the wings would

skew the peaks to have larger tails towards the zero field LIF peak position. A

further constraint on the range of x-values sampled by the LIF collection optics can

be derived from the Doppler width of the zero-field peak in Fig.4.7a, which implies

that the maximum FWHM (along the x̂-direction) of the LIF acceptance function

is ∆x = 10 mm.9 The average Bz calculated along the x̂ direction over a range ± 5

mm from the center (1.91 kG) is very close to the value of the B-field at x = 0 (1.89

kG), and both are well within the systematic error in 〈Bz〉 quoted below.

The separation between the magnets was too small to allow a direct measurement

of Bz along ẑ, so we accounted for the spatial dependence in the yz plane in the

following way. The value of the B-field measured at the origin in the Bz vs. y

profile was used to calibrate the pole strength in a 2D numerical calculation in the

yz plane based on the (measured) magnet geometry. When weighted over an area

corresponding to the Hall probe, the calculation reproduced the measured B-field

profile, as shown in Fig.4.4c. The calculated B-field pattern was weighted by the

Gaussian intensity profile of the probe laser beam in the yz plane and averaged to

obtain 〈Bz〉. Changing the weighting function (representing the laser’s transverse

mode profile) to a lorentzian shape did not affect the variation observed in 〈Bz〉.
Changing the width of the laser beam profile, from a Gaussian with a width σ =

0.16 mm (the value measured for the laser’s transverse mode profile) to one with a

width σ′ = 0.48 mm (to account for the remote possibility that the H → E transition

was very strongly power-broadened) changed 〈Bz〉 from 1.86 kG to 1.95 kG. This is

well within the systematic uncertainty due to deviations off the center line, derived

below.

The effect of deviations of the laser beam path from the center line of the magnet

assembly on the value of 〈Bz〉 was also calculated using the 2D numerical calculation,

for a range of displacements of the laser beam profile (± 0.5 mm) from the exact

center of the magnets in the yz plane. This was done to account for the experimental

uncertainty in the laser’s position and pointing.10 The range of variations observed

9This estimate uses the value v‖ = 160 m/s for the forward velocity.
10This range of displacements was used based on the estimated uncertainty of the procedure for

the alignment of the laser beam along the center-line of the magnet assembly. This procedure in-
volved the following steps: a visible laser (690 nm) was aligned along the center-line of the magnets,
by observing the “shadow” of the magnets in the scattered light profile after passing through the
magnets. A spatial scale for the variations in pointing observed in the shadow was provided by the
spacing between the magnets (3 mm). The 908 nm probe laser was aligned to be collinear with the
visible laser beam, and the visible laser beam was blocked during the measurement. Due to the
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in 〈Bz〉 under this procedure leads to the estimate that 〈Bz〉 = 1.9(1) kG in the

probed volume. As a further check on systematic errors arising from the probe

laser’s alignment, an independent measurement with a complete realignment of the

laser’s path through the magnet yielded a value ∆ν± = 21.7(4) MHz - this value of

the Zeeman shift is within the estimated range of possible changes in 〈Bz〉 due to

misalignment (5%).

We combine the fit uncertainty in quadrature with uncertainties in the probe

laser’s frequency calibration (1%) and the central value of the B-field in the probed

volume (5%) to obtain |µH | = 8.5(5) × 10−3 µB for the magnetic moment of the

H state. Note that the measurement arranged this way is only sensitive to |µH |;
the probe laser would have to be sent parallel to the molecular beam in order to

establish the sign of µH . It is remarkable that in this molecular state, with 2µB

worth of magnetic moment each from the orbital and spin angular momenta, these

contributions cancel out to better than 1%.

4.3.2 Molecule-fixed electric dipole moment

For these measurements a pair of 0.9 mm thick glass plates, coated with transparent

conducting indium tin oxide on one side and broadband anti-reflection coating on

the other (CH-50IN-1509, Delta Technologies), were used to make a capacitor with

25 mm x 30 mm plates separated by a 3.00(5) mm vacuum gap. The molecular

beam was passed between the plates and a linearly polarized probe laser was sent at

right angles to the molecular beam, normal to and through the transparent plates.

This electric field plate assembly was again mounted on a KF40 flange for modular

insertion into the probe region in MB2. LIF was collected with the same optical

arrangement used for the magnetic moment measurement, at right angles to both

the molecular beam velocity and the probe laser’s k-vector.

In the H(v = 0) state, we focus our analysis on the Jp = 1±, |mJ | = 1 Ω-

doublet states (p denotes the parity of the state). In the absence of an electric

field, these states are parity eigenstates and are separated by an energy ∆0. (The

Zeeman sublevels with mJ = 0 do not mix in an electric field as a result of angular

momentum selection rules, and we ignore them in the rest of this analysis.) In the

aspect ratio of the laser’s path through the magnets, offsets in the laser’s transverse position, unless
compensated by the laser’s pointing, would not have allowed it to pass through the center-line
of the magnets - as a result, even with transverse position offsets, the laser is estimated to have
intersected the volume at the center of the magnet to within ± 0.5 mm.
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m=-1 0 +1 m=-1 0 +1

Figure 4.8: a) Example LIF spectrum from the H, J = 1 state in an electric field
E =20 V/cm, acquired with 16 averages per data point. The error bars are assigned
in the same way as in Figure 4.7. The two E-field polarized states are separated
by a frequency ∆. The LIF signal near zero offset is due to molecules outside the
electric field plates. In b), ∆ is plotted as a function of the E-field across the plates.
The solid line is a fit to the function ∆ = |DJE|. The slope of the plot yields
DJ=1 = h × 2.13(2) MHz/(V/cm) for the dipole matrix element between the Ω-
doublets in H, v = 0, J = 1 state.
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two-state space spanned by the basis states J = 1±,mJ = +1 (or identically, the

space with mJ = −1, since mJ = ±1 are degenerate in an E-field), the system in an

E-field is described by the Hamiltonian H =
( −∆0/2 −DJE
−DJE ∆0/2

)
, where DJ is the

electric dipole matrix element connecting the two basis states. The energy spacing

between the eigenstates is ∆ = 2
√

∆2
0/4 +D2

JE2. In the limit where |DJE| � ∆0,

the parity eigenstates are completely mixed and the energy spacing between the

polarized eigenstates is ∆ ≈ 2|DJE|.
In the measurement, the probe laser couples the E-field-polarized states in the

H, v = 0, J = 1 manifold to the E, v = 0, Jp = 0+ state for LIF. The excited E

state does not have Ω-doublets, and in an E-field the predominant mixing of the

E, Jp = 0+ state is with the neighboring E, Jp = 1− rotational state. Since the

rotational spacing in the E state (∼ 2π× 20 GHz) is much larger than the zero-

field Ω-doublet spacing (∆0 ∼ 2π× 400 kHz) in the H state [EL84], whereas the

dipole matrix elements are of comparable size, there is a range of electric fields (1

V/cm . |E| . 1 kV/cm) where the H, Jp = 1± Ω-doublets are fully mixed while

the E, Jp = 0+ state remains a parity eigenstate to a good approximation. In this

regime therefore, LIF signals from both the polarized eigenstates in H should be

visible with equal intensity. Since the laser polarization ε̂ ⊥ ~E , only |mJ | = 1 states

are excited by the laser.

The sample LIF spectrum in Fig.4.8a shows peaks from the E-field polarized

eigenstates that are separated by a frequency ∆. They are also well separated from

the residual E-field-free signal, which was due to molecules excited outside the ca-

pacitor plates. The narrowness of the E-field polarized spectral peaks was due to

additional collimation of the molecular beam by the capacitor plates. Gaussian line-

shapes were fit to the E-field polarized spectral peaks and their separation ∆ was

extracted. Changing the lineshape function to a lorentzian did not affect the peak

separation that was extracted from the fit. The E-field-free signal was excluded (by

excluding data points more than 2 linewidths from the peak center, towards the

zero-field peak) for the purpose of fitting and extracting ∆ from the data. Changing

the boundary of the excluded data by 0.5 × linewidth changed the the fit separation

between the field-polarized peaks by ∼ 1% (in this respect, a lorentzian lineshape

was found to be more robust than a gaussian). This effect is added in quadrature to

the statistical uncertainty on the peak separations obtained from the fit. In Fig.4.8b,

the frequency separations ∆ extracted from a set of LIF spectra are shown plotted
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against the E-field across the plates. The linear dependence of ∆ as a function of

|E| indicates that the H state was fully polarized over the range of E-fields applied

during the measurements. The fit yields the value DJ=1 = h × 2.13(2) MHz/(V/cm).

The intercept of the linear fit constrains ∆0 ≤ 2 MHz, in agreement with the result

of [EL84]. The relation between DJ and the molecule-fixed dipole moment in the

H state, DH , is DJ = DH

J(J+1)
, using (A.16). We found |DH | = 1.67(4) ea0, where

the reported error is a quadrature sum of the fit uncertainty (1%), and systematic

uncertainties due to laser frequency calibration (1%) and field plate spacing (2%).
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Chapter 5

Apparatus

It is very easy to be blinded to the essential uselessness

of them by the sense of achievement you get from

getting them to work at all.

The Guide, So Long, and Thanks for All the Fish

This Chapter contains a description of some of the pieces of the molecular beam

EDM apparatus that I designed or constructed. The global coordinate system for

the experiment defined in Chapter 2 is used in the descriptions. Recall that x̂ is the

molecular beam axis (horizontal in the lab), ŷ is the vertical axis in the lab and ẑ is

the direction of the main E and B-fields (horizontal in the lab).

5.1 Mini-beam sources

The measurements described here were performed using test molecular beam sources,

built around a liquid helium cryostat (Infrared Labs, HDL-5).1 I constructed one

closed-cell apparatus (CC1) and two beam sources (MB1 and MB2) at various

points between 2007 and 2010. These sources are fairly similar in construction

and share a number of common features. CC1 was used for the initial production,

optical pumping and H state lifetime measurements. MB1 (which has a vertical

downwards-pointing beam) was used in the initial measurements of beam extrac-

tion out of the cell, a number of spectroscopy measurements (to probe transitions to

the A,C,G,E states from the X,H states and measure their saturation intensities),

1These are dubbed ”mini-beam” sources to distinguish them from the pulse-tube cooled molec-
ular beam source that is used for the full-blown eEDM experiment.
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and a measurement of the lifetime of the C state. MB2 was used to measure the

electric and magnetic moments of the H state, precise saturation intensities of the

X → C,X → A,H → C and H → E transitions, and for preliminary measurements

of the optical detection of spin precession.

The structure of the latest beam source (MB2) is described briefly here. ThO

molecules are produced by pulsed laser ablation of solid ThO2 using ∼ 6 ns long,

10 mJ pulses at 532 nm from an Nd:YAG laser. The ablation targets used in these

studies were broken off from a sintered pellet of ThO2 powder with a density of

6.9 g/cm3.2 The target is held inside a copper cell which is thermally anchored

to a liquid helium cryostat. Helium gas continuously flows at a rate of 4 × 1018

atoms/s through the cell and exits it through a 1/8 in. diameter aperture in a 0.25

mm thick copper plate, resulting in a stagnation density nHe ∼ 1016/cm3 in the

cell. A charcoal-covered copper shield, with a 0.25 in. aperture that is 2 in. away

from the cell aperture along the molecular beam axis, surrounds the cell to pump

away the helium buffer gas atoms and maintain a good vacuum. After passing

through a 0.50 in. aperture in the 77 K radiation shield of the cryostat, molecules

exit the cryostat vacuum chamber and enter a room temperature vacuum chamber

(“probe” chamber). Molecules in the beam are probed either inside the cryostat

vacuum chamber, or in the probe chamber. The probe chamber is constructed out

of a 6-way KF40 cross, which allows optical access for lasers and light collection at

right angles to each other and to the molecular beam. A beam collimator, made

out of 1/16 in. thick sheet metal brazed into a KF40 centering ring, is used to

provide a narrow and well-defined velocity distribution for some measurements. A

60 l/s turbo pump, at the opposite end of the cross from the cryostat chamber,

provides additional pumping for the probe chamber. Viewports on the laser access

ports are constructed from 1 in. anti-reflection coated glass windows (Thorlabs) that

are sealed onto a machined seat in an aluminum KF40 stub using an indium wire

gasket. This procedure provides simple, leak-free seals on the viewports. Either

a commercial (non-AR-coated) KF40 viewport, or a lightpipe fed through a 1 in.

diameter quick-disconnect→ KF40 adapter, are used on the light collection ports to

collect fluorescence. In this apparatus, we typically observe a pulse of Nbeam ≈ 1010

molecules in a single quantum state exiting the cell, with a pulse width of ∼ 5 ms.

The beam source has been operated at repetition rates up to 15 Hz.

2This target was fabricated at Oak Ridge National Laboratory, and provided to us by Dr. Daniel
Stracener.
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Figure 5.1: Schematic of the mini-beam source MB2. The photograph shows a view
of the dewar vacuum chamber and the probe region, assembled on an optics table.
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5.2 Electric field plate assembly

The purpose of the electric field assembly is to provide a spatially uniform E-field

over the volume sampled by the molecular beam during the free precession of the spin

in the H state. The E-field is provided by a pair of parallel plates. This arrangement

was chosen in the interest of simplicity, both for construction and for calculation of

the field. Based on unpublished information from the YbF experiment, where some

systematics were found to be related to the bowing of the plates and from strains

in their support structure, the decision was made to mount the plates vertically to

avoid deforming them. As described in Chapter 2 the method of optical detection of

spin precession, using the polarization of the state-preparation and detection lasers,

requires the lasers to propagate parallel to the E-field in order to excite the molecules

with both ε̂x and ε̂y polarizations. It is also convenient to be able to collect laser-

induced fluorescence from the molecules at the end of their precession path. Due to

these reasons, convenient optical access through the field plates was a further require-

ment of the design. Since the field plates are located inside the interaction region

vacuum chamber, and within the magnetic shields, further constraints included the

following:

• Construction entirely out of non-ferrous and non-magnetic alloys, to avoid gen-

erating B-field offsets.

• All materials used in construction to be UHV-compatible, to reduce outgassing.

• No dissimilar metals in contact, in order to avoid thermo-electric currents gen-

erated by contact potentials.

These requirements and constraints were addressed in the design as follows. The

electrodes were constructed out of 1/2 in. thick plates of borofloat glass, coated

with a conducting transparent layer of indium tin oxide (ITO). Borofloat glass stock

is readily available with extremely flat and parallel surfaces. Using standard glass

polishing techniques, its surface can be finished to specifications that are much flatter

and smoother (in terms of surface roughness) than can be achieved for metals. In

addition, glass is an extremely good electrical insulator and is mechanically very

rigid. The field plates were fabricated by Custom Scientific Inc. The plates are

17 in. wide x 9 in. high. The plates were designed to have a z-spacing of up to

1.5 in. and therefore the dimensions of the plates were chosen to be large in order
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to minimize fringing effects from the edges. Both surfaces were polished to b∼ 3λ

flatness (at λ = 633 nm) and with a parallelism ∼ 10 arc seconds across the entire

surface. One face of each plate has a deposited ITO layer with an electrical sheet

resistance of 100 Ω/square. The opposite face is coated with a broadband anti-

reflection coating between 600 and 1100 nm, which has an average reflectance < 1%

at normal incidence in this wavelength band.

