Intense atomic and molecular beams via neon buffer-gas cooling

Abstract

We realize a continuous, intense, cold molecular and atomic beam source based on buffer-gas cooling. Hot vapor (up to 600 K) from an oven is mixed with cold (15 K) neon buffer gas, and then emitted into a high-flux beam. The novel use of cold neon as a buffer gas produces a forward velocity distribution and low-energy tail that is comparable to much colder helium-based sources. We expect this source to be trivially generalizable to a very wide range of atomic and molecular species with significant vapor pressure below 1000 K. The source has properties that make it a good starting point for laser cooling of molecules or atoms, cold collision studies, trapping, or nonlinear optics in buffer-gas-cooled atomic or molecular gases. A continuous guided beam of cold deuterated ammonia with a flux of 3×1011 ND3 molecules s−1 and a continuous free-space beam of cold potassium with a flux of 1×1016 K atoms s−1 are realized.

Publication
New Journal of Physics