Conveyor-belt magneto-optical trapping of molecules

Conveyer-belt mechanism.

Abstract

Laser cooling is used to produce ultracold atoms and molecules for quantum science and precision measurement applications. Molecules are more challenging to cool than atoms due to their vibrational and rotational internal degrees of freedom. Molecular rotations lead to the use of type-II transitions ($F\geq F’$) for magneto-optical trapping (MOT). When typical red detuned light frequencies are applied to these transitions, sub-Doppler heating is induced, resulting in higher temperatures and larger molecular cloud sizes than realized with the type-I MOTs most often used with atoms. To improve type-II MOTs, Jarvis et al (2018 Phys. Rev. Lett. 120 083201) proposed a blue-detuned MOT to be applied after initial cooling and capture with a red-detuned MOT. This was successfully implemented (Burau et al 2023 Phys. Rev. Lett. 130 193401; Jorapur et al 2024 Phys. Rev. Lett. 132 163403; Li et al 2024 Phys. Rev. Lett. 132 233402), realizing colder and denser molecular samples. Very recently, Hallas et al (2024 arXiv:2404.03636) demonstrated a blue-detuned MOT with a ‘1+2’ configuration that resulted in even stronger compression of the molecular cloud. Here, we describe and characterize theoretically the conveyor-belt mechanism that underlies this observed enhanced compression. We perform numerical simulations of the conveyor-belt mechanism using both stochastic Schrödinger equation and optical Bloch equation approaches. We investigate the conveyor-belt MOT characteristics in relation to laser parameters, $g$-factors and the structure of the molecule, and find that conveyor-belt trapping should be applicable to a wide range of laser-coolable molecules.

Publication
New Journal of Physics