The mechanical structure supporting the field plates was an integral part of the

design. It was required to have enough degrees of freedom so that the plates could

be precisely aligned to be mutually parallel (or deliberately misaligned to test for

systematic effects), but also required to be mechanically stable and robust against

slow variations and vibrations once the plates were positioned in place inside the

vacuum chamber. For this reason, a kinematic design was used, where the number

of constraints of the mechanical assembly equals the number of degrees of freedom of

the components in the structure [Fur81, Str38]. The mechanical structure of the field

plate assembly is as follows. Each ITO-coated glass field plate is sandwiched between

a copper front frame and an aluminum back frame. The copper front frame holds the

glass plate along its periphery, and is constructed out of C101 copper coated with a

5 µm thick layer of gold.3 The front frame doubles as a guard ring electrode in order

to extend out the fringing field of the plates and to make the E-field more uniform.

The front frame is electrically isolated from the ITO-coated conducting surface with

a polyimide (Kapton) spacer. The front frame also serves to shield the corners of the

ITO-coated glass plate (where non-ITO-coated rail marks exist along two edges, and

other parts where electrical leads are attached to the plates) from being ‘seen’ by

the molecules in the beam. The back frames are machined out of of 6061 aluminum

and form the structural support for each plate sandwich. They contains a number of

thru holes, through which non-conducting plastic (PEEK4) screws are used to thread

into tapped holes on the back of the front frame and compress each sandwich. They

also have a number of tapped holes, for spring attachments and for attachment to

the horizontal base plate of the E-field assembly. The seat for the glass plates on

the aluminum back frames is cushioned with a polyimide gasket, to suppress the

generation of cracks at glass-metal contact points. One of the plate sandwiches is

shown in section in Figure 5.2.

3This is a thicker layer than usual, to counter the effect of gold diffusing into the copper since
no intermediate layer was used. An intermediate layer was avoided since most alloys used for that
purpose are nickel-based. The gold coating was done by Aotco Inc.

4Poly ethyl ether ketone, a low-outgassing plastic with favorable mechanical properties.
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Figure 5.2: The electric field plate assembly, consisting of a pair of plate sandwiches
(Cu frame:ITO-coated glass:Al frame) clamped together with springs. The contact
points between the plate sandwiches and the base plate are kinematically constrained.
The structure is assembled on the baseplate and then loaded inside the vacuum
chamber.
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Figure 5.3: The diagram shows the linkages between the pieces of the kinematic
mount. The fixed and movable plate sandwiches consist of copper-glass-aluminum
sub-assemblies as shown in Figure 5.2. The fixed sandwich is rigidly bolted to the
baseplate. The linkages labeled in the diagram are: (A) ball on flat, (B) ball on
flat, (C) ball in V-groove, (D) ball on flat, (E) ball on flat. The fixed and movable
sandwiches are held together under tension by phosphor bronze springs. Fine pitch
(3/16”-100) screws at A,B and C provide control over the spacing and parallelism of
the glass plates contained in the sandwiches.

One of the sandwiches forms the “fixed” piece of the kinematic assembly. It is

rigidly attached to the aluminum baseplate with PEEK screws. The other sandwich

forms the “movable” piece of the kinematic assembly. The kinematic contacts are

modified from the usual Kelvin clamp contact, familiar from a regular optics mirror

mount, in order to avoid lifting the considerable weight of the movable plate using

only spring tension. By relaxing two of the constraints of a Kelvin clamp, and adding

two points of contact to the baseplate to restore the kinematic condition, the movable

piece can be supported by normal reaction off the baseplate. The contacts consist of

one ball-in-groove contact + 2 ball-on-plate contacts between the fixed and movable

pieces, and two ball-on-plate contacts between the movable piece and the baseplate.

The diagram in Figure 5.3 shows how the sub-assemblies are linked into the kine-

matic assembly. All the kinematic contacts are directly between the aluminum back

plates of the fixed and movable sandwich and the aluminum breadboard, i.e. be-

tween surfaces that are all nominally at ground potential. As there are no spacers

directly between the electrodes, this should suppress leakage current paths and their

resultant E-correlated B-fields. Sapphire balls (General Ruby) and thin sapphire
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disks (Edmund Optics) are used for the contacts. They are epoxied5 into recessed

seats on the metal plates. The sapphire balls making contact between the fixed and

movable sandwiches are located on the end of fine-pitch screws (3/16”-100, turned

out of C260 low-ferrous brass tube) that thread into PEEK inserts epoxied into the

fixed plate sandwich. These allow the angle between the ITO-coated glass plates to

be varied in < 0.2 mrad increments. The two plate sandwiches are clamped together

using 4 phosphor bronze springs (Century Spring Inc.), which together provide ap-

proximately 20 lbs. of clamping force, to keep the structure kinematic and suppress

vibration modes. The baseplate has a number of tapped holes for the attachment of

mounts for the fluorescence collection optics. The entire structure, consisting of the

E-field plate assembly and the light collection optics, can be assembled and tested

on the bench and loaded as a module into the vacuum chamber. The field plate

assembly, consisting of plates and kinematic mount, is shown in Figure 5.2(b). The

location of the field plate assembly within the vacuum chamber and along the molec-

ular beam line is constrained by close clearance screws that bolt it onto the frame of

the vacuum chamber.

The field plate assembly is designed to be modular, and all components can be

replaced or modified easily when required. When assembled, the only surfaces that

are visible to the molecular beam over the spin precession region are the ITO-coated

faces of the glass plates and the gold-coated copper guard rings.6 The parallelism

of the plates is measured using a white light interferometric sensor to map out the

separation between the plates at various points across its surface [Pat71]. It is capable

of remotely measuring the separation between the plates to an accuracy of about 2

µm and mapping this separation across the surface of the plates in the the xy-plane.

This system for measuring the plate separation was built by Ivan Kozyryev.

5.3 Vacuum system

The vacuum chamber encloses the electric field plate assembly and the light collec-

tion optics. It is located within the magnetic field coil and the magnetic shields. It is

connected to the cryogenic molecular beam source on the upstream end. The molec-

ular beamline continues through the chamber and ends in a vacuum pump. Based

5The epoxy used was Stycast 2850FT + catalyst 24LV (Emerson-Cummings) in a 100:7 ratio. It
has outgassing specifications that are slightly better than Epo-tek 353ND, an epoxy that is routinely
used for UHV assemblies [CS93].

6The patch potential properties of ITO and gold are reported in [RBB+06].
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on a conservative estimate of the mean free path of ThO molecules in collisions with

background gas molecules, the vacuum chamber was designed to work at a vacuum

level of . 10−7 Torr. It was designed to use only non-ferrous alloys everywhere. It

was constructed out of plates of 6061 aluminum welded on the inside seams, by Atlas

UHV Inc. The chamber is a rectangular box, approximately 25 in. (x) x 16 in. (y)

x 16 in. (z), with large flanges covering the openings on each side. These flanges

have smaller ports and sub-flanges to allow the vacuum chamber to be modular. At

the time of writing, the chamber has 3 optical viewports on the xy-plane flanges, 11

cm apart. The top (xz-plane) flange has some utility ports that could potentially

be used as electrical or gas feedthroughs. The yz-plane flanges on the upstream and

downstream ends of the chamber have a large central port for the pumpout trunks

described below, and a number of smaller KF16 and KF10-sized ports. The KF16

ports are used as feedthroughs for lightpipes from the fluorescence collection sys-

tem and the KF10 ports are used for electrical feedthroughs. One of the benefits of

aluminum construction is that these vacuum port configurations on the chamber’s

flanges can be quickly and easily reconfigured if required, since aluminum is easily

machinable. All vacuum seals on the chamber are made using viton o-rings that are

baked in a vacuum oven at 150 oC for 6 hours. In operation, the pressure in the

chamber is ∼ 5× 10−8 Torr, with the gas load dominated by water vapor, likely due

to adsorbed molecules on the aluminum surfaces.

The chamber is connected to the cryogenic source chamber upstream through a

4 in. diameter x 12 in. long aluminum tube (“trunk”), and to the vacuum pump on

the downstream end through an identical trunk. The purpose of these trunks is to

penetrate the magnetic shields axially, and allow vacuum connections to the beam

source and the pump to be made outside the shields using standard off-the-shelf

vacuum hardware that is free to contain ferrous alloys. The vacuum pump is a single

500 l/s turbo pump (V550, Varian) backed by a dry scroll pump (TS300, Varian).

This choice was made in order to avoid having any contamination on the chamber

or its contents from vacuum pump oil.

The vacuum chamber is supported by bolting its frame to extruded 71 in. long

aluminum rails (80/20 Inc.), which extend out from the magnetic shields and form a

frame. This frame can be moved on casters and leveled, and locked in place by bolting

it to threaded inserts that were installed in the concrete floor of the lab. Figure 5.4

shows this support structure, assembled with the aluminum rails extending through

the endcap assembly of the magnetic shields.
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Figure 5.4: The drawing and photo show the vacuum chamber for the interaction
region of the measurement, assembled along the molecular beam line. The photo also
shows the stack of endcaps for the magnetic shields, assembled around the vacuum
chamber. The B-field coil around the vacuum chamber and the half-cylinders for the
magnetic shields are not shown.
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5.4 Magnetic shielding

The requirements on the B-field derived in Chapter 2 imply that DC and low-

frequency magnetic fields must be reduced over the volume of the interaction region

by a factor of at least 103. (Typical B-fields in the lab from the earth’s field and

building material are ∼ 1 G.) AC magnetic fields can be shielded efficiently by the

skin effect, but low frequency (near DC) magnetic fields are more complicated to

shield. They can be cancelled either a) actively, using large Helmholtz coils and

a magnetic sensor in the region of interest [DDBT07], or b) passively, using high-

permeability magnetic shielding [SPS87]. Passive magnetic shielding was chosen

based on its relative simplicity and based on our familiarity with its performance

in the PbO experiment. The shielding factor S, the ratio of the H-field outside the

shield to the H-field inside it, for a single-layer magnetic shield is S ∼ µt/D, where

µ is the magnetic permeability (relative to free space) of the material, t is its thick-

ness and D is a characteristic length dimension of the shield [SPS87]. Permeabilities

for the typical high-permeability soft magnetic materials used for shielding (usually

alloys containing ∼75% nickel) are in the range of 1000-5000. These materials are

expensive, and so magnetic shields are usually formed out of (up to 1/16 in. thick)

sheets of these alloys. Therefore, obtaining a large shielding factor over the volume

of the vacuum chamber requires the use of nested magnetic shields, in order to take

advantage of the multiplicative effect of nested shields, rather than a single thick

shield. However the nested shields cannot be treated as independent entities. They

interact in a complicated way with each other and with the air gaps separating them.

The low-frequency shielding factor of a set of nested shields can be calculated

using standard formulae [SPS87]. However, a more physical appreciation of the

function of magnetic shields (along with some intuition for concepts such as “good

magnetic contact”) can be obtained by using the method of magnetic circuits [PS00].

This relies on the formal analogy between the equations of steady-state electrical

conduction

~J = σ~E
~∇ · ~J = 0

~∇× ~E = 0, (5.1)

relating the current density ~J and the electric field ~E in a material with a conductivity
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σ, and the magnetostatic Maxwell equations

~B = µ ~H
~∇ · ~B = 0

~∇× ~H = 0, (5.2)

relating the B-field and the H-field in a material with a permeability (magnetic

“conductivity”) µ (in units where µ0 = 1). This allows the use of intuitively familiar

electrical concepts to the design of magnetic circuits, while being rigorously correct

since the boundary conditions and constitutive relations for the fields are exactly

analogous.7 This approach allows the analysis of magnetic shields, shield subcom-

ponents and the air gaps between the shields as lumped magnetic circuit elements 8.

The concept of magnetic “resistance” is useful in analyzing the quality of a magnetic

contact.9 It is defined as

R = ΦB/H, (5.3)

and is the ratio between the magnetic flux ΦB through a magnetic circuit element

and the H-field that generates it. The problem of calculating the shielding factor

of a set of nested shields can then be reduced to one of solving a simple electrical

circuit for the ratio of analogous electrical currents. Figure 5.5 shows an example

of this approach applied to a set of 3 nested shields. Some important properties of

magnetic shielding are clarified by the magnetic circuit approach:

• The H-field lines are (almost) perpendicular to the surface of a good magnetic

conductor, just as the E-field lines are (almost) perpendicular to the surface of

a good electric conductor.

• The air gaps between the shields have an important function. They behave as a

(large) finite magnetic resistance in parallel with the small magnetic resistance

of the shields. The larger the resistance of the air gap compared to the shield,

the smaller is the splitting ratio for the magnetic flux to enter the air gap

compared to being returned through the shield.

7However, appropriate care is needed: the permeability µ(H) is a function of the H-field, and
the analogous magnetic conductivity is given by the slope of the B − H hysteresis curve at the
operating point.

8Electric and magnetic circuit components can be treated as lumped elements when their length
scale is much smaller than the wavelengths of the electromagnetic fields involved.

9More properly, this quantity is called the magnetic reluctance.
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• The consequences of saturating a magnetic shield (driving the material into

the saturated portion of its B − H curve) can be easily understood. In this

situation, the magnetic conductivity of the material drops to zero, and the

shield no longer behaves as a low resistance magnetic short for the flux.

A 5-layer set of nested magnetic shields was designed with the following charac-

teristics, with modularity and ease of assembly being the main criteria, in addition

to obtaining a large shielding factor. Mu-metal is a magnetically delicate material,

especially after it has been hydrogen annealed, and needs to be protected from any

strain developing in the grain structure of the material. Therefore, shields that can

be conveniently assembled are likely to survive repeated assembly and dis-assembly

in the lab. Typical magnetic shields are constructed as single pieces, which limits

the extent to which they can be reconfigured for changes in the enclosed experiment.

The shields described here were designed in order to allow them to be reconfigured

easily, without requiring a full re-annealing treatment after modifications.

The shields completely enclose the interaction region vacuum chamber and mag-

netic field coil. They were constructed out of 1/16 in. thick mu-metal by Amuneal

Inc.. The outermost shield is 52 in. long and has a 42 in. diameter. The innermost

shield is 34 in. long and has a 30 in. diameter. There are 1.5 in. radial gaps and

approximately 2 in. axial gaps between consecutive shield layers. Each shield consists

of 4 pieces: 2 end caps and 2 half-cylinders, which assemble together to form a closed

cylinder. Each end cap has a removable circular panel at the center which can be

readily machined on a water-jet cutter.10 This allows the shields to be customized

for various arrangements of vacuum plumbing and optical lightpipes. Currently, the

circular panels on the end caps have 5 in. diameter holes for vacuum pumpout tubes,

with an array of 3/4 in. diameter holes for electrical and optical access to the inter-

action chamber. The design includes protective HDPE (high density polyethylene)

plastic covers for exposed sheet metal edges to protect them from being accidentally

deformed during repeated assembly/disassembly. The shields are supported through

their end caps. The stack of 5 end caps is clamped together with 2.125 in. HDPE

spacers. This stack is mounted onto an aluminum frame which remains fixed in po-

sition around the interaction chamber. The half-cylinders are brought into position

10Water-jet machining makes use of a directed stream of water containing garnet grit, to cut
through metal by abrasion. The zone of the material that is affected by this machining process is
restricted to an extremely small volume around the area of the cut (typically . 0.01 in. in extent).
This method of machining is also ideally suited to cutting sheet metal without heating (as the
workpiece is submerged under water) or mechanically stressing the bulk of the workpiece.
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Figure 5.5: An example of the use of the magnetic circuit method to calculate the
shielding factor of a set of 3 nested shields, based on [PS00]. The shields are assumed
to be made out a thickness t of material with permeability µ, and have cross sectional
areas Ai = a2

i (i = 1, 2, 3). The fluxes Φij in the regions between the shields i and
j are modeled as currents in the corresponding branches of the equivalent electrical
circuit shown. The axial shielding factor ST is the ratio of the H-fields on the outside
of the shields to that inside them. This expression is identical to that derived using
the formalism in [SPS87].
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END CAP
STACK

HALF-CYLINDER

Figure 5.6: A photograph of the magnetic shields, assembled around the vacuum
chamber and the interaction region.

transverse to the molecular beam axis and then screwed into place. All removable

mates between sheet metal surfaces have approximately 2 in. width of overlap. The

half-cylinders have horizontal slots which are covered by removable panels, where the

panels again allow the shields to be easily configured with holes for optical access for

the state-preparation and detection lasers, without requiring a full redesign of the

shields. Good magnetic contact between the different pieces of a magnetic shield re-

quires that mating surfaces have a sufficiently large area of overlap, and that they are

clamped together with sufficient force. During manufacture, threaded sheet metal

inserts (Penn Engineering, PEM F-032, F-832) were installed to be flush with the

surface of mating sheet metal faces, and tack-welded in place to keep them from

being stripped out during fastening. Mating pieces are attached together using brass

bolts screwed into the threaded inserts. Coils consisting of ribbon cable are wound

in between the shields for demagnetizing them, and driven with a 60 Hz waveform

that first drives the shields to saturation and then slowly ramps the H-field down

to zero [KL97, KBC+65]. The shielding factor of the set of 5 shields for transverse

B-fields was measured to be ∼ 105 by Emil Kirilov.
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5.5 Dead ends, and other lessons

On the principle that mistakes are more useful to hear about than successes, this

section contains a random collection of ideas, some good, some which were partially

pursued, and some which were pursued and found not to be fruitful. They are listed

here in the hope that they may either prevent some mistakes from being made, or

give rise to some new ideas.

Fresnel lenses and bent lightpipes

The initial concept for the light collection system involved large area (∼ 5 in. diam-

eter) Fresnel lenses positioned adjacent (and parallel to) the field plates, with holes

machined through their centers to pass the state preparation and detection lasers

through. Fresnel lenses with a small f-number (up to f/0.2) are commercially avail-

able (FresnelTech Inc. and NTKJ Corp., Japan) and are inexpensive. They have the

advantage that they are usually molded out of acrylic, which can be readily machined

and modified unlike glass. However, Fresnel lenses work optimally only over a small

range of wavelengths around the design wavelength (i.e. they suffer from strong chro-

matic aberrations), and they have large Fresnel losses at steep angles of incidence

when used without anti-reflection coatings (e.g. the Fresnel loss is ∼ 45% at 80

degrees). This limits the utility of off-the-shelf Fresnel lenses, especially under the

stringent focusing requirements needed to efficiently pipe the collected fluorescence

light (which emerges from an extended source) into lightpipes.

A related piece of the light collection concept was the use of right-angle bent light-

pipes, constructed out of two cylindrical lightpipes epoxied (using optically trans-

parent Epo-tek 301) onto the faces of a right angle prism. This was conceived of as a

way to allow the lightpipes to approach the fluorescence emission region through the

downstream (yz plane) end of the vacuum chamber, while still presenting a perpen-

dicular face towards the electric field plates. When the input ray bundle had a large

angular spread, leakage through the 90 degree bend was found (through ray-tracing

simulations) to be severe enough to limit the utility of this concept.

Hybrid photodetectors

Recall from Table 2.1 that the quantum efficiency of the detectors used at the end

of the light collection system enters the sensitivity of the eEDM experiment. Pho-
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tomultiplier tubes (PMTs) that are most sensitive to the emitted fluorescence (613

nm) have red-enhanced multi-alkali photocathodes, which yield a quantum efficiency

of about 10% in this wavelength region. A higher quantum efficiency can be obtained

by using detectors based on GaAsP photocathodes, which can have a quantum effi-

ciency of about 40%. This would result in a factor of 2 improvement in the statistical

sensitivity of the eEDM experiment. Therefore, PMTs using GaAsP photocathodes

were examined as alternative options. Unfortunately, reasonably priced detectors

with GaAsP photocathodes are only available in the form of hybrid photodetec-

tors (HPDs). The HPD available from Hamamatsu (part number R9792U-40) has

a photocathode biased at -8 kV to accelerate the photoelectrons emitted from the

photocathode, which are then aimed at an avalanche diode. This provides an elec-

tron bombardment gain of about 1500. An additional gain of about 50 is obtained

by biasing the avalanche diode at about 400 V. While this architecture does not have

an overall gain as large as a typical PMT (and hence requires some further ampli-

fication), it is sufficient to make such a detector feasible for use in the experiment.

One such HPD was obtained and tested in the summer of 2010 by Ana Malagon.

The results of the test showed up a peculiar problem with these detectors, namely

the appearance of extremely large current pulses (even in the absence of any light

incident on the detector) at the rate of ∼ 10/s. The manufacturer attributed these to

bremsstrahlung X-rays produced when the photoelectrons accelerated by the large

(8 kV) voltage are slammed into the avalanche diode, which in turn give rise to

multiple photoelectron pulses. The appearance of such large pulses at a rate of ∼
10/s was specified to be an unavoidable feature of the HPD architecture. Such large

pulses are not a concern if the detector is used in photon counting mode, but as

expected in the eEDM experiment, if they are used to detect the photocurrent (i.e.

with a lower detection bandwidth) the energy contained in these large pulses cannot

be kept from contaminating the signal. It is possible that operating the tube with

a low acceleration voltage (∼ 1 kV, rather than the manufacturer’s recommended

8 kV) could eliminate the large bremsstrahlung pulses, at the expense of gain, but

this was not a parameter range that had been tested by the manufacturer. As a

result of these issues, and since the technology for the detectors did not seem to be

sufficiently mature, the use of HPDs to detect fluorescence was abandoned in favor

of off-the-shelf multi-alkali photocathode PMTs (R8900-20). At some time in the

future, if detectors using GaAsP photocathodes (without any pathological noise fea-

tures) can be obtained, they might be a competitive approach compared to PMTs
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for detecting fluorescence from the molecules.

In-vacuum actuators

The fine pitch screws that are used on the linkages between the field plate sand-

wiches need to be manually adjusted to set the parallelism and spacing between

the field plates. This means that, once the structure is assembled (and aligned)

on the bench and placed inside the vacuum chamber, and the vacuum chamber is

evacuated, the spacing and parallelism cannot be adjusted. This is not expected to

be a problem in terms of the stability of the kinematic assembly, but it does mean

that the vacuum chamber must be vented in order to adjust (or vastly misalign, for

testing systematics) the parallelism of the field plates. An initial concept involved

using actuators in vacuum, in order to adjust the spacing between the plates elec-

trically and circumvent this problem. The constraints on these actuators are quite

severe: they must be UHV compatible and non-magnetic. This rules out solutions

such as motors or linear variable displacement transducers. Piezoelectric stacks were

considered, but they have the twin disadvantages of (a) small throw, and (b) large

quiescent current draw (enough to cause significant magnetic fields in the interaction

region) when holding position. A good solution to these problems is provided by

recent advances in piezoelectric motors, which use piezoelectric extensions (“legs”)

that ratchet across a bearing surface, and have the advantage that they lock in place

when the driving voltage is set to zero. Therefore these actuators can be used to hold

position without any quiescent leakage current. In particular, the LEGS-L01NMV-11

(Piezomotor.se/MicroMo) linear piezo actuator is rated for use in ultra-high vacuum

and is constructed using non-magnetic alloys - the bearing and springs in it are con-

structed out of Be-Cu alloy, and the motor contains a non-magnetic copper-nickel

alloy called ARCAP AP1D (UNS 79350). Unfortunately, the pushing force achiev-

able with this actuator is limited to 10 N. The weight of the plate sandwiches is

about 70 N. Also, spring tensions of ∼ 100 N are required to clamp the kinematic

field plate assembly. Therefore single motors driving the kinematic linkages would

not have the requisite force to actuate the plate spacing and parallelism under vac-

uum, without some sort of additional force multiplying linkages. Therefore, the use

of in-vacuum actuators was not pursued. It is possible that technological advances

in the next few years might lead to piezo motors with higher force ratings becoming

available. Nevertheless, even the presently available piezo motors might be useful for
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actuating other objects (e.g. collimators) under vacuum.

Bill of Materials

In designing many sub-components of the interaction region, that all had to fit to-

gether and remain modular enough to be useful, I found the use of a Bill of Materials

(BOM) to be extremely helpful. BOMs are standard design tools in an industrial

setting, but only rarely find use in physics instrument design. In the case of the

interaction region of the ThO experiment, its use was justified by the large number

of components and the need to

• Keep track of the various suppliers for components and specialty materials.

• Manage lead times for various components and fabricated parts, especially since

they could easily vary from a few days to many months.

• Document the suppliers’ part numbers of all the components, to be able to

obtain equivalent replacement parts in the future.

The BOM for the interaction region of the ThO eEDM experiment is at tinyurl.

com/ThO-BOM. A benefit of the BOM system is the automatic assignment of unique

part numbers to all the components. This aided me in keeping track of part drawings

and CAD models for the various assemblies and sub-assemblies, such as the electric

field plates, magnetic shields, vacuum chamber components etc. during the design

process, and led naturally to the design getting documented in detail. The use of

such a system for complicated design projects is highly recommended.
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Chapter 6

Summary

His grenades are of wrong system.

Semyon, White Sun of the Desert

This thesis records some of my contributions to the ThO eEDM experiment be-

tween Jan 2007 and Aug 2011. The factors that led to the choice of the ThO

molecule for a molecular beam-based eEDM experiment have been explained in the

Introduction. The scheme of the experiment, and an analysis of the noise entering

the measurement, have been described in the Overview. Initial measurements of

ThO molecular beam production, measurements of the lifetime, magnetic and elec-

tric dipole moments of the H state have been presented. These measurements feed

into the estimated statistical sensitivity of the experiment and the analysis of poten-

tial systematics. Some of the pieces of the experiment’s hardware that I designed

and constructed have been described under Apparatus.

At the time of writing, the eEDM experiment has been assembled and can be

used to obtain spin precession signals from ThO molecules in the beam. Some of the

immediate next steps include demonstrating that the measurement of spin preces-

sion can be made with shot-noise limited sensitivity, and maximizing the statistical

sensitivity that is expected with the current version of the apparatus (Table 2.1).

Reaching this level of statistical uncertainty, δde ∼ 3× 10−29 e cm with an integra-

tion time of 1 day, would allow the experiment to quickly test systematic effects in

the 10−27− 10−28 e cm region. In the absence of systematic errors, this should allow

the experiment to lower the uncertainty on the eEDM by 1 order of magnitude. A

null measurement at this level would begin to seriously limit the parameter space of

electro-weak baryogenesis.
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Some further improvements are foreseeable, and they will be briefly mentioned

here. First, note from (2.28) that, once the molecule has been chosen, both Emol and

τ are fixed. Therefore, the only parameter that can be optimized is the detection

rate of molecules at the end of their precession. The following upgrades are likely to

improve the detection rate:

• Molecular beam source: A thermo-chemical means of producing ThO, by

taking advantage of a chemical reaction between ThO2 and Th metal powders

at ∼ 2000 K which predominantly releases ThO in the gas phase [RFG+08], has

been recently demonstrated in the Doyle group. A pressed target containing Th

and ThO2 powders, located inside a standard buffer gas cooling cell, is locally

heated by a focused CW YAG laser. The buffer gas cools the molecules and

extracts them into a molecular beam as usual. This method has the potential

to produce a continuous beam of ThO, which could have a larger duty-cycle

for the beam current compared to the pulsed ablation-based beam source.

• Molecular beam divergence: Reducing the loss of molecules during their

flight through the dead length L0 (see Section 2.4) would increase the detection

rate. This can be achieved by shortening the apparatus, and/or by collimating

the molecular beam. Molecules in the X state experience a quadratic Stark

shift in E-fields up to ∼ 20 kV/cm, and can therefore be guided in weak field

seeking states (e.g. X, J = 1,mJ = 0) using an electrostatic quadrupole guide.

Some improvements along these lines have been demonstrated at a preliminary

level in the DeMille group.

• State transfer & state preparation: The scheme laid out in the Overview

used optical pumping from X → A H, which leads to a dilution by a factor

of 0.07 between transferring a single quantum state in X into a single quantum

state in H. This loss can be circumvented by using a coherent state transfer

scheme such as STIRAP (STimulated Raman Adiabatic Passage), using the

X ↔ C ↔ H Λ-type system to transfer molecules from X to H. This can

also eliminate the separate state preparation step, and directly populate the

superposition of H, J = 1|mJ = ±1〉 that undergoes spin precession. Such

schemes have been explored and preliminarily demonstrated in the DeMille

group.

• Geometric collection efficiency: A larger geometric coverage of the fluo-
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rescence emitted by the molecules would increase the detection rate. Some

designs to improve the solid angle coverage of the light collection system have

been explored by Nick Hutzler.

• Detection efficiency: Some approaches to improving the detection efficiency

have been explored in the Doyle/DeMille/Gabrielse groups, such as the use

of Si photodiodes instead of PMTs, to take advantage of their higher quan-

tum efficiency. Other approaches to increase the detection efficiency include

optical cycling schemes (where multiple independent photons are emitted by

a single molecule) and ionization detection schemes (where the molecule is

photo-ionized by a strong laser, and the ion is detected with a multi-channel

plate detector). These approaches have the potential to provide almost 100%

efficiency of detection of molecules in the beam.

At the time of writing, these schemes are being pursued and tested. I will not

attempt to make any predictions about the sensitivity achievable with these upgrades,

and will leave this to others who are more directly involved in these efforts. It is

plausible, however, that 1 more order of magnitude in eEDM sensitivity can be gained

through some combination of these improvements.

In summary, the saga of the search for the electric dipole moment of the electron

continues. It is reasonable to expect that this experiment with the ThO molecule

(along with other contemporary eEDM efforts) will lower the limit on the size of the

eEDM enough to test electro-weak baryogenesis and other more creative proposals

to explain the cosmological matter-antimatter asymmetry.

It is an audacious notion that, twirling knobs on some instrument in a basement

lab, one might hope to shed some light on the evolution of the universe. For no other

reason than this audacity alone, perhaps the search for an eEDM is worth pursuing.
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Appendix A

Miscellany

“Two added to one – if that could but be done,”

It said, “with ones fingers and thumbs !”

Recollecting with tears how, in earlier years,

It had taken no pains with its sums.

The Hunting of the Snark, The Beaver’s Lesson

A.1 P, T -violation and EDMs

The purpose of this section is to rigorously show that the existence of a permanent

electric dipole moment in a quantum mechanical system requires the violation of

both P and T symmetries. This is usually discussed in the context of the EDM

of a spin-1/2 fermion f , where the P, T -transformation properties of the relativistic

Hamiltonian, HEDM = −dfβ~Σ · ~E, are directly used to prove this point [Sak64]. The

proof is more involved for the case of a more general system, such as an atom or

molecule, and it is shown here that non-zero expectation values of the permanent

dipole moment operator require P and T -violation.

The EDM operator acting on the states of the system, say an atom, is ~Da. This is

a polar vector operator. The Hamiltonian for its interaction with an external electric

field is

HEDM = − ~Da · ~E . (A.1)

Let P be the linear, Hermitian parity inversion operator. Consider an atomic state

|ψ〉 in which the measurement is made. Inserting the identity operator 1 = P−1P ,
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the expectation value of the dipole moment can be shown to be zero:

〈ψ| ~Da|ψ〉 = 〈ψ|P−1 P ~DaP̂
−1 P |ψ〉

= −〈ψ| ~Da|ψ〉 (A.2)

⇒ 〈ψ| ~Da|ψ〉 = 0. (A.3)

This is valid whenever |ψ〉 is an eigenstate of the parity operator: P |ψ〉 = ±|ψ〉, and

relies on the fact that the dipole moment is a polar vector that is odd under parity:

P ~DaP̂
−1 = − ~Da. Therefore, the measurement of a nonzero expectation value for a

dipole moment implies that the state |ψ〉 is not an eigenstate of parity.

Now for T -invariance, which corresponds to motion-reversal invariance. This

proof is based on the discussion of T -invariance in [San68a, Sak85]. Let Θ be the an-

tiunitary T -inversion operator. Let |ψ〉 be an angular momentum eigenstate |J,mJ〉
with integer J , as is the case for ThO. Under the action of the Θ operator, the ket

|J,mJ〉 → Θ|J,mJ〉 = (−1)mJ |J,−mJ〉. The dipole moment operator is even under

the action of the Θ operator: Θ ~DaΘ
−1 = + ~Da. We again make use of the identity

operator 1 = Θ−1Θ and find that

〈J,mJ | ~Da|J,mJ〉 = 〈J,mJ |Θ−1 Θ ~DaΘ
−1 Θ|J,mJ〉

= +〈J,−mJ | ~Da|J,−mJ〉. (A.4)

Assume next that the matrix element of the ẑ-component of ~Da is evaluated (the

matrix elements of the other components can be obtained from this ẑ-component

using the Wigner-Eckart theorem). We have

〈J,mJ |Da,z|J,mJ〉 = +〈J,−mJ |Da,z|J,−mJ〉. (A.5)

under the action of the Θ operator.

Now we make use of the rotation operator Rπ = D(0, π, 0), which corresponds to

a rotation about the y-axis by 180 degrees. Under the action of this operator, the

kets transform as Rπ|J,−mJ〉 = eiφ|J,+mJ〉, and the operator Da,z transforms as

RπDa,zR
−1
π = (−1)Da,z +Rπ,zxDa,x +Rπ,zyDa,y.

1. Inserting Rπ through the identity

1These results can be obtained from (A.13) and (A.14) See also Equation (3.10.22) in [Sak85].
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operator 1 = R−1
π Rπ, we have

〈J,mJ |Da,z|J,mJ〉 = +〈J,−mJ |Da,z|J,−mJ〉

= 〈J,−mJ |R−1
π RπDa,zR

−1
π Rπ|J,−mJ〉

= 〈J,mJ |e−iφ [(−1)Da,z +Rπ,zxDa,x +Rπ,zyDa,y] e
iφ|J,mJ〉

= −〈J,mJ |Da,z|J,mJ〉. (A.6)

⇒ 〈J,mJ |Da,z|J,mJ〉 = 0 (A.7)

In the penultimate step, the matrix elements of Da,x, Da,y are set to zero between

states with identical mJ . We therefore find that the measurement of a non-zero ex-

pectation value of ~Da requires a violation of the transformation properties of angular

momentum states under the action of the T -operator.

A.2 State mixing in an electric field

Consider two states |p〉 and |q〉 that have opposite parity and have an energy dif-

ference ∆pq = Ep − Eq between them. If they both have the same eigenvalue of Jz,

they can be mixed by the electric field ~E = E ẑ. Let the matrix element of the dipole

moment operator between them be 〈p|Dz|q〉 ≡ Dpq. The eigenvectors in the electric

field are given exactly by:

|p̃〉 = |p〉 cos ξ/2 + |q〉 sin ξ/2

|q̃〉 = |q〉 cos ξ/2− |p〉 sin ξ/2 (A.8)

where tan ξ = −DpqE
∆pq/2

. In the limit when DpqE � ∆pq/2 (i.e. when tan ξ ≈ ξ), the

eigenvectors are

|p̃〉 ≈ |p〉+ |q〉−DpqE
∆pq

|q̃〉 ≈ |q〉+ |p〉DpqE
∆pq

. (A.9)
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This is the weakly polarized regime. In the opposite limit, when | tan ξ| � 1, the

eigenvectors are

|p̃〉 ≈ |p〉 − |q〉√
2

|q̃〉 ≈ |q〉+ |p〉√
2

. (A.10)

This is the strongly polarized regime. These expressions are useful in understanding

the effect of the E-field on the various energy levels in the ThO molecule.

A.3 Matrix elements between molecular states

For the evaluation of matrix elements between states in a diatomic molecule, the lab-

to-molecule frame transformation formula is often useful. The formula can be found

in [Dra06], Section 33.2. What follows is a simple derivation. The aim is to obtain the

matrix elements of a spherical tensor operator T kQ between two molecular eigenstates

of angular momentum: |J,M,Ω; Γ〉 and |j,m, ω; γ〉. Here J is the angular momentum

of the state, M is the projection of J onto the lab ẑ-axis, Ω is the projection of J

onto the intra-molecular axis n̂, and Γ is a set of molecule-fixed quantum numbers

unrelated to the rotational properties of the state. Hund’s case (c) molecular states

can be written as a product of symmetric top wavefunctions |J,M,Ω〉 and molecule-

fixed wavefunctions |Ω; Γ〉,

|J,M,Ω; Γ〉 = |J,M,Ω〉 × |Ω; Γ〉 (A.11)

where the symmetric top part of the wavefunction, |J,M,Ω〉, contains all the infor-

mation about the transformation properties of the molecular state under the rotation

group SO(3) (i.e. 3D rotations) [Hou01]. The representation of the |J,M,Ω〉 sym-

metric top wavefunctions in terms of Euler angles is

〈Θ|J,M,Ω〉 =

√
2J + 1

8π2
DJMΩ(Θ) (A.12)

where DJ(Θ) is the Wigner rotation matrix for angular momentum J , and Θ is a

convenient shorthand for the triplet of Euler angles (θ, φ, α) [Dav76](Eq. 45.5).

A lab-frame angular momentum eigenstate state, with angular momentum J and
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lab frame ẑ-projection M , transforms under rotations by a set of Euler angles (θ, φ, α)

as

|J,M〉 =
∑
m

DJMm(Θ) |J,m〉. (A.13)

Spherical tensor operators transform like angular momentum eigenstates. A

spherical tensor operator T kQ with the lab-frame azimuthal index Q can be trans-

formed into the molecule-fixed frame and written in terms of the azimuthal index q

as

T kQ =
∑
q

DkQq(Θ)T kq (A.14)

Using the following property of the DJ matrices [Dav76](Eq. 43.24)∫
DJ∗MK(Θ)Dj1m1k1

(Θ)Dj2m2k2
(Θ) dΘ =

8π2

2J + 1
〈J,M |j1,m1; j2,m2〉

×〈J,K|j1, k1; j2, k2〉 (A.15)

we get the lab-to-molecule transformation formula, relating the rotational properties

of matrix elements between two molecular states to Clebsch-Gordan coefficients:

〈J,M,Ω; Γ|T kQ|j,m, ω; γ〉 =

√
2J + 1

8π2

√
2j + 1

8π2

∑
q

∫
DJ∗MΩDkQqDjmω dΘ

=
∑
q

√
2j + 1

2J + 1
〈J,M |k,Q; j,m〉

×〈J,Ω|k, q; j, ω〉〈Γ; Ω|T kq |γ;ω〉. (A.16)

Here 〈Γ; Ω|T kq |γ;ω〉 is a matrix element in the molecule-fixed frame, that depends on

the details of the molecular wavefunction, but is independent of rotations. The result

is valid for Hund’s case (c) basis functions, whose transformation properties under

rotations are described by symmetric top wavefunctions [Hou01]. Other Hund’s case

eigenstates might have to be expressed as superpositions of case (c) eigenfunctions

before this formula can be applied.

Corollary: Wigner-Eckart theorem

An amusing corollary of the lab-to-molecule transformation formula is the Wigner-

Eckart theorem, usually encountered in connection to matrix elements in atoms.

For regular spherical harmonics, |J,M〉 = |J,M,Ω = 0〉 and we obtain the usual
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Wigner-Eckart theorem

〈J,M ; Γ|T kQ|j,m; γ〉 = 〈J,M |k,Q; j,m〉〈J ; Γ|T k0 |j; γ〉. (A.17)

A.4 Simple picture of Ω-doublets

Ω-doublets are closely spaced states of opposite parity that show up in molecular

states which have a nonzero projection of the electronic angular momentum ~Je onto

the internuclear axis n̂ (Ω = ~Je · n̂). Physically, in a diatomic molecule with nonzero

angular momentum about the symmetry axis, there are two degrees of freedom cor-

responding to electrons orbiting clockwise or anti-clockwise about the axis. These

are the degrees of freedom that lead to Ω-doubling. The same effect (known as “par-

ity doubling”) also occurs in deformed nuclei. In molecular physics literature, this

is sometimes also referred to as Λ-doubling (Λ = ~Le · n̂), since the main ideas are

independent of whether the electronic angular momentum ~Je = ~Le + ~S contains a

contribution solely from the electronic orbital angular momentum ~Le or not. It is

simplest to have a physical picture for this in terms of the orbital angular momentum

(since the wavefunctions in real space can visualized easily). Also, the H state in

ThO is a good Hund’s case (a) molecular state (with Λ = 2) and it is not incorrect to

think of the Ω-doubling in the H state as being equivalent to Λ-doubling. In states

with strong spin-orbit coupling, this picture is not totally accurate, and one must

fall back on the mathematics. The full quantum-mechanical approach to Ω-doubling

is treated in detail in [BC03, LL81]. For completeness, a short summary is given

below (in general terms, using ~Je instead of ~Le).

The rotation of the molecule is governed by the Hamiltonian Hr = BN2, where B

is the rotational constant of the molecule and N is the rotational angular momentum

of the two atoms about their center of mass. In terms of the reduced mass of the two

atoms M and their separation R, B = 1/2MR2 = 1/IM , where IM is the moment

of inertia of the rotating molecule. The total angular momentum ~J = ~N + ~Je is the

only good quantum number in the rotating molecule. Hr can be rewritten in terms

of J as

Hr = B( ~J − ~Je)
2 = BJ2 − 2B ~J · ~Je +BJ2

e . (A.18)

Further BJ2
e is independent of the rotational quantum number J and is a constant

for a given electronic state, so it only contributes to the baseline energy of the

electronic state. BJ2 gives rise to the usual rotational ladder of states. The term in
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Figure A.1: The illustration at the top schematically shows the angular momentum
vectors in the molecule-fixed frame. The illustration below show the azimuthal prob-
ability density of the electrons in the even and odd combinations of the molecule-fixed
eigenvectors |Λ〉 in a Λ = 1 electronic state.

the Hamiltonian that is responsible for Ω-doubling is the so-called Coriolis coupling

HCor = −2B ~J · ~Je. This can be rewritten in terms of the usual raising and lowering

operators for J and Je, referred to the internuclear axis n̂, as

HCor = −2B(Ω2 − J−J+
e − J+J−e ) = const. + 2B(J−J+

e + J+J−e ) (A.19)

where ~J · n̂ = ~Je · n̂ = Ω (N̂ is orthogonal to n̂). Hence −2BΩ2 is yet another

J-independent constant term added to the baseline energy.

The appearance of the off-diagonal terms J±J∓e in HCor leads to a coupling be-

tween an electronic state with quantum number Ω = Ω0 and those with Ω = Ω0± 1.

In the absence of this coupling, electronic states with Ω = ±Ω0 are degenerate in

energy. Under the influence of HCor, these are coupled through a chain of interme-

diate states |Ω0 − 1〉, |Ω0 − 2〉...|−Ω0 + 1〉 at (2Ω0)-th order in perturbation theory,

and acquire a slight energy difference. This is what leads to Ω-doubling.

In the following, a simple physical reason for the appearance of these doublets is

presented, in the hope that this might provide some intuition. Consider the polar
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molecule shown in Figure A.1. As mentioned above, it is sufficient to consider Λ-

doubling, arising from the non-zero orbital angular momentum of the electrons about

the space-fixed internuclear axis. The two degenerate degrees of freedom, in the

non-rotating molecule, correspond to positive or negative projections of ~Le along

n̂. The amplitude for the states |±Λ〉 at an azimuthal angle φ about n̂ is ∼ e±iΛφ,

leading to a uniform probability density about the internuclear axis (as expected for

a cylindrically symmetric system). As these are degenerate states, we can equally

generally consider a pair of orthogonal states formed from their superpositions:

|±〉 =
|Λ〉 ± |−Λ〉√

2
(A.20)

These have probability densities proportional to cos(Λφ) (sin(Λφ)), and for Λ = 1

are peaked along the x (y) axis referred to the molecule-fixed frame (where n̂ ≡ ẑ).

In the lab-frame, rotation of the atoms about their center of mass corresponds to a

rotation of the probability densities shown in Figure A.1 about the molecule-fixed

x or y axes. Without loss of generality, say the molecule rotates about y (in other

words, the y-axis can always be aligned with the axis of rotation of the molecule by

a choice of the zero of azimuthal angle φ). It is evident that electrons in |+〉 have

a different moment of inertia Ie about the axis of rotation than electrons in |−〉,
and therefore pick up different amounts of kinetic energy due to the rotation of the

molecule as a whole. This energy difference ∆E can be readily estimated, since the

spatial extent of the lobe of the wavefunction is ∼ a0.

∆E =
1

2
∆Ieω

2

∼ 1

2
mea

2
0

( J
IM

)2

=
mea

2
0

4MR2
J2

∼ me

M
J(J + 1), (A.21)

recognizing that the typical inter-atomic spacing R in a molecule is on the order of

a Bohr radius a0. This simple argument gives the right size and J-scaling of the

Λ-doubling in a molecule with Λ = 1. The appearance of the ratio of the mass of the

electrons to the mass of the atoms, me/M , reminds us that the key physics behind

Ω-doubling is a “dragging” of the electrons by the atoms in the molecule as they

rotate in the lab-frame. It can also be seen why, for Λ > 1, the difference between

the moments of inertia of electrons in |+〉 and |−〉 gets smaller as the lobes in the
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azimuthal probability density become more azimuthally symmetric.

A.5 Magnetic Johnson noise

The charge carriers in a conductor thermalize due to collisions with phonons in the

material. At a temperature T , the charge carriers are in equilibrium with a thermal

bath of phonons, and as a result the velocities of the charge carriers fluctuate in time.

This leads to fluctuating currents in the conductor, which in turn generate fluctuating

magnetic fields in the vicinity of the conductor. These fluctuating magnetic fields

are referred to as magnetic Johnson noise. The spectral density of magnetic Johnson

noise from a conductor is calculated here in a simple form. Alternative expressions

for the magnetic Johnson noise can be found in [Lam99, Mun05].

In a small volume element δΥi of the conductor, the spectral density of the current

density j is

jν =

√
4kBT

ρ δΥi

(A.22)

where ρ is the resistivity of the material. At a distance ~ri from the volume element,

the power spectral density of the magnetic field due to the fluctuating current density

is

B̃ν ,i =
µ0

4π

~jν × ~ri
r3
i

δΥi. (A.23)

The squared cross product (~jν ×~ri)2, which we will need below, can be simplified as

(~jν × ~ri)2 = j2
ν r

2
i − (~jν · ~ri)2 ≈ 2

3
j2
ν r

2
i (A.24)

when averaged over the orientations of ~jν with respect to ~ri. Using the fact that

Johnson currents in different volume elements are uncorrelated,2 the spectral density

of the B-field can be obtained from the quadrature sum of the B-fields due to different

2The typical correlation length for thermal noise currents is on the order of the mean free path
of electrons in the conductor.
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volume elements.

B̃ν =

√∑
i

(B̃ν ,i)2 =
(µ0

4π

)√∑
i

8kBT

3ρ

δΥi

r4
i

7→ B̃ν =
(µ0

4π

)√8kBT

3ρ

∫
dΥ

r4
(A.25)

The geometry of the conductors enters through the shape factor S =
∫
dΥ/r4.

For example, at the center of a cylindrical shell of radius R, thickness ∆R and height

H the shape factor is S = 2π tan−1
(
H
2R

)
∆R
R2 , while for a sphere of radius R and

thickness ∆R it is S = 4π∆R/R2, about the same order of magnitude as a cylinder

with H ∼ R. It can be seen from (A.25) that in general, S ∼ t/R2 for a conductor

of thickness t that is located at a distance R from the point of evaluation.

We now estimate B̃ν for the aluminum vacuum chamber described in Section 5.3.

For the purpose of this estimate, it is modeled as a cylinder with radius R = 8 in.

height H = 25 in. and thickness ∆R = 5/8 in., and the shape factor thus obtained

is S = 1.9 m−1. This shape factor and the electrical conductivity of 6061 alloy,

ρAl = 4× 10−8 Ω m, are substituted in (A.25) to obtain B̃ν ≈ 70 fT/
√

Hz.

A.6 Cross-polarization in Gaussian beams

Even propagating through free space, a polarized Gaussian light beam picks up new

polarization components (“cross polarization”) purely as a consequence of propa-

gation according to the wave equation. The curvature of the wavefront of a con-

verging/diverging Gaussian beam is a well-known effect. The appearance of cross-

polarization components can be understood as arising due to the constraint (from

Maxwell’s equations) that the E- and B-field vectors in free space have to always be

transverse to the converging/diverging wavefront. The curvature of the wavefront

rotates the E and B-vectors as the beam propagates. Since the preparation and

detection of the spin superposition in the H state relies on the polarization of laser

beams, it is plausible that the appearance of cross-polarization components could

mimic the rotation of the preparation and detection bases for spin precession in the

H state, and cause systematic effects. In the following section, an elementary deriva-

tion of the cross-polarization effect is presented and an estimate of the size of the

cross-polarization components is obtained.
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The electromagnetic wave equation is

(∇2 − ∂2
t )~E = 0. (A.26)

The derivation of this equation uses the following free-space Maxwell equations,

which are constraints to be satisfied by the solutions and initial conditions of the

wave equation.

~∇ · ~E = 0 (A.27)

~∇× ~E = −∂t ~B (A.28)

Assuming ~E ∼ e−iωt we get the following Helmholtz equation for the spatial

dependence of the electric and magnetic fields

(∇2 + k2)~E = 0 (A.29)

with k2 = ω2. The simplest solutions of this equation are (unphysical) infinite plane

waves ~E ∼ ei
~k·~x. To get a description of ‘finite’ beams, we make the assumption that

~E ∼ ~E(x, y, z)eikz where ~E(x, y, z) is a slowly varying function of z. The meaning

of ’slowly varying’ will become a bit clearer further on. With this slowly varying

envelope approximation, the Helmholtz equation becomes the paraxial wave equation

ik
∂ ~E
∂z

= −1

2
(∂2
x + ∂2

y)~E (A.30)

where the approximation is valid if (∂2
x + ∂2

y)~E � k2~E . First, we assume separation

of the variables (x, y) and z and use the linearity of the wave equation to write

~E(x, y, z) =

∫
d2k ~E(kx, ky, z)e

ikxxeikyy (A.31)

The paraxial wave equation can be solved for the z-dependence of the field

1

E
∂E
∂z

= −i(k2
x + k2

y)/2k (A.32)

⇒ ~E(kx, ky, z) = ~E(kx, ky)e
−i (k2x+k2y)z/2k (A.33)
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and the full solution is

~E(z) =

∫
d2k⊥ ~E(k⊥) ei

~k⊥·~x⊥eikze−ik
2
⊥z/2k (A.34)

where ~k⊥ is shorthand for the transverse vector (kx, ky). Note that k − k2⊥
2k
'√

k2 − k2
⊥ = kz, at a level of approximation consistent with the paraxial approx-

imation. The notion of slow variation can now be made more precise: the paraxial

approximation consists of retaining terms up to O(k2
⊥/k

2).

The constraints that has to be satisfied by the field vector in (A.34) are

~∇ · ~E = kxEx(~k⊥) + kyEy(~k⊥) + kzEz(~k⊥) = 0

⇒ Ez = −
~k⊥
k
· ~E⊥ + o(k2

⊥/k
2) (A.35)

~B = k̂ × ~E (alternatively, a definition of the B-field vector) (A.36)

Scalar Gaussian beams

To first get some insight, we ignore the vector nature of the field (A.35) and consider

just the scalar wave equation. Different choices of the envelope function E(k⊥) result

in different propagating beam profiles. The simplest choice E(k⊥) = E0 = const.

gives the Fresnel solution E ∼ E0e
ikx2⊥/2z. This corresponds to the beam diverging

from a perfect point source at z = 0. The ‘radius of curvature’ here is equal to z.

A more physical choice is a Gaussian wavepacket E(k⊥) = E0e
−k2⊥w

2/2 with a waist

w in the plane with z = 0. A light beam from a laser, for example, corresponds to

such a wavepacket. The corresponding spatial profile at z 6= 0 is

E(z) =

∫
d2k⊥ E0e

−k2⊥w
2/2 ei

~k⊥·~x⊥eikze−ik
2
⊥z/2k

=

∫
d2k⊥ E0e

−ik2⊥z̃/2k ei
~k⊥·~x⊥eikz (A.37)

=

∫
d2k⊥ E0e

−k2⊥w̃
2/2 ei

~k⊥·~x⊥eikz (A.38)

= E0
π

w̃2
e−x

2
⊥/2w̃

2

eikz = E0
πk

z̃
eikx

2
⊥/2z̃eikz (A.39)

⇒ E(z) = E(0)
w2

w(z)2
e−x

2
⊥/2w(z)2eikx

2
⊥/2R(z)eikze−iφ(z) (A.40)
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where w̃2 = w2 + iz/k and z̃ = z− ikw2. We define the Rayleigh range zR = kw2,

the radius of curvature R(z) = z+z2
R/z and the beam waist w(z) = w

√
1 + z2

z2R
. The

phase of the complex numbers w̃2, z̃ appearing as normalization factors in (A.39)

leads to the Guoy phase, φ(z) = tan−1(z/zR).

Vector Gaussian beams

The exact vector Gaussian beam can be obtained from the general solution of the

paraxial equation (A.34, A.35). We write the vector electric field, following a Gaus-

sian spatial filter and an x̂-oriented linear polarizer, in terms of its plane wave com-

ponents

~E =

∫
d2k⊥ E0e

−k2⊥w
2/2 ei

~k⊥·~x⊥

 1

0

0

 . (A.41)

This field contains a propagating far field component satisfying the free space

constraint ~k · ~E(~k) = 0, and the remainder a non-propagating near field component

which satisfies the boundary conditions appropriate for the dielectrics and conductors

in the filter and polarizer. The propagating part of the field vector can be isolated

using the projection operator (matrix) P̂(~k) = 1−~k⊗~k/k2 ' 1− ẑ⊗ ẑ−~k⊥⊗~k⊥/k2,

with the paraxial approximation used in the last step. The spatial profile of the

propagating vector wave can now be obtained by integrating the propagating part

of the initial wave field with the usual Gaussian kernel e−ik
2
⊥z̃/2k.

The propagating Gaussian beam is therefore

~E =

∫
d2k⊥ E0e

−k2⊥w
2/2 ei

~k⊥·~x⊥eikze−ik
2
⊥z/2k P̂(~k⊥)

 1

0

0

 . (A.42)

Using the projection operator acting on the x̂ unit vector

P̂(~k⊥)

 1

0

0

 =

 1− k2
x/k

2

−kxky/k2

−kx/k

 (A.43)

the cross polarization components of the propagating wave are already evident. The
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propagating vector wave is

~E(z) = E0e
ikz

∫
d2k⊥ e

−k2⊥w̃
2/2 ei

~k⊥·~x⊥

 1− k2
x/k

2

−kxky/k2

−kx/k



= E0e
ikz

∫
d2k⊥ e

−ik2⊥z̃/2k ei
~k⊥·~x⊥

 1− k2
x/k

2

−kxky/k2

−kx/k

 (A.44)

After performing the integration, we get the exact solution

~E(z) = E(0)
w2

w(z)2
e−x

2
⊥/2w(z)2eikx

2
⊥/2R(z)eikze−iφ(z)

 1− x2/z̃2 − i/kz̃
−xy/z̃2

−x/z̃

 (A.45)

The B field can be obtained in a similar way. Note that this vector Gaussian

beam field is exactly divergence-free (up to the paraxial approximation). This result

is identical to that in [SSM86, SSM87], but has been obtained without using any

group theoretical machinery.

In summary, when a Gaussian beam that is x̂-polarized at (x, y) = (0, 0) propa-

gates, there are new polarization components that emerge:

1. There is a longitudinal (ẑ) component with amplitude Ez ∼ Exx/z̃. Recall

that z̃ = z − ikw2, so the longitudinal component has a relative magnitude
Ez
Ex . (x/w)(λ/w).

2. Compared to the principal transverse (x̂) component, the transverse cross-

polarization (ŷ) component has a relative magnitude EyEx . (xy/w2)(λ2/w2).
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Appendix B

Geometric phases from energy

shifts

There are nine and sixty ways of constructing tribal lays,

And every single one of them is right !

Rudyard Kipling, In the Neolithic Age

1Geometric phases arise in a number of physical situations and often lead to sys-

tematic shifts in frequencies or phases measured in precision experiments [Com91,

PHS+04, LG05]. This investigation was motivated by the question of how geometric

phase effects, which were one of the limiting systematic errors in the Tl EDM exper-

iment [RCSD02], would play a part in the ThO experiment. With the complicated

level structure (Ω-doublets) and strong E-field effects in the H state, it was initially

unclear whether/how the standard formulation of the geometric phase (in terms of

the slowly evolving trajectory of eigenstates, usually formulated for a spin-1/2 par-

ticle in a B-field, e.g. as in [Gri05]) could be carried over to this problem. The key

insight, essentially contained in [Ram55], is that it is always sufficient to just evaluate

the off-resonant energy level shifts due to the perturbing fields (be they electric or

magnetic), and calculate the phase picked up due to these energy shifts in the usual

way. The purpose of this Appendix is to provide some worked examples for a number

of interesting systems, and to show how the usual geometric result can always be

obtained as a limiting case using standard algebraic methods of calculation.

A geometric phase, often also referred to as an “adiabatic phase” or “Berry’s

1Significant chunks of this chapter are based on [VD09], which was written for a pedagogical
journal.
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phase”, is a real, physical phase shift that can lead to measurable effects in experi-

ments ([BD87, RKGL88, Com91] are some examples). In the classic version of this

effect, the state of a particle with a magnetic moment is modified under the influence

of a magnetic field which undergoes a slow change in its direction. The motion of the

field leads to a phase shift accumulated between the quantum states of the particle,

in addition to the dynamical phase due to the Larmor precession of the magnetic

moment around the magnetic field. This extra phase is termed a geometric phase

because it can be interpreted in terms of the geometry traced out by the system’s

Hamiltonian as it evolves in its parameter space. [Hol89] and references within con-

tain a good discussion of the standard geometric approach to calculating geometric

phases, and its various connections with the topology of the parameter space.

In practice, calculating geometric phases can be non-trivial when the path traced

out in the parameter space is not a closed loop [AWM95]. In addition the geometric

formulation is strictly correct only in the limit of slow evolution, and corrections due

to finite evolution speed can be important in some situations [AWM95, FHLR05].

Finally, the topology of multi-dimensional parameter spaces can become quite in-

volved when the system is an atom or molecule with internal structure subject to

various evolving fields (e.g. magnetic fields, electric fields, and their gradients).

Energy level shifts from time-varying off-resonant perturbations go by many

names, such as Bloch-Siegert shifts, AC Stark shifts and light shifts. These are mostly

treated in the literature as separate phenomena from geometric phases. However,

the idea that both of these involve the same physics is implicit in some recent work

[RKGL88, PHS+04, LG05, Mey10] and originates in an analysis by Ramsey [Ram55].

While most of these treatments analyze the simple case of a spin-1/2 particle in a

time-dependent magnetic field, the link between geometric phases and off-resonant

energy level shifts is in fact quite general. Here, this connection is explored by

looking at some instructive examples, showing with simple calculations how energy

level shifts lead to geometric phases in each case. Using this approach correction

terms to the (adiabatic) geometric phase, due to the finite rate of evolution of the

perturbation, can be obtained easily.

In the following section the basic approach is introduced with the classic example

of a spin-1/2 system subject to a magnetic field whose direction changes in time.

Then in Section B.2 modifications to the usual geometric phase, when there are

multiple Fourier components in the time evolution of the magnetic field, are worked

out. Sections B.5 and B.6 show how the geometric phase can arise in a system acted
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Figure B.1: An example of a trajectory traced by the magnetic field, showing how
it can be decomposed into its components along a fixed set of axes: ~B = Bz ẑ +
~B⊥(t). The geometric phase φg picked up between the sublevels of a spin-1/2 system
interacting with this field is equal to the solid angle Ωs enclosed by the trajectory.

upon by electric fields or a combination of electric and magnetic fields. These sections

also indicate how geometric phases can be calculated in a system with a non-trivial

level structure, such as an atom or molecule. This is followed in Section B.7 by

examples showing how the energy shift formulation allows the calculation of these

phase shifts in the non-perturbative regime. The last section applies the method to

the problem that motivated this investigation: Ω-doublets in a polar molecule.

Brief recap of perturbation theory

Consider a pair of states |g〉 and |e〉, which are governed by a Hamiltonian H =

H0 + λHint (λHint is the interaction Hamiltonian). Assume that H0 =

(
0 0

0 ∆eg

)
.

In analogy with Rayleigh-Schrodinger perturbation theory, we write E = E0 +λE1 +

λ2E2 + O(λ3) and |ψ〉 = |ψ0〉 + λ|ψ1〉 + O(λ2) for the energy and wavefunction of

a state. The state |g〉 is perturbed by the interaction into |g̃〉, given by the usual

expression from time-dependent perturbation theory

|g̃〉 = |g〉+
1

i~

∫ t

−∞
|e〉〈e|λHint|g〉 dt. (B.1)
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Assuming that the Hamiltonian contains no time-dependent terms resonant with the

energy difference between |g〉 and |e〉, there is no population transfer and the sole

effect of Hint is to shift the energies of the states. Further if 〈g|λHint|g〉 = 0, then to

leading order in λ, the energy shift of the state |g〉 is given by the expressions from

Rayleigh-Schrodinger perturbation theory:

∆Eg = λ2E2 = 〈g|λHint|g̃〉

= 〈g|λHint|e〉 ×
∫ t

−∞
〈e|λHint|g〉 dt/i~ + O(λ3H3

intt
2). (B.2)

λ is a small parameter that is useful for deriving the perturbation series, but it can

be set equal to 1 without loss of generality after the perturbation series has been

obtained. If Hint = F e−iω⊥t + F †e+iω⊥t, then

∆Eg =
|〈e|F |g〉|2

−∆eg + ω⊥
+
|〈e|F †|g〉|2

−∆eg − ω⊥
+ O(F 3). (B.3)

This expression is used at a number of places in the following sections, in order to

obtain the energy shift in perturbative calculations.

B.1 Spin-1/2 system in a magnetic field

A spin S system in a magnetic field is a well-studied example of the geometric phase

[BD87, RKGL88, Com91, Hol89]. When the tip of the magnetic field vector slowly

traces out a closed loop in space, the sublevels |mS〉 of the system pick up an extra

“geometric” phase φg(mS) = mS × Ωs (in addition to the usual dynamical phase

from Larmor precession) [Ber84, Hol89, Gri05, BKD08]. Here Ωs is the solid angle

enclosed by the loop. In all the subsequent sections, without any loss of generality

we focus on the observable quantity defined by the phase difference between the

|mS = ±S〉 sublevels: ∆φg = φ(mS = +S) − φ(mS = −S). In this section a spin

S = 1/2 system in a magnetic field is examined and it is shown how the geometric

phase shift can be traced back to an off-resonant energy level shift, in this case an

AC Zeeman (or Ramsey-Bloch-Siegert) shift.

A fixed coordinate system is used and the changing magnetic field is resolved into

a static longitudinal (ẑ-directed) component and a dynamic transverse component

(in the xy plane), as shown in Figure B.1. Let the evolution of the transverse

component’s direction be composed of a rotation about the z-axis at a single angular
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frequency ω⊥ (ω⊥ > 0 denotes counter-clockwise rotations). The magnetic field

written in terms of its components in the fixed coordinate system is

~B = Bz ẑ + ~B⊥(t) (B.4)

where the rotating transverse component of the magnetic field is

~B⊥(t) = B⊥(x̂ cosω⊥t+ ŷ sinω⊥t). (B.5)

For this discussion we consider small values of B⊥/Bz, such that the solid angle

enclosed by this loop is Ωs ≈ π
B2⊥
B2z

.

The Hamiltonian of the particle in this magnetic field is

Hint = −γ~S · ~B = −γSzBz −
γB⊥

2

(
S−e

−iω⊥t + S+e
iω⊥t

)
(B.6)

where γ is the gyromagnetic ratio and S± = Sx ± iSy are the spin raising and

lowering operators respectively. In the presence of only the longitudinal field Bz ẑ,

the eigenstates |mS = ±1/2〉 have energies EmS
= 〈mS| − γSzBz|mS〉 = −γBzmS

and the energy shift is ~ω0 = (E−1/2 − E+1/2) = γBz. We will consider the effect of

the time-varying transverse field as a perturbation on the Sz eigenstates. To lowest

order, the energy shifts ∆E±1/2 of the | ± 1/2〉 states are given by (B.2). Figure B.2

shows the energy levels and the operators connecting them. We define the transverse

matrix elements of the spin operator to simplify notation

s2
⊥ = |〈+1/2|S+| − 1/2〉|2 = |〈−1/2|S−|+ 1/2〉|2 = 1. (B.7)

Taking note of the usual selection rules on the matrix elements of the S± opera-

tors, we get

∆E+1/2 =
1

4

[ γ2s2
⊥B2
⊥

−~ω0 + ~ω⊥

]
= −1

4

[γB2
⊥
Bz

+
B2
⊥
B2
z

~ω⊥ +O(ω2
⊥)
]

(B.8)

∆E−1/2 =
1

4

[ γ2s2
⊥B2
⊥

~ω0 − ~ω⊥

]
=

1

4

[γB2
⊥
Bz

+
B2
⊥
B2
z

~ω⊥ +O(ω2
⊥)
]
. (B.9)
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Figure B.2: Energy levels of a spin S = 1/2 system interacting with a magnetic
field whose direction evolves over time. The level splitting in the longitudinal field is
~ω0 = γBz. The dashed lines indicate virtual levels, offset from the real levels by the
finite rotation frequency of the transverse field ~B⊥. S± is the spin raising (lowering)
operator which couples the |mS = ±1/2〉 state to the [virtual] |mS = ∓1/2〉 state in

the presence of ~B⊥.

Note that the condition for applicability of this approximation viz. ω⊥ � ω0 is the

same as the adiabatic criterion invoked in the standard approach to describing the

geometric phase [Gri05].2

The extra energy difference ∆E between | ± 1/2〉 due to the transverse rotating

component of the field is therefore

∆E = ∆E+1/2 −∆E−1/2

= {−γ B
2
⊥

2Bz
}+ [−1

2

B2
⊥
B2
z

~ω⊥] = ∆EQZ + ∆Eg, (B.10)

where ∆EQZ (∆Eg) corresponds to the term in curly (square) brackets. Note that the

term ∆EQZ is nonzero even when the field’s direction evolves infinitesimally slowly.

This term is nothing other than the correction to the Zeeman splitting because the

total magnetic field becomes larger on application of the transverse field component:

here B =
√
B2
z + B2

⊥ ≈ Bz +
B2⊥
2Bz . The term ∆Eg is responsible for the geometric

phase. This term, which vanishes when ω⊥ → 0, nevertheless adds a relative phase

2Note that the definition of the term ‘adiabatic’ in quantum mechanics is distinct from its
meaning in thermodynamics. In thermodynamics, an adiabatic process is specifically one where no
heat is exchanged between a closed system and the rest of the universe. In quantum mechanics,
‘adiabatic’ is defined by the conditions of the adiabatic theorem.
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between |± 1/2〉 even in this limit. The relative phase picked up over a time interval

T is

∆φg = −∆EgT/~ =
1

2

B2
⊥
B2
z

ω⊥T. (B.11)

Over one full cycle of the field’s evolution, T = 2π/ω⊥ and we get the standard

geometric phase result ∆φg = π
B2⊥
B2z
' Ωs. The restriction to small solid angles here

is equivalent to truncating the perturbation series at second order in B⊥. Results in

the case of larger solid angles can be analytically written down using higher orders of

perturbation theory, or alternatively using a dressed-state formalism that is valid for

arbitrarily large solid angle [Mey10, CTGDR92]. However the essential point remains

that energy level shifts can be calculated algebraically (by numerically diagonalizing

the Hamiltonian if necessary), without any reference to trajectories in parameter

space.

This formulation can be easily extended to situations that are more complicated

than the simple loop, as shown in the next section. Moreover, by keeping terms

of higher order in ω⊥, corrections due to deviations from the adiabatic evolution

assumption (ω⊥ � ω0) can be calculated. The energy shift formalism eliminates the

need to track the instantaneous basis states of the system throughout its evolution.

B.2 Spin-1/2 system with multiple evolution fre-

quencies

Having illustrated the basic formalism, it can now be applied to a case where the

field’s direction traces out an arbitrary periodic path. This demonstrates the ap-

proach to be used in a general situation, e.g. in a precision atomic beam experiment

where the fields experienced by an atom along its trajectory can be quite compli-

cated and contain a number of Fourier components. This method will be illustrated

with the simple example of a spin-1/2 system in a magnetic field as in the previous

section.

An arbitrary periodic transverse magnetic field can be described in terms of

harmonics nω⊥ (n = 1, 2, 3 . . .) of its fundamental evolution frequency ω⊥.

~B⊥(t) =
∞∑
n=0

Bx,n cos(nω⊥t+ φx,n) x̂ +
∞∑
n=0

By,n cos(nω⊥t+ φy,n) ŷ (B.12)
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For a spin S = 1/2 system, the geometric phase difference is ∆φg = Ωs [Gri05].

We will evaluate the solid angle Ωs enclosed by the tip of the magnetic field vector

defined by Equation (B.12). The solid angle enclosed by a curve θ(φ) on a sphere is

given by

Ωs =

∫
(1− cos θ) dφ (B.13)

where θ, φ are the usual spherical polar angles. We use the following definitions

B =
√
B2
z + B2

⊥, Bz = B cos θ (B.14)

and find that the solid angle is

Ωs =

∫
1

2

B2
⊥
B2
z

dφ +O
(B4
⊥
B4
z

)
≈ A
B2
z

(B.15)

where A =
∫

1
2
B2
⊥ dφ is the area enclosed by the transverse field ~B⊥(t) in the xy-

plane. For the purpose of comparison with second order perturbation theory the

approximation above, where we retain terms up to second order in B⊥, is sufficiently

accurate.

We can express the area A in terms of ~B⊥(t), d
~B⊥
dt

and evaluate it for the curve

defined in Equation (B.12):

A =

∫
1

2
B2
⊥ dφ =

∫ T

0

1

2

[
~B⊥(t)× d ~B⊥

dt

]
· ẑ dt

=
1

2

∞∑
m,n=0

∫ T

0

dt (−nω⊥)
[
Bx,mBy,n cos(mω⊥t+ φx,m) sin(nω⊥t+ φy,n)

− By,mBx,n cos(mω⊥t+ φy,m) sin(nω⊥t+ φx,n)
]

(B.16)

To evaluate the geometric phase for a closed path, we integrate this expression

over a time T = 2π/ω and find

Ωs =
1

2B2
z

∞∑
n=0

∫ T

0

dt (−nω⊥) 2Bx,nBy,n
[

cos2(nω⊥t) cosφx,n sinφy,n

− sin2(nω⊥t) sinφx,n cosφy,n

]
=

π

B2
z

∞∑
n=0

n Bx,nBy,n sin(φx,n − φy,n). (B.17)
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Now we shall calculate the geometric phase independently using the energy-shift

formalism. First we rewrite the transverse magnetic field in terms of the handed

basis that is relevant for calculating the matrix elements of the Hamiltonian. In

terms of the handed (spherical) basis vectors r̂±1 = − x̂∓iŷ√
2

the transverse field can

be written as

~B⊥(t) =
∞∑
n=0

BR,n e−inω⊥t r̂+1 − B†R,n e+inω⊥t r̂−1√
2

+
∞∑
n=0

BL,n e−inω⊥t r̂−1 − B†L,n e+inω⊥t r̂+1√
2

. (B.18)

The relation between the coefficients in the two bases is

BR,n =
−Bx,ne−iφx,n + iBy,ne−iφy,n

2
,BL,n =

Bx,ne−iφx,n + iBy,ne−iφy,n
2

(B.19)

The extra energy difference between the ground and excited states due to the

transverse field is

∆E = ∆E+1/2 −∆E−1/2

=
∞∑

m,n=0

−
{ γ

4Bz

(
ei(m−n)ω⊥t(B†L,mBL,n + B†R,mBR,n)

+ e−i(m+n)ω⊥t(BR,mBL,n + BL,mBR,n)
)

+ c.c.
}

+
∞∑

m,n=0

[n~ω⊥
2B2

z

(
ei(m−n)ω⊥t(B†L,mBL,n − B

†
R,mBR,n)

+ e−i(m+n)ωt(BR,mBL,n − BL,mBR,n)
)

+ c.c.
]

(B.20)

= {∆EQZ}+ [∆Eg].

As before ∆EQZ corresponds to the quadratic Zeeman shift. ∆Eg is the term

linear in nω⊥ and leads to the geometric phase. We have retained only terms up to

first order in ω⊥ in order to make a connection with the ω⊥ → 0 limit in which the

geometric method is defined, but we emphasize that phase shifts due to these finite-

speed correction terms can be easily calculated by the energy shift method. Note

that we have retained all the time-dependent terms appearing in the perturbative

calculation of the energy shift. These terms are usually ignored in the expression

for the energy shift since they average out to zero, but they can lead to measurable
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physical consequences such as in this case.

Over a time duration T the geometric phase accumulated between |mS = ±1〉
due to the energy shift is

∆φg = − 1

2B2
z

∞∑
m,n=0

∫ T

0

dt
[(B†L,mBL,n − B

†
R,mBR,n) ei(m−n)ω⊥t + c.c.

2

− (BR,mBL,n − BL,mBR,n) e−i(m+n)ω⊥t + c.c.

2

]
× nω⊥(B.21)

With the following quantities defined for ease of notation

B2
m,n;A = abs(B†L,mBL,n − B

†
R,mBR,n)

B2
m,n;B = abs(BR,mBL,n − BL,mBR,n)

Φm,n = Arg(B†L,mBL,n − B
†
R,mBR,n)

Ψm,n = Arg(BR,mBL,n − BL,mBR,n) (B.22)

the geometric phase simplifies to

∆φg = − 1

2B2
z

∞∑
m,n=0

{
B2
m,n;A

sin[(m− n)ω⊥T + Φm,n]− sin[Φm,n]

(m− n)ω⊥

+ B2
m,n;B

sin[(m+ n)ω⊥T + Ψm,n]− sin[Ψm,n]

(m+ n)ω⊥

}
× nω⊥. (B.23)

This is the full, general expression for the geometric phase acquired by the sublevels

of a spin-1/2 particle in an arbitrary periodic transverse magnetic field.

For the special case of a closed loop (T = 2π/ω⊥), the above equation simplifies

to

∆φg = − π

B2
z

∞∑
n=0

n B2
n,n;A cos Φn,n

=
π

B2
z

∞∑
n=0

n (B†R,nBR,n − B
†
L,nBL,n)

=
π

B2
z

∞∑
n=0

n Bx,nBy,n sin(φx,n − φy,n) (B.24)

and is identical to (B.17) which was derived using the geometric formalism. Note

that the geometric phase shift is maximal when φx,n − φy,n = (2s+ 1)π/2 i.e. when
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the fields are maximally handed. We also note that, due to the weighting by a factor

of n in the sum, high harmonics nω⊥ contained in the periodic evolution can have

significant effects even if their amplitudes Bx,n,By,n are small. This fact might be

relevant for some precision experiments.

B.3 Hyperfine states of hydrogen

We can now calculate the geometric phase for a more realistic physical system. We

consider the ground hyperfine states of hydrogen [Gri05]. The Hamiltonian of the

system in a B-field is

H = A~S · ~I − (γS ~S + γI~I) · ~B

= A~S · ~I − (γSSz + γIIz)Bz −
B⊥
2

(
γSS−e

−iω⊥t + γII−e
−iω⊥t + c.c.

)
= H0 +H⊥e

−iω⊥t + c.c. (B.25)

The field-free eigenstates of the system are |F,mF 〉. The following matrix ele-

ments are useful.

P0,0 = 〈0, 0|γSSz + γIIz|1, 0〉 =
γS − γI

2

P1,1 = 〈1, 1|γSSz + γIIz|1, 0〉 =
γS + γI

2

N0,±1 = 〈0, 0|γSS− + γII−|1,±1〉 = ∓γS − γI√
2

N1,±1 = 〈1, 0|γSS− + γII−|1,±1〉 =
γS + γI√

2
(B.26)

In the presence of Bz the states |0, 0〉 and |1, 0〉 mix to become

|1̃, 0〉 = |1, 0〉 cos ξ/2 + |0, 0〉 sin ξ/2

|0̃, 0〉 = |0, 0〉 cos ξ/2− |1, 0〉 sin ξ/2 (B.27)

where we denote the field-mixed eigenstates with tildes, and the mixing angle is

tan ξ = P0,0Bz
A/2

. We define the following energy denominators and matrix elements for
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ease of notation

∆0 = E|1,±1〉 − E|0̃,0〉 =
A

2
+
√
A2/4 + (P0,0Bz)2

∆1 = E|1,±1〉 − E|1̃,0〉 =
A

2
+
√
A2/4 + (P0,0Bz)2

M0,±1 = cos ξ/2 N0,±1 − sin ξ/2 N1,±1

M1,±1 = cos ξ/2 N1,±1 + sin ξ/2 N0,±1 (B.28)

Note that as defined, ∆0 (∆1) is positive (negative). The energy shifts ∆E±1 for the

|1,±1〉 states due to the transverse field B⊥ are given by

∆E±1 =
B⊥
4

[ M2
0,±1

∆0 ± P1,1Bz ± ~ω⊥
+

M2
1,±1

∆1 ± P1,1Bz ± ~ω⊥

]
. (B.29)

We consider the difference ∆E = ∆E+1 −∆E−1 and as before, extract the ‘geo-

metric’ term ∆Eg that is linear in ~ω⊥. After some algebra that can be readily done

with symbolic algebra software, the result is

∆Eg = −B
2
⊥
B2
z

~ω⊥ (B.30)

which yields, over a single cycle of evolution T = 2π/ω⊥, the geometric phase

∆φg = −∆EgT/~

= 2π
B2
⊥
B2
z

= 2Ωs. (B.31)

The phase shift once again has an extremely simple form, in spite of the fact that

the system contains a lot of parameters such as the hyperfine coupling constant A,

different gyromagnetic ratios γS,I for the electron spin and nuclear degrees of freedom.

B.4 An anisotropic system

Consider a system with spin J = 1 which is described by the following Hamiltonian

in a magnetic field ~B.

H = −A J2
z − γ ~J · ~B

= −A J2
z − γJzBz −

γB⊥
2

(J−e
−iω⊥t + c.c.) (B.32)
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An atom inside a crystal is an example of a system with such an anisotropic Hamil-

tonian (as is a molecule in an Ω-doublet state polarized by an E-field). We will

calculate the response of the states |mJ = ±1〉 of this system to a magnetic field

that has a static longitudinal component Bz and a rotating transverse magnetic field.

Using the same perturbative analysis used to illustrate the previous examples, we

calculate the energy shifts ∆E±1 of the states |mJ = ±1〉. The energy shifts are

∆E±1 =
γ2B2

⊥/2

A± γBz ± ~ω⊥
(B.33)

Expanding the energy out to first order in ω⊥, we isolate the “geometric” term Eg

that is linear in ω⊥

Eg(±1) ≈ ∓1

2

γ2B2
⊥

(A± γBz)2
~ω⊥ (B.34)

Over one cycle of the evolution of the transverse field, T = 2π/ω⊥, this energy shift

yields a phase

φg(±1) = π
γ2B2

⊥
(A± γBz)2

(B.35)

for these states. In the limit that γBz � A, φg(±1) = ±Ωs.. In the opposite limit

γBz � A though, the phase is φg(±1) = π
γ2B2⊥
A2 .

B.5 Spin-1 system in an electric field

Using the same formalism as above, the geometric phase can be calculated for a

system with more complicated levels such as an atom or a molecule. In this section

we will consider the geometric phase for a spin J = 1 system in an electric field

whose direction changes with time. As the electric field vector traces out a loop,

the system picks up a geometric phase ∆φg = 2Ωs between the |mJ = ±1〉 states.

We refer the reader to the calculation for this case using the geometric formalism in

[BKD08], and calculate the same here using energy shifts.
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Let the evolving electric field be written as

~E = Ez ẑ + ~E⊥(t)

~E⊥(t) = E⊥(x̂ cosω⊥t+ ŷ sinω⊥t)

=
E⊥√

2

(
− r̂+1e

−iω⊥t + r̂−1e
+iω⊥t

)
. (B.36)

The Hamiltonian of the system in the electric field is

Hint = − ~D · ~E = −DzEz −
D−1E⊥e−iω⊥t −D+1E⊥eiω⊥t

√
2

. (B.37)

Here we have defined the electric dipole moment operator ~D. This operator only

couples states of opposite parity, whereas the |mJ = 0,±1〉 sublevels of a J = 1

level all have the same parity. To calculate the effect of electric fields, it is essential

to enlarge the system and include an opposite parity state in addition to the spin-1

sublevels. For simplicity, we consider here the 4-state system consisting of the 3

sublevels of a Jπ = 1− level: |J = 1,mJ = 0〉, |J = 1,mJ = ±1〉, and in addition a

Jπ = 0+ state: |J = 0,mJ = 0〉. Here J denotes the angular momentum and π the

parity of the state. We refer to states by their |J,mJ〉 labels from now on. Figure

B.3(a) shows these states. We are interested in the phase that is picked up between

the |1,±1〉 states due to the evolving electric field. Choose the zero of energy halfway

between |1, 0〉 and |0, 0〉, and let the zero-field separation between them be 2B. The

perturbative calculation requires matrix elements of ~D, which we write as

dz ẑ = 〈1, 0| ~D|0, 0〉

−d±1r̂∓1 = 〈1,±1| ~D|0, 0〉. (B.38)

Here we have used the Wigner-Eckart theorem to define only the nonzero matrix

elements of ~D; this can also be used to show that all three of the nonzero matrix

elements have a common value: d0 ≡ dz = d±1.

First, we consider the effect of Ez. This part of ~E only mixes the two states |1, 0〉
and |0, 0〉. Under the interaction with this part of the field, the eigenstates are

|1̃, 0〉 = |1, 0〉 cos ξ/2 + |0, 0〉 sin ξ/2

|0̃, 0〉 = |0, 0〉 cos ξ/2− |1, 0〉 sin ξ/2 (B.39)
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Figure B.3: Energy levels of a spin J = 1 system in an electric field. States are
labelled by their angular momentum quantum numbers J,mJ . Dashed arrows and
their labels indicate the states being coupled by the respective components of the
dipole moment operator. Under the influence of a longitudinal electric field Ez, the
|0, 0〉 and |1, 0〉 states shown in (a) are perturbed into |0̃, 0〉 and |1̃, 0〉 as shown in

(b). The rotating transverse electric field ~E⊥(t) induces virtual energy levels (dashed

lines) ~ω⊥ above and below the static perturbed states. ~E⊥(t) couples these states
with the |1,±1〉 states of interest, through the dipole moment operators D±1.

where we denote the field-mixed eigenstates with tildes, and the mixing angle is

tan ξ = d0Ez
B

so that

sin2 ξ/2 =

√
B2 + d2

0E2
z −B

2
√
B2 + d2

0E2
z

, cos2 ξ/2 =

√
B2 + d2

0E2
z +B

2
√
B2 + d2

0E2
z

. (B.40)

The |1̃, 0〉, |0̃, 0〉 states have energies ±
√
B2 + d2

0E2
z respectively. The |1,±1〉 states

remain at their zero-field location E|1,+1〉 = E|1,−1〉 = +B, as shown in Figure B.3(b).

The splitting ∆1 between the |1,±1〉 and |1̃, 0〉 levels is usually referred to in the

literature as a tensor Stark shift [BKD08].

Next we consider the interaction with the rotating transverse field and calculate

the effect to second order in perturbation theory. As indicated in Figure B.3(b) the

transverse field only couples |1,±1〉 with |1̃, 0〉 or |0̃, 0〉. Define the following energy

denominators for ease of notation

∆0 = E|1,±1〉 − E|0̃,0〉 = B +
√
B2 + d2

0E2
z

∆1 = E|1,±1〉 − E|1̃,0〉 = B −
√
B2 + d2

0E2
z . (B.41)
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Note that as defined, ∆0 (∆1) is positive (negative). The energy shifts ∆E±1 for the

|1,±1〉 states due to the transverse electric field E⊥ are given by

∆E±1 =
1

2

[d2
0E2
⊥ cos2 ξ/2

∆0 ± ~ω⊥
+
d2

0E2
⊥ sin2 ξ/2

∆1 ± ~ω⊥

]
. (B.42)

Where the |1,±1〉 states were degenerate before, they are now split by the energy

∆E = ∆E+1 −∆E−1 given by

∆E = −d
2
0E2
⊥ cos2 ξ/2

∆2
0

~ω⊥ −
d2

0E2
⊥ sin2 ξ/2

∆2
1

~ω⊥ +O(ω2
⊥). (B.43)

We have again retained only the terms to least order in ω⊥ to extract the adiabatic

part of the phase and make contact with the usual geometric result. Substituting

the values of ξ,∆0,∆1 we get

∆E = −d2
0E2
⊥

[√
B2 + d2

0E2
z +B

2
√
B2 + d2

0E2
z

1(√
B2 + d2

0E2
z +B

)2 +

√
B2 + d2

0E2
z −B

2
√
B2 + d2

0E2
z

1(√
B2 + d2

0E2
z −B

)2

]
~ω⊥ (B.44)

= −E
2
⊥
E2
z

~ω⊥ = ∆Eg. (B.45)

Compared to the case with a magnetic field, in a pure electric field the only

energy difference between |1,±1〉 is the geometric contribution ∆Eg. The relative

phase between |1,±1〉 after a time duration corresponding to a single complete cycle

of evolution, T = 2π/ω⊥, is

∆φg = −∆EgT/~ =
E2
⊥
E2
z

ω⊥T

= 2π
E2
⊥
E2
z

= 2Ωs. (B.46)

This same case is worked out in [BKD08] by restricting the calculation to the J =

1 manifold and introducing the tensor Stark shift “by hand” (thereby implicitly

including the J = 0 state). It is interesting that the explicit introduction of the

J = 0 state from the start does not affect the result at the end.
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B.6 Combined effect of electric and magnetic fields

The formalism developed in the previous section can be easily extended to a more

complicated case, where the system interacts with both electric and magnetic fields.

The standard geometric approach in this case requires us to calculate all instanta-

neous eigenvectors of the system, and their gradients with respect to the 6-dimensional

parameter space that describes the Hamiltonian and its evolution (3 degrees of free-

dom each for the electric and magnetic fields). Energy shifts on the other hand can

be calculated in a straightforward manner, as we shall see in the following two sub-

sections. In the eEDM experiment with ThO, the molecules are affected by both E
and B-fields during their flight through the interaction region, rather than undergo-

ing an idealized evolution under pure E or B-fields alone. Therefore a simple way to

estimate the size of geometric phases picked up in combined E and B-fields is useful.

Rotating electric field, static magnetic field

We will first examine the same spin-1 system as in the previous section and under-

stand what happens to it when a static magnetic field ~B = Bz ẑ is imposed along

with the revolving electric field. The interaction Hamiltonian of the system is now

Hint = − ~D · ~E − ~µ · ~B

= −DzEz − µzBz −
D−1E⊥e−iω⊥t −D+1E⊥eiω⊥t

√
2

. (B.47)

with ~µ the magnetic moment of the J = 1 state.

To illustrate the basic ideas we again use a perturbative approach, to study the

influence of the transverse time-dependent components of E on the eigenstates in the

presence of only Ez and Bz. The eigenstates of the system are shown in Figure B.4.

We will carry over the notation and definitions from the previous section.

The essential effect of the Bz field is in the energy denominators that appear

in the AC Stark shift. The energy shifts of the |1,±1〉 states (in addition to their

Zeeman shifts in the magnetic field) are given to lowest order in E⊥ by

∆E±1 =
1

2

[ d2
0E2
⊥ cos2 ξ/2

∆0 ± µzBz ± ~ω⊥
+

d2
0E2
⊥ sin2 ξ/2

∆1 ± µzBz ± ~ω⊥

]
. (B.48)

To make a connection with the geometric limit, we expand the energy shift ∆E
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Figure B.4: Energy levels of a spin J = 1 system in a combination of electric and
magnetic fields. The state labels and symbols are the same as in Figure B.3. In
(b), the figure as shown corresponds to a case where the Zeeman shift is somewhat
smaller than the tensor Stark shift: µzBz . ∆1.

between |1,±1〉 up to first order in ~ω⊥, and write

∆E = ∆E+1 −∆E−1 ≈ C +D ~ω⊥. (B.49)

We interpret C as the analog of a (static) quadratic Zeeman/Stark shift due to

the inclusion of E⊥, and ∆Eg = D ~ω⊥ as the energy shift that leads to a geometric

phase difference ∆φg = −Dω⊥T . Table B.1 shows the values of the geometric phase

∆φg in some limiting cases, corresponding to regimes where one of the various energy

scales in the problem is dominant. The relevant energy scales are the Zeeman shift

µzBz, the Stark matrix element d0Ez, the Stark shift of the |1, 0〉 state |∆1|, and the

zero-field energy splitting 2B between Jπ = 0+ and Jπ = 1− levels.

The geometric phase in every case can be simply calculated from the energy shift

between |1,±1〉. This energy shift can be computed perturbatively, or by numerically

diagonalizing the Hamiltonian if necessary. An important feature to note in Table

B.1 is that the zero-field energy splitting between Jπ = 0+ and Jπ = 1− levels appears

irreducibly in some of the limiting expressions. This shows that the inclusion of the

opposite parity (e.g. Jπ = 0+) state is necessary to properly describe geometric

phases in a combination of electric and magnetic fields.
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Case Limiting condition Geometric phase difference, ∆φg

I µzBz � |∆1|, d0Ez
(E⊥
Ez

)2

ω⊥T

II |∆1| � µzBz � d0Ez
(E⊥
Ez

)2( ∆1

µzBz

)2

ω⊥T

III d0Ez � µzBz � 2B
(E⊥
Ez

)2(d0Ez
2B

)2

ω⊥T

IV d0Ez, 2B � µzBz
(E⊥
Ez

)2( d0Ez
µzBz

)2

ω⊥T

Table B.1: Analytical expressions in some limiting conditions, for the geometric phase
in a static magnetic field Bz and electric field Ez, along with a rotating transverse
electric field component E⊥. In each case, the geometric phase between |1,±1〉 up to
first order in ω⊥ is shown.

Rotating magnetic field, static electric field

As another illustration of the energy shift formalism in a case with combined elec-

tric and magnetic fields, consider the case where the system experiences a static

ẑ-directed electric field, and a revolving magnetic field ~B = Bz ẑ + B⊥(x̂ cosω⊥t +

ŷ sinω⊥t). The interaction Hamiltonian is

Hint = − ~D · ~E − ~µ · ~B

= −DzEz − µzBz −
µ−1B⊥e−iω⊥t − µ+1B⊥eiω⊥t

√
2

. (B.50)

where the spherical components of the magnetic moment ~µ are defined as follows.

µz ẑ = 〈1, 1|~µ|1, 1〉

−µ±1r̂∓1 = 〈1,±1|~µ|1, 0〉. (B.51)

Once again, the Wigner-Eckart theorem has been used to define the non-zero matrix

elements (which turn out to be identical): µ0 ≡ µz = µ±1.
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The energy shifts are

∆E±1 =
1

2

[ µ2
0B2
⊥ sin2 ξ/2

∆0 ± µzBz ± ~ω⊥
+

µ2
0B2
⊥ cos2 ξ/2

∆1 ± µzBz ± ~ω⊥

]
. (B.52)

As in the previous section, we expand the energy shift ∆E between |1,±1〉 up to

first order in ~ω⊥

∆E = ∆E+1 −∆E−1 ≈ C +D ~ω⊥ (B.53)

and focus our attention on the relative energy shift ∆Eg = D ~ω⊥ that leads to a

geometric phase ∆φg. The relevant energy scales in the problem are the same as in

the previous section. We consider cases where ∆1 � 2B i.e. the system is weakly

electrically polarized by the Ez-field. Table B.2 lists the geometric phase in some

limiting cases where the analytic expression becomes simple.

As expected, when the Zeeman splitting is sufficiently large (Cases I and II) the

geometric phase reduces to the result expected in the pure magnetic field scenario.

Case III is interesting and quite relevant to real world experiments. Compared to the

situation in a pure magnetic field, the geometric phase in the presence of a strong

tensor Stark splitting is significantly suppressed, by a factor
(µzBz

∆1

)2

which could

be ∼ 10−6 in experiments using polar molecules to search for the electron electric

dipole moment [THSH09, LBL+10, BHJD09].

The expressions listed in Table B.2 are special cases derived from the more general

Equation (B.52) for the energy shift between |1,±1〉. A priori it is not evident how

(B.52) or the limiting cases in Table B.2 can be related to a solid angle in the

parameter space of the Hamiltonian. But in terms of energy level shifts, they can be

obtained by a simple algebraic calculation.

B.7 Energy shifts in the non-perturbative regime

All of the above examples have used perturbation theory to calculate the energy shift.

However, perturbation theory is only a convenient way to calculate energy shifts; it

is not essential to the fundamental point that is being made in this Chapter. Energy

shifts can be calculated in any way desired, be it exact analytic, perturbative or

numerical. The purpose of this section is to show that the energy shift formalism

can be used to evaluate the “geometric” phase in all regimes, even when 2nd order
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Case Limiting condition Geometric phase difference, ∆φg

I |∆1| � 2B � µzBz
(B⊥
Bz

)2

ω⊥T

II |∆1| � µzBz � 2B
(B⊥
Bz

)2

ω⊥T

II µzBz � |∆1| � 2B
(µ0B⊥

∆1

)2

ω⊥T

Table B.2: Analytical expressions in some limiting conditions, for the geometric
phase in a static electric field Ez with a rotating transverse magnetic field component
B⊥. In each case, the geometric phase between |1,±1〉 up to first order in ω⊥ is
shown.

perturbation theory is insufficient. As usual, in the limit when ω⊥ → 0, the result

of the energy shift calculation gives exactly the standard “geometric” result. This is

shown using two non-trivial examples, one analytical and the other numerical.

J = 1 in a B-field

Consider a J = 1 system with a magnetic moment, in a B-field. Let the field be

tipped at an arbitrary angle θ. The time dependence of the magnetic field is the

usual

~B = Bz ẑ + ~B⊥(t) (B.54)

where the rotating transverse component of the magnetic field is

~B⊥(t) = B⊥(x̂ cosω⊥t+ ŷ sinω⊥t). (B.55)

In terms of the tip angle θ, Bz = B cos θ,B⊥ = B sin θ. We set up the Hamiltonian

matrix (in the basis | − 1〉, |0, |+ 1〉) for a dressed-state calculation [CTGDR92]

H =

 −γB cos θ − ω⊥ γB sin θ/
√

2 0

γB sin θ/
√

2 0 γB sin θ/
√

2

0 γB sin θ/
√

2 γB cos θ + ω⊥

 (B.56)
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and solve it by exact diagonalization instead of perturbation theory. The eigenvalues

are easily evaluated by symbolic algebra packages. They are:

λ(H) = [0,±
√
γ2B2 + 2γB cos θ ω⊥ + ω2

⊥] (B.57)

The ‘geometric’ contribution is given by the term in the energy shift that is first

order in ω⊥ i.e. ∂λ
∂ω⊥

∣∣∣
ω⊥=0

× ω⊥. Evaluating this, the geometric contribution to the

energy shift is

∆Eg = [0,∓ cos θ] ω⊥ ≡ mJ cos θ ω⊥ (B.58)

This is exactly equal to the usual geometric result. One gets a little more information

from this procedure, since there are O(ω2
⊥) and higher terms in the Taylor expansion

of the real energy shift which are not captured by the geometric formulation.

Figure B.5: J = 1 system in an E-field. Comparison between the energy shift of the
|J = 1,mJ = 1〉 state and the geometric result (∆E+1 = ω⊥ cos θ) as a function of
ω⊥, for a fixed tip angle (θ = π/3) and interaction strength DE = 0.6 B. This is
merely an illustration of the fact that the geometric formulation only works in the
adiabatic limit.
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(a) w=0.01

(b) w=0.1

Figure B.6: J = 1 system in an E-field. Comparison between exact energy shift of
the |J = 1,mJ = 1〉 state and the geometric result (∆E+1 = ω⊥ cos θ) as a function
of tip angle θ, for various values of ω⊥. The calculations are performed at a fixed
interaction strength DE = 0.6 B.
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J = 1 in an E-field

Consider the 4-state system formed by a J = 0 state and a set of J = 1 sublevels.

Using the same notation as before, we set up the Hamiltonian matrix used in Section

B.5, except that we now allow arbitrary tip angles θ. The assumptions for applying

perturbation theory break down in this case, but the basic notion (that energy shifts

are really what give rise to the geometric phase) is still valid as we shall see. The

Hamiltonian in the basis |0, 0〉, |1, 0〉, |1,+1〉, |1,−1〉 is written in the dressed-state

basis as

H = B ×


−1 −s cos θ −s sin θ/

√
2 s sin θ/

√
2

−s cos θ 1 0 0

−s sin θ/
√

2 0 1 + w 0

s sin θ/
√

2 0 0 1− w

 (B.59)

written in terms of the dimensionless quantities s = DE/B,w = ω⊥/B for the sake

of numerical computation. Results from numerical diagonalization of this matrix for

various parameters are shown in Figs. B.5 and B.6.

The numerically calculated eigenvalue differences match the geometric result,

with the agreement getting better as ω⊥ → 0 as expected. Note that the calculation

only involves a simple evaluation of eigenvalues.

B.8 H state Ω-doublets

The purpose of this section is to evaluate the geometric phase picked up by ThO

molecules in the H, J = 1 state while traversing the interaction region of the EDM

experiment, assuming that there are small apparatus-fixed transverse components

E⊥,B⊥ of the E- and B-fields. As the molecules traverse the field, these apparatus-

fixed components result in a time-dependent transverse field experienced in the rest

frame of the molecules. The geometric phase due to these field components can

be evaluated using the same methods as above, even though a J = 1 Ω-doublet

has a complicated state space consisting of number of interacting sublevels. The

algebraic calculation that follows is restricted to a single fourier component (at a

frequency ωE⊥ , ω
B
⊥ for the E⊥,B⊥ fields respectively) and to 2nd order in perturbation

theory for E⊥,B⊥. The geometric phase induced by the transverse fields is evaluated

in order to show the following: geometric phases picked up by the two components
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of an Ω-doublet are equal in magnitude and opposite in sign. Hence, comparing the

precession phases picked up in the upper and lower Ω-doublets allows for the rejection

of systematic errors due to the geometric phase. This is one more feature that makes

Ω-doublets advantageous for EDM experiments; it was first reported in [VCG+10].

The H, J = 1 state has a magnetic moment ~µ and an (induced) electric dipole

moment D, which interact with the laboratory E- and B-fields according to the

Hamiltonian

Hint = − ~D · ~E − ~µ · ~B

= −DzEz − µzBz −
µ−1B⊥e−iω⊥t − µ+1B⊥eiω⊥t

√
2

−D−1E⊥e−iω⊥t −D+1E⊥eiω⊥t

√
2

. (B.60)

As before, we calculate the effect of E⊥,B⊥ on the energy eigenstates in a static

electric Ez and magnetic Bz field. Figure B.7 shows the structure of the eigenstates

in a combination of ẑ-directed E- and B-fields, as is the case in the interaction region

of the ThO eEDM experiment (see Chapter 2). The quantum number N = mJΩ

is defined as in previous chapters. The two states |mJ = ±1,N = +1〉 (which are

lowered in energy in an E-field) pick up a differential energy shift due to E⊥,B⊥,

denoted by ∆E+
±1. The two states |mJ = ±1,N = −1〉 (which go up in energy in an

E-field) pick up a differential energy shift due to E⊥,B⊥, denoted by ∆E−±1. These

energy shifts are identical in form for N = ±1 states, and given by

∆EN±1 =
1

2

[ µ2
⊥B2
⊥

∆st + µzBz − ωB⊥
+

d2
⊥E2
⊥

∆st + µzBz − ωE⊥

− µ2
⊥B2
⊥

∆st − µzBz + ωB⊥
− d2

⊥E2
⊥

∆st − µzBz + ωE⊥

]
. (B.61)

Differences in the matrix elements for N = ±1 states, such as due to the differ-

ences in g-factors for the Ω-doublet states (a consequence of E-field induced mixing

of the H, J = 2 state into the H, J = 1 state of interest) [BHJD09, Ham10], will

cause small corrections to this result. Nevertheless, the key point remains, which

is that the geometric phase (and more generally, the energy shifts to 2nd order in

E⊥,B⊥ and all orders in the evolution frequency ω⊥) can be largely suppressed from

appearing as an EDM-like systematic by comparing the Ω-doublets.

The above analytic calculations are useful for providing insight and estimates of
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(a) eEDM energy shift, deEmol

(b) Off-resonant energy shifts, ∆EGP

Figure B.7: Energy shifts of the H, J = 1 state in Ez,Bz fields. The mJ = 0 states are
not perturbed (or only weakly polarized by mixing with J = 2 levels), and continue
to be denoted by |Jp,mJ〉 labels. The mJ = ±1 states are shown in the strongly
electrically polarized regime, and are labeled |J,mJ ,N = mJΩ〉. a) Energy shifts
due to an eEDM. b) Energy shifts (that lead to geometric phases) due to E⊥,B⊥.
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the size of the effects to expect, but when necessary, the eigenvalues of the full 16 x

16 Hamiltonian (6 levels in J = 1, 10 levels in J = 2) can be numerically calculated

over the trajectory of the molecules through the known (or artificially distorted) E-

and B-fields in the apparatus.

Summary

A number of simple examples have been worked out, where the geometric phase

arises due to magnetic or electric fields whose direction changes over time. Iden-

tifying the geometric phase as the phase due to off-resonant energy shifts enables

it to be calculated in every case without recourse to topology. Compared to the

usual geometric approach, phase shifts due to fast evolution and/or non-cyclic paths

in parameter space can be calculated in a straightforward way using energy shifts.

Instead of tracking all the eigenstates as the Hamiltonian evolves along a path in its

parameter space, the problem is reduced to a calculation of eigenvalues. This enables

efficient numerical calculation of geometric phase effects in experimentally relevant

situations, where the evolution of the fields experienced by atoms or molecules can

be quite complicated, and where the assumptions of the geometric formulation (par-

ticularly, that of adiabatic evolution) are broken.
